

Supporting Information

Fluorosulfuryl Isocyanate Enabled SuFEx Ligation of Alcohols and Amines

Shoujun Sun⁺, Bing Gao⁺,* Junyu Chen, K. Barry Sharpless,* and Jiajia Dong*

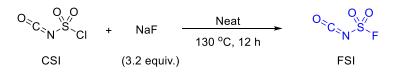
anie_202105583_sm_miscellaneous_information.pdf

Supporting Information

Table of Contents

General Experimental	S2
Section 1. Preparation of Fluorosulfuryl Isocyanate (FSI)	S4
Section 2. Ligation of Alcohols and Phenols with FSI.	S4
General Procedure 1.	S4
Section 3. Ligation of tertiary amines and <i>N</i> -hydroxysuccinimide with FSI	S19
General Procedure 2	S19
General Procedure 3	S20
Section 4. Reaction between amines and salt 4-2.	S21
General Procedure 4.	S21
Section 5. Direct reaction of anilines and aliphatic amines with FSI	S28
General Procedure 5	S28
Section 6. Reactions between the <i>N</i> -sulfonyl fluorides and amines	S30
Screen of solvents.	S30
Screen of bases	S31
Scope of substrates. General Procedure 6.	
Examine the Ca(NTf ₂) ₂ promoted SuFEx ligation	S40
Section 7. Crystallographic Data.	S42
Section 8. NMR Spectra for Compounds	
Section 9. References for the Known Compounds	

General Experimental

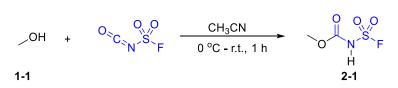

¹H and ¹⁹F NMR spectra were recorded on an Agilent-400 instrument, ¹³C NMR spectra were recorded on a Bruker AM-400 instrument. Proton magnetic resonance (¹H NMR) spectra were recorded at 400 MHz. Carbon magnetic resonance (¹³C NMR) spectra were recorded at 101 MHz. Fluorine magnetic resonance (¹⁹F NMR) spectra were recorded at 376 MHz. The ¹H, ¹³C and ¹⁹F NMR spectra were recorded at 297K in CDCl₃, CD₃CN, CD₃OD or (CD₃)₂SO, and the chemical shifts (δ) are presented in parts per million (ppm). Data for ¹H NMR were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, sept = septet, m = multiplet, br = broad), coupling constant (J) in Hertz (Hz), and integration. Data for ¹³C and ¹⁹F NMR spectra were reported in a similar pattern if applicable, with the exception that singlet peaks in the ¹³C NMR spectra were reported only with their chemical shifts. For ¹H NMR, the chemical shifts were calibrated in reference to the tetramethylsilane (0 ppm), or the residual undeuterated solvents (CDCl₃, 7.26 ppm; CD₃CN, 1.94 ppm; CD₃OD, 3.34 ppm; (CD₃)₂SO, 2.50 ppm). Data of the ¹³C NMR spectra were calibrated in reference to the deuterated solvents (CDCl₃, 77.16 ppm; CD₃OD, 49.86 ppm; CD₃CN, 1.32 ppm; (CD₃)₂SO, 39.52 ppm). Data for ¹⁹F NMR spectra were calibrated in referenced to CFCl₃ (0 ppm).

High resolution mass spectrometry (HRMS) was recorded on a Thermo Fisher Scientific LTQ FTICR-MS instrument with direct analysis in real time (DART or ESI) ionization mode. Melting points (m.p.) were determined using a Büchi M-565 melting point apparatus. X-ray crystallography was performed on a Bruker APEX-II CCD instrument.

Analytical LC-MS data were recorded on a Waters ACQUITY UPLC H-Class system with a Waters ACQUITY QDa system operating in the electrospray ionization (ESI) mode eluting with H₂O (with 0.1% trifluoroacetic acid) and CH₃CN. [Method: 7000 psi, flow rate = 0.6 mL/min. Eluent: t = 0, 95% H₂O; t = 0.10, 95% H₂O; t = 1.20, 5% H₂O; t = 2.00, 5% H₂O; t = 2.50, 95% H₂O. Total acquisition time = 2.5 min.]. The figures of LC-MS data in this supporting information show the plot of total UV absorbance (wavelength range 210-400 nm) along the vertical axis with respect to time along the horizontal axis, and the peak annotations include the retention time (in min) and the wavelength (in nm) at maximal absorbance.

Thin layer chromatography (TLC) was performed using TLC silica gel plates HSG F254 (Jiangyou) and visualized using UV light, iodine, ninhydrin or potassium permanganate. Silica gel column chromatography was carried out using 300-400 mesh silica gel (Jiangyou). Reagents were purchased from Aladdin, TCI, Macklin, Energy, Alfa Aesar, Adamas, Tianlian, Shuya, and Bide. Solvents were purchased from Macklin, Adamas, Tianlian. All purchased reagents and solvents were used as received, without further purification or special handling practice.

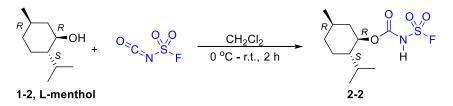
Section 1. Preparation of Fluorosulfuryl Isocyanate (FSI).



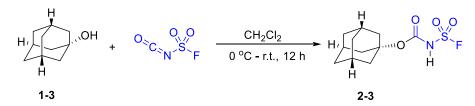
A 3L three-neck round-bottom flask containing 700 g sodium fluoride (16 moles) was dried overnight in a muffle furnace at 550 °C before use. Mechanical agitation was fixed on the middle neck, and two condensers with -20 °C circulating fluid were fixed on the other two necks under argon gas. The chlorosulfuryl isocyanate (CSI, 435 mL, 5 moles) was then added under mechanical stirring. The resulting mixture was heated to 130 °C. At first, both condensers were sealed with a cap and an argon balloon. When there was fluid refluxing in the flask(about 2 hours), one condenser was replaced by a distillation unit. The receiving bottle was a 500 mL plastic bottle partly immersed in dry ice-acetone bath. The crude product was subjected to rectification that gave a colorless liquid at 62-65 °C (410 g, 65% yield). ¹³C NMR (101 MHz, CD₃CN) δ 129.6; ¹⁹F NMR (376 MHz, CD₃CN) δ 62.71.

Section 2. Ligation of Alcohols and Phenols with FSI.

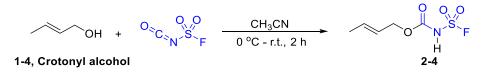
Note: The references for the known compounds, including **FSI**¹ and **2-1**¹ are listed in Section 9


General Procedure 1. A solution of alcohols or phenols in dry acetonitrile (or dichloromethane, 1 mol/L) was cooled to 0 °C. Fluorosulfuryl isocyanate in dry acetonitrile (or dichloromethane, 1 mol/L) was added dropwise. The resulting mixture was stirred at room temperature and monitored by TLC. After completion, the solvent was removed to give targeted product without further purification.

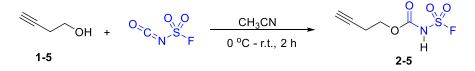
Methyl (fluorosulfonyl)carbamate (2-1)


Following the General Procedure 1, the title compound 2-1 was prepared from 1-1

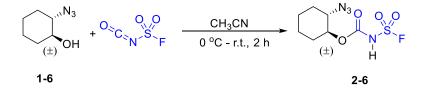
(Methanol, 0.203 mL, 5 mmol) and FSI (0.40 mL, 5 mmol) in CH₃CN for 1 hour. The physical properties of **2-1** are as follows: white solid (824 mg, 99% yield), m.p. 63.4-67.1°C. ¹H NMR (400 MHz, CDCl₃) δ 3.92 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 149.9, 55.3; ¹⁹F NMR (376 MHz, CDCl₃) δ 53.07; ESI-MS (m/z): 156.0 [M-H]⁻; HRMS (DART, m/z): calcd for C₂H₃O₄NFS: 155.9772 [M-H]⁻, found: 155.9772.


(*1R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl (fluorosulfonyl)carbamate (**2-2**)

Following the **General Procedure 1**, the title compound was prepared from **1-2** (*L*-menthol, 781 mg, 5 mmol) and FSI (0.4 mL, 5 mmol) in CH₂Cl₂ for 2 hours. Recrystallization from CH₂Cl₂ giving **2-2** as a white solid (1.25 g, 89% yield), m.p. 96.6-97.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 4.76 (td, *J* = 11.2, 4.4 Hz, 1H), 2.11 (d, *J* = 12.0 Hz, 1H), 1.90 (sept, *J* = 7.6 Hz, 1H), 1.74-1.70 (m, 2H), 1.53-1.43 (m, 2H), 1.15-1.05 (m, 2H), 0.93 (t, *J* = 6.8 Hz, 6H), 0.88-0.84 (m, 1H), 0.80 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 149.1, 80.5, 46.9, 40.5, 34.0, 31.5, 26.2, 23.3, 22.0, 20.6, 16.2; ¹⁹F NMR (376 MHz, CDCl₃) δ 52.99; ESI-MS (m/z): 280.0 [M-H]⁻; HRMS (DART, m/z): calcd for C₁₁H₁₉O₄NFS: 280.1024 [M-H]⁻, found: 280.1022.

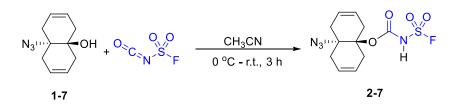

Adamantan-1-yl (fluorosulfonyl)carbamate (2-3)

Following the **General Procedure 1**, the title compound was prepared from **1-3** (304 mg, 2 mmol) and FSI (0.16 mL, 2 mmol) in CH₂Cl₂ for 12 hours. The physical properties of **2-3** are as follows: white solid (551 mg, 99% yield), m.p. 128.2-129.7 °C. ¹H NMR (400 MHz, CD₃CN) δ 2.19 (br, 3H), 2.12 (d, *J* = 2.8 Hz, 6H), 1.68 (t, *J* = 2.8 Hz, 6H); ¹³C NMR (101 MHz, CD₃CN) δ 148.0, 86.0, 41.7, 36.4, 32.0; ¹⁹F NMR (376 MHz, CD₃CN) δ 52.07; ESI-MS (m/z): 276.0 [M-H]⁻; HRMS (DART, m/z): calcd for


(E)-but-2-en-1-yl (fluorosulfonyl)carbamate (2-4)

Following the **General Procedure 1**, the title compound was prepared from **1-4** (Crotonyl alcohol, 212 mL, 2.5 mmol) and FSI (0.2 mL, 2.5 mmol) in CH₂Cl₂ for 2 hours. The physical properties of **2-4** are as follows: white solid (493 mg, 99% yield), m.p. 46.5 °C (decomposition). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (br, 1H), 5.95-5-87 (m, 1H), 5.64-5-57 (m, 1H), 4.70 (d, *J* = 6.8 Hz, 2H), 1.76 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 149.1, 134.6, 123.1, 69.5, 17.9; ¹⁹F NMR (376 MHz, CDCl₃) δ 53.14; ESI-MS (m/z): 196.0 [M-H]⁻; HRMS (DART, m/z): calcd for C₅H₇O₄NFS: 196.0085 [M-H]⁻, found: 196.0081.

But-3-yn-1-yl (fluorosulfonyl)carbamate (2-5)

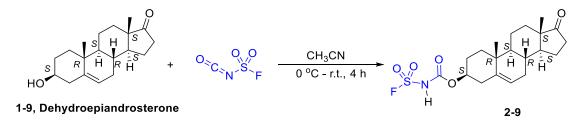

Following the **General Procedure 1**, the title compound was prepared from **1-5** (0.7 g, 10 mmol) and FSI (0.80 mL, 10 mmol) in CH₃CN for 2 hours. The physical properties of **2-5** are as follows: white solid (1.95 g, 99% yield), m.p. 72.2 °C (decomposition). ¹H NMR (400 MHz, CDCl₃) δ 4.37 (t, *J* = 6.8 Hz, 2H), 2.62 (td, *J* = 6.8, 2.8 Hz, 2H), 2.04 (t, *J* = 2.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 148.8, 78.8, 71.0, 66.1, 19.0; ¹⁹F NMR (376 MHz, CDCl₃) δ 52.75; ESI-MS (m/z): 194.11 [M-H]⁻; HRMS (DART, m/z): calcd for C₅H₅O₄NFS: 193.9929 [M-H]⁻, found: 193.9927.

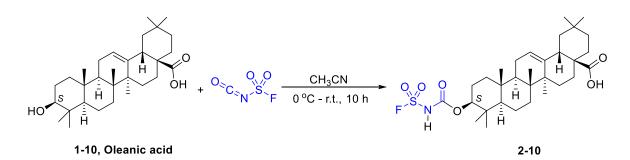
Anti-2-azidocyclohexyl (fluorosulfonyl)carbamate (2-6)

Following the General Procedure 1, the title compound was prepared from 1-6 (141

mg, 1 mmol) and FSI (0.08 mL, 1 mmol) in CH₃CN for 2 hours. The physical properties of **2-6** are as follows: white solid (260 mg, 97% yield), m.p. 85.1 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 4.70-4.64 (m, 1H), 3.51-3.45 (m, 1H), 2.09-2.05(m, 2H), 1.76-1.66 (m, 2H), 1.46-1.28 (m, 4H); ¹³C NMR (101 MHz, CD₃CN) δ 149.3, 79.7, 63.5, 30.5, 30.4, 23.8, 23.6; ¹⁹F NMR (376 MHz, CD₃CN) δ 52.60; ESI-MS (m/z): 265.0 [M-H]⁻; HRMS (DART, m/z): calcd for C₇H₁₀O₄N4FS: 265.0412 [M-H]⁻, found: 265.0409.

Anti-8a-azido-1,5,8,8a-tetrahydronaphthalen-4a(4H)-yl (fluorosulfonyl)carbamate (2-7)


Following the **General Procedure 1**, the title compound was prepared from **1-7** (382 mg, 2 mmol) and FSI (0.16 mL, 2 mmol) in CH₃CN for 3 hours. The physical properties of **2-7** are as follows: white solid (610 mg, 96% yield), m.p. 105.7 °C (decomposition). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (br, 1H), 5.70-5.57 (m, 4H), 3.19 (dd, *J* = 20.0, 4.0 Hz, 2H), 2.55-2.48 (m, 2H), 2.36 (dd, *J* = 18.8, 2.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 147.0, 123.5, 122.6, 85.6, 61.0, 33.2, 30.3; ¹⁹F NMR (376 MHz, CDCl₃) δ 53.32; ESI-MS (m/z): 315.0 [M-H]⁻; HRMS (DART, m/z): calcd for C₁₁H₁₂O₄N₄FS: 315.0569 [M-H]⁻, found: 315.0563.

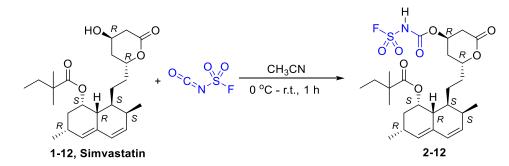

((2S,3S,5R)-3-azido-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)yl)tetrahydrofuran-2-yl)methyl (fluorosulfonyl)carbamate (**2-8**)

Following the **General Procedure 1**, the title compound was prepared from **1-8** (ATZ, 267 mg, 1 mmol) and FSI (0.08 mL, 1 mmol) in CH₃CN for half an hour. The physical

properties of **2-8** are as follows: white solid (384 mg, 98% yield), m.p. 60.5 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 9.12 (br, 1H), 7.23 (m, 1H), 6.11 (t, J = 6.8 Hz, 1H), 4.50 (dd, J = 13.2, 3.2 Hz, 1H), 4.40 (dd, J = 12.0, 4.8 Hz, 1H), 4.34 (dt, J = 7.2, 5.2 Hz, 1H), 4.06 (td, J = 4.8, 3.2 Hz, 1H), 2.42-2.37 (m, 2H), 1.96 (s, 1H), 1.84 (d, J = 1.2 Hz, 3H); ¹³C NMR (101 MHz, CD₃CN) δ 150.5, 150.4, 149.0, 136.0, 110.7, 84.7, 80.8, 66.6, 60.3, 36.2, 11.5; ¹⁹F NMR (376 MHz, CD₃CN) δ 52.77; ESI-MS (m/z): 391.10 [M-H]⁻; HRMS (DART, m/z): calcd for C₁₁H₁₂O₇N₆FS: 391.0478 [M-H]⁻, found: 391.0487.

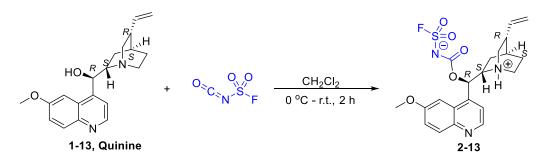
(3*S*,8*R*,9*S*,10*R*,13*S*,14*S*)-10,13-dimethyl-17-oxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl (fluorosulfonyl)carbamate (**2-9**) Following the **General Procedure 1**, the title compound was prepared from **1-9** (Dehydroepiandrosterone, 577 mg, 2 mmol) and FSI (0.16 mL, 2 mmol) in CH₃CN for 4 hours. The physical properties of **2-9** are as follows: white solid (775 mg, 94% yield), m.p. 173.4 °C (decomposition). ¹H NMR (400 MHz, DMSO-*d*₆) δ 5.38 (d, *J* = 4.8 Hz, 1H), 4.28 (tt, *J* = 11.4, 4.8 Hz, 1H), 2.40 (dd, *J* = 10.4, 8.8 Hz, 1H), 2.31 (dd, *J* = 8.0, 4.8 Hz, 1H), 2.21 (t, *J* = 12.4 Hz, 1H), 2.09-1.98 (m, 2H), 1.89-1.76 (m, 3H), 1.69-1.58 (m, 4H), 1.55-1.36 (m, 3H), 1.31-1.15 (m, 2H), 1.07 (dd, *J* = 9.6, 3.2 Hz, 1H), 1.02-0.94 (m, 1H), 0.99 (s, 3H), 0.88 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 219.7, 154.0, 139.8, 121.7, 74.6, 50.9, 49.6, 46.9, 37.9, 36.5, 36.3, 35.3, 31.2, 31.0, 30.3, 27.6, 21.5, 20.0, 19.1, 13.2; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 50.47; ESI-MS (m/z): 412.0 [M-H]⁻; HRMS (DART, m/z): calcd for C₂₀H₂₇O₅NFS: 412.1599 [M-H]⁻, found: 412.1600.

(4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-(((fluorosulfonyl)carbamoyl)oxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14boctadecahydropicene-4a(2H)-carboxylic acid (**2-10**)

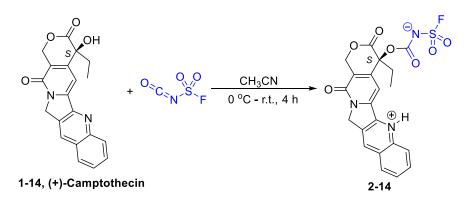

Following the **General Procedure 1**, the title compound was prepared from **1-10** (Oleanic acid, 456 mg, 1 mmol) and FSI (0.08 mL, 1 mmol) in CH₃CN for 10 hours. Recrystallization from ethyl acetate gave **2-10** as a white solid (415 mg, 71% yield), m.p. 172.3 °C (decomposition). ¹H NMR (400 MHz, CDCl₃) δ 5.31 (br, 1H), 4.56 (dd, J = 10.0, 4.8 Hz, 1H), 3.50 (q, J = 7.2 Hz, 1H), 2.86 (d, J = 13.6 Hz, 1H), 2.01 (t, J = 13.6 Hz, 1H), 1.87-1.73 (m, 6H), 1.68-1.52 (m, 8H), 1.47-1.41 (m, 2H), 1.38-1.30 (m, 3H), 1.27-1.25 (m, 1H), 1.21 (td, J = 7.2, 1.6 Hz, 2H), 1.14 (s, 3H), 1.09-1.04 (m, 2H), 0.95 (s, 3H), 0.93 (s, 3H), 0.92(s, 3H), 0.89 (s, 3H), 0.85-0.82 (m, 1H), 0.80 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 149.5, 143.3, 122.9, 87.1, 66.1, 55.3, 48.5, 47.6, 45.8, 41.9, 41.3, 39.5, 38.1, 37.0, 33.7, 33.1, 32.7, 31.5, 30.8, 28.0, 27.6, 26.0, 23.7, 23.5, 23.4, 23.1, 18.2, 17.2, 16.5, 15.4, 15.1; ¹⁹F NMR (376 MHz, CDCl₃) δ 53.08; ESI-MS (m/z): 580.20 [M-H]⁻; HRMS (DART, m/z): calcd for C₃₁H₄₇O₆NFS₂: 580.3114 [M-H]⁻, found:580.3111.

(S,Z)-3-(2-((1R,3aS,7aR,E)-1-((2R,5R,E)-5,6-dimethylhept-3-en-2-yl)-7amethyloctahydro-4H-inden-4-ylidene)ethylidene)-4-methylenecyclohexyl

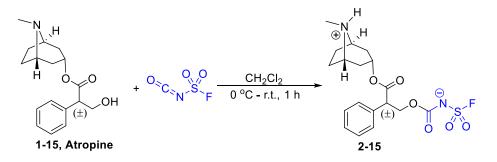
(fluorosulfonyl)carbamate (2-11)


Following the **General Procedure 1**, the title compound was prepared from **1-11** (Vitamin D2, 397 mg, 1 mmol) and FSI (0.08 mL, 1 mmol) in CH₃CN for 2 hours. The physical properties of **2-11** are as follows: green solid (520 mg, 99% yield), m.p. 55.5 °C (decomposition). ¹H NMR (400 MHz, CDCl₃) δ 8.12 (br, 1H), 6.23 (d, *J* = 11.2 Hz, 1H), 6.02 (d, *J* = 11.2 Hz, 1H), 5.19 (t, *J* = 6.4 Hz, 2H), 5.09 (s, 2H), 4.87 (s, 1H), 2.80 (dd, *J* = 12.0, 3.2 Hz, 1H), 2.63 (d, *J* = 13.6 Hz, 1H), 2.48 (dd, *J* = 13.6, 7.2 Hz, 1H), 2.43-2.36 (m, 1H), 2.27-2.21 (m, 1H), 2.03-1.97 (m, 4H), 1.92-1.81 (m, 3H), 1.73-1.66 (m, 3H), 1.55-1.44 (m, 5H), 1.36-1.25 (m, 4H), 1.02 (d, *J* = 6.4, Hz, 3H), 0.91 (d, *J* = 6.4, Hz, 3H), 0.83 (t, *J* = 6.4, Hz, 6H), 0.55 (s, 3H); ¹³C NMR (101 MHz, CD₃CN) δ 149.6, 145.4, 143.4, 136.7, 134.7, 132.9, 123.6, 118.3, 113.6, 76.8, 57.3, 57.1, 46.6, 43.8, 42.1, 41.4, 41.2, 33.9, 32.2, 32.2, 29.7, 28.7, 24.4, 23.0, 21.7, 20.4, 20.1, 18.2, 12.7; ¹⁹F NMR (376 MHz, CDCl₃) δ 53.02; ESI-MS (m/z): 521.99 [M+H]⁺; HRMS (DART, m/z): calcd for C₂₉H₄₅O₄NFS: 522.3048 [M+H]⁺, found: 522.3046.

(1S,3R,7S,8S,8aR)-8-(2-((2R,4R)-4-(((fluorosulfonyl)carbamoyl)oxy)-6oxotetrahydro-2H-pyran-2-yl)ethyl)-3,7-dimethyl-1,2,3,7,8,8a-hexahydronaphthalen-1-yl 2,2-dimethylbutanoate (**2-12**)

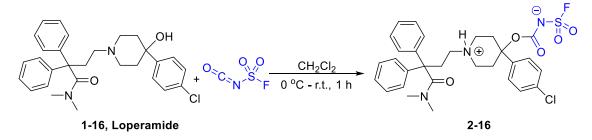

Following the **General Procedure 1**, the title compound was prepared from **1-12** (Simvastatin, 837 mg, 2 mmol) and FSI (0.16 mL, 2 mmol) in CH₃CN for 1 hours. The physical properties of **2-12** are as follows: white solid (1.0 g, 94% yield), m.p. 80.1 °C (decomposition). ¹H NMR (400 MHz, CDCl₃) δ 5.99 (d, *J* = 9.6 Hz, 1H), 5.77 (dd, *J* = 9.6, 6.0 Hz, 1H), 5.52 (t, *J* = 3.2 Hz, 1H), 5.38-5.33 (m, 2H), 4.56-4.50 (m, 1H), 2.83 (d, *J* = 3.6 Hz, 2H), 2.47-2.42 (m, 1H), 2.37-2.33 (m, 1H), 2.29-2.19 (m, 2H), 2.01-1.90 (m, 2H), 1.86-1.79 (m, 2H), 1.69-1.43 (m, 5H), 1.36-1.25 (m, 1H), 1.12 (d, *J* = 4.4 Hz,

6H), 1.08 (d, J = 7.6 Hz, 3H), 0.89 (d, J = 7.2 Hz, 3H), 0.81 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 179.0, 169.6, 149.5, 132.8, 131.4, 129.9, 128.5, 69.5, 68.7, 43.2, 37.4, 36.9, 35.1, 33.1, 33.0, 32.9, 32.7, 30.7, 27.3, 24.8, 24.7, 24.2, 23.1, 14.0, 9.3; ¹⁹F NMR (376 MHz, CDCl₃) δ 52.64; ESI-MS (m/z): 542.0 [M-H]⁻; HRMS (DART, m/z): calcd for C₂₆H₃₇O₈NFS: 542.2229 [M-H]⁻, found: 542.2231.

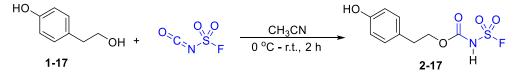

(*R*)-(6-methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl (fluorosulfonyl)carbamate (**2-13**)

Following the **General Procedure 1**, the title compound was prepared from **1-13** (Quinine, 649 mg, 2 mmol) and FSI (0.16 mL, 2 mmol) in CH₂Cl₂ for 2 hours. The physical properties of **2-13** are as follows: yellow solid (884 mg, 98% yield), m.p. 151.1 °C (decomposition). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.17 (s, 1H), 8.89 (s, 1H), 8.07 (d, *J* = 8.8 Hz, 1H), 7.61 (m, 2H), 7.53 (s, 1H), 6.73 (s, 1H), 5.86-5.76 (m, 1H), 5.12 (d, *J* = 17.2 Hz, 1H), 5.01 (d, *J* = 10.8 Hz, 1H), 4.02 (s, 3H), 3.84-3.80 (m, 1H), 3.65-3.53 (m, 2H), 3.42-3.27 (m, 2H), 2.76-2.70 (m, 1H), 2.19-2.07 (m, 3H), 1.89 (t, *J* = 13.2 Hz, 1H), 1.62 (t, *J* = 11.6 Hz, 1H); ¹³C NMR (101 MHz, CD₃CN) δ 160.9, 158.8, 147.2, 143.1, 143.1, 138.5, 130.9, 126.3, 123.7, 119.1, 117.3, 101.4, 71.0, 60.3, 56.1, 55.8, 45.5, 37.6, 27.4, 24.4, 19.8; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 48.52; ESI-MS (m/z): 448.17 [M-H]⁻; HRMS (DART, m/z): calcd for C₂₁H₂₃O₅N₃FS: 448.1351 [M-H]⁻, found: 448.1348.

(S)-(((4-ethyl-3,14-dioxo-3,4,12,14-tetrahydro-1H-pyrano[3',4':6,7]indolizino[1,2b]quinolin-6-ium-4-yl)oxy)carbonyl)(fluorosulfonyl)amide (**2-14**)

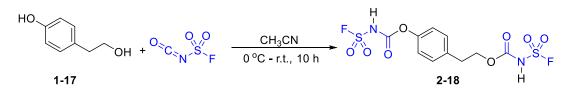

Following the **General Procedure 1**, the title compound was prepared from **1-14** ((+)-Camptothecin, 697 mg, 2 mmol) and FSI (0.16 mL, 2 mmol) in CH₃CN for 4 hours. Filtered and washed with CH₂Cl₂ gave **2-14** as a yellow solid (868 mg, 91% yield), m.p. 180.5 °C (decomposition). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.67 (s, 1H), 8.21 (d, *J* = 8.8 Hz, 2H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.85 (t, *J* = 7.2 Hz, 1H), 7.70 (t, *J* = 7.4 Hz, 1H), 7.09 (s, 1H), 5.41 (s, 2H), 5.24 (s, 2H), 2.13-1.98 (m, 2H), 0.87 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.2, 156.6, 155.9, 152.2, 147.6, 146.9, 145.3, 131.8, 130.5, 129.6, 128.8, 128.5, 127.9, 127.7, 119.3, 95.5, 74.4, 66.2, 50.1, 30.9, 7.7; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 50.20; ESI-MS (m/z): 472.07 [M-H]⁻; HRMS (DART, m/z): calcd for C₂₁H₁₅O₇N₃FS: 472.0620 [M-H]⁻, found: 472.0634.

N-atropinoxycarbonyl-fluorosulfurylamid (2-15)

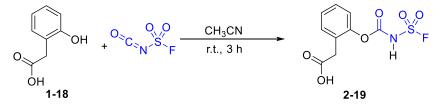

Following the **General Procedure 1**, the title compound was prepared from **1-15** (Atropine, 579 mg, 2 mmol) and FSI (0.16 mL, 2 mmol) in CH₂Cl₂ for 1 hour. The physical properties of **2-15** are as follows: white solid (798 mg, 96% yield), m.p. 185.8 °C (decomposition). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.27 (s, 1H), 7.39-7.32 (m, 5H), 4.95 (t, *J* = 4.8 Hz, 1H), 4.35 (dd, *J* = 8.8, 1.6 Hz, 1H), 4.12 (dd, *J* = 5.6, 4.8 Hz, 1H),

4.01 (dd, J = 5.6, 3.6 Hz, 1H), 3.81 (s, 1H), 3.74-3.71 (m, 1H), 2.81-2.62 (m, 3H), 2.32-2.22 (m, 2H), 2.12-2.06 (m, 2H), 2.00-1.96 (m, 2H), 1.78 (d, J = 16.0 Hz, 1H), 1.70-1.63 (m, 1H); ¹³C NMR (101 MHz, DMSO- d_6) δ 170.4, 157.3, 135.4, 128.8, 128.1, 127.7, 64.7, 64.7, 61.3, 61.2, 50.5, 38.2, 34.2, 34.1, 23.3, 23.0; ¹⁹F NMR (376 MHz, DMSO- d_6) δ 49.53; ESI-MS (m/z): 413.21 [M-H]⁻; HRMS (DART, m/z): calcd for C₁₈H₂₂O₆N₂FS: 413.1188 [M-H]⁻, found: 413.1199.

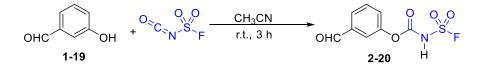
(((4-(4-chlorophenyl)-1-(4-(dimethylamino)-4-oxo-3,3-diphenylbutyl)piperidin-1-ium-4-yl)oxy)carbonyl)(fluorosulfonyl)amide (**2-16**)


Following the **General Procedure 1**, the title compound was prepared from **1-16** (Loperamide, 477 mg, 1 mmol) and FSI (0.08 mL, 1 mmol) in CH₂Cl₂ for 1 hour. The physical properties of **2-16** are as follows: white solid (571 mg, 95% yield), m.p. 244.6 °C (decomposition). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.13 (s, 1H), 7.48 (t, *J* = 7.8 Hz, 4H), 7.44 – 7.35 (m, 8H), 7.29 (d, *J* = 8.4 Hz, 2H), 3.44 (d, *J* = 12.0 Hz, 2H), 3.02-2.94 (m, 4H), 2.69-2.64 (m, 2H), 2.61-2.58 (m, 2H), 2.45 (d, *J* = 14.4 Hz, 2H), 2.24 (s, 3H), 2.06 (td, *J* = 13.2, 3.6 Hz, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.2, 154.6, 143.1, 139.3, 131.9, 129.0, 128.4, 127.9, 127.5, 126.4, 74.6, 59.1, 54.9, 48.4, 38.8, 38.6, 36.8, 32.9; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 50.95; ESI-MS (m/z): 600.15 [M-H]⁻; HRMS (DART, m/z): calcd for C₃₀H₃₂O₅N₃CIFS: 600.1741 [M-H]⁻, found: 600.1736.

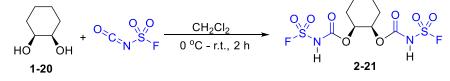
4-hydroxyphenethyl (fluorosulfonyl)carbamate (2-17)


Following the **General Procedure 1**, the title compound was prepared from **1-17** (1.38 g, 10 mmol) and FSI (0.80 mL, 10 mmol) in CH₃CN for 2 hours. Filtered and washed with CH₂Cl₂ gave **2-17** as a white solid (2.4 g, 90% yield), m.p. 117.2-120.1 °C

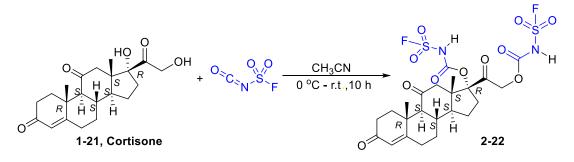
(decomposition). ¹H NMR (400 MHz, CD₃CN) δ 7.09 (d, *J* = 8.4 Hz, 2H), 6.75 (d, *J* = 9.2 Hz, 2H), 4.36 (t, *J* = 6.8 Hz, 2H), 2.88 (t, *J* = 6.8 Hz, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 155.9, 154.6, 129.8, 128.0, 115.2, 66.3, 33.8; ¹⁹F NMR (376 MHz, CD₃CN) δ 52.41; ESI-MS (m/z): 262.06 [M-H]⁻; HRMS (DART, m/z): calcd for C₉H₁₄O₅N₂FS: 281.0602 [M+NH₄]⁺, found: 281.0601.


4-(((fluorosulfonyl)carbamoyl)oxy)phenethyl (fluorosulfonyl)carbamate (2-18)

Following the **General Procedure 1**, the title compound was prepared from **1-17** (276 mg, 2 mmol) and FSI (0.32 mL, 4 mmol) in CH₃CN for 10 hours. Filtered and washed with DCM gave **2-18** as a white solid (657 mg, 85% yield), m.p. 121.0 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 7.35 (d, *J* = 8.8 Hz, 2H), 7.18 (d, *J* = 8.4 Hz, 2H), 4.44 (t, *J* = 6.4 Hz, 2H), 3.01 (t, *J* = 6.4 Hz, 2H); ¹³C NMR (101 MHz, CD₃CN) δ 150.0, 149.5, 149.0, 137.5, 131.3, 122.2, 68.9, 34.5; ¹⁹F NMR (376 MHz, CD₃CN) δ 52.96 (1F), 52.48 (1F); ESI-MS (m/z): 387.05 [M-H]⁻; HRMS (DART, m/z): calcd for C₁₀H₉O₈N₂F₂S₂: 386.9774 [M-H]⁻, found: 386.9771.

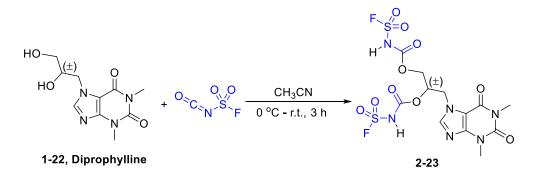

2-(2-(((Fluorosulfonyl)carbamoyl)oxy)phenyl)acetic acid (2-19)

Following the **General Procedure 1**, the title compound was prepared from **1-18** (1.5 g, 10 mmol) and FSI (0.80 mL, 10 mmol) in CH₃CN for 3 hours. The physical properties of **2-19** are as follows: white solid (2.7 g, 99% yield), m.p. 91.3 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 7.39-7.36 (m, 2H), 7.32-7.28 (m, 2H), 3.64 (s, 2H); ¹³C NMR (101 MHz, CD₃CN) δ 172.1, 149.3, 148.4, 132.8, 129.6, 128.0, 123.2, 35.9; ¹⁹F NMR (376 MHz, CD₃CN) δ 53.11; ESI-MS (m/z): 275.9 [M-H]⁻; HRMS (ESI, m/z): calcd for C₉H₇O₆NFS: 275.9984 [M-H]⁻, found: 275.9988.


3-Formylphenyl (fluorosulfonyl)carbamate (2-20)

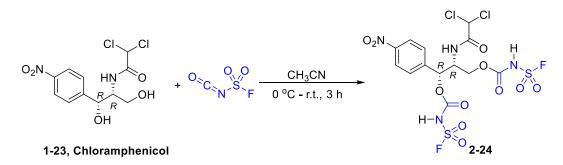
Following the **General Procedure 1**, the title compound was prepared from **1-19** (1.2 g, 10 mmol) and FSI (0.80 mL, 10 mmol) in CH₃CN for 3 hours. The physical properties of **2-20** are as follows: yellow solid (2.4 g, 98% yield), m.p. 93.1 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 10.00 (s, 1H), 7.88 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.75 (dd, *J* = 2.4, 1.6 Hz, 1H), 7.67 (t, *J* = 6.0 Hz, 1H), 7.54 (ddd, *J* = 8.0, 2.4, 1.2 Hz, 1H); ¹³C NMR (101 MHz, CD₃CN) δ 192.4, 151.3, 148.8, 139.1, 131.7, 129.3, 128.3, 122.4; ¹⁹F NMR (376 MHz, CD₃CN) δ 53.13; ESI-MS (m/z): 245.9 [M-H]⁻; HRMS (ESI, m/z): calcd for C₈H₅O₅NFS: 245.9878 [M-H]⁻, found: 245.9800.

Cis-(1R,2S)-cyclohexane-1,2-diyl bis((fluorosulfonyl)carbamate) (2-21)

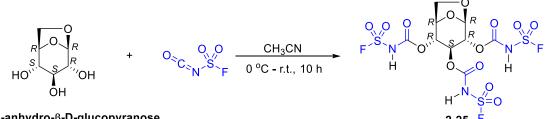

Following the **General Procedure 1**, the title compound was prepared from **1-20** (116 mg, 1 mmol) and FSI (0.16 mL, 2 mmol) in CH₂Cl₂ for 2 hours. The physical properties of **2-21** are as follows: white solid (349 mg, 95% yield), m.p. 94.0 °C (decomposition). ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.89 (br, 2H), 4.75 (d, *J* = 5.6 Hz , 2H), 1.78-1.71 (m, 2H), 1.59-1.52 (m, 4H), 1.40-1.32 (m, 2H); ¹³C NMR (101 MHz, CD₃CN) δ 149.5, 75.6, 27.9, 21.9; ¹⁹F NMR (376 MHz, CD₃CN) δ 51.02; ESI-MS (m/z): 364.99 [M-H]⁻; HRMS (DART, m/z): calcd for C₈H₁₁O₈N₂F₂S₂: 364.9957 [M-H]⁻, found: 364.9949.

N, N- cortisonoxydicarbonyl-fluorosulfurylamid (2-22)

Following the General Procedure 1, the title compound was prepared from 1-21


(Cortisone, 360 mg, 1 mmol) and FSI (0.16 mL, 2 mmol) in CH₃CN for 10 hours. Dissolved in ethyl acetate, then washed with 2M HCl and dried with anhydrous sodium sulfate. After filtration and removal of solvent, the product **2-22** was obtained as a white solid (580 mg, 95% yield), m.p. 140.5 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 5.69 (s, 1H), 4.97 (s, 2H), 3.84 (br, 2H), 2.89 (d, *J* = 12.8 Hz, 1H), 2.82 (ddd, *J* = 15.0, 11.6, 3.2 Hz, 1H), 2.66 (ddd, *J* = 13.6, 5.0, 3.2 Hz, 1H), 2.48 (td, *J* = 16.8, 4.8 Hz, 2H), 2.35-2.28 (m, 2H), 2.22-2.16 (m, 3H), 2.07-1.96 (m, 4H), 1.68 (td, *J* = 14.4, 4.4 Hz, 1H), 1.60-1.51 (m, 1H), 1.39 (s, 3H), 1.29-1.22 (m, 1H), 0.72 (s, 3H); ¹³C NMR (101 MHz, CD₃CN) δ 208.9, 201.1, 198.5, 171.6, 150.0, 149.7, 124.7, 97.0, 70.9, 63.0, 51.8, 50.5, 50.4, 39.2, 36.5, 35.3, 34.2, 32.9, 32.7, 31.1, 23.7, 17.5, 15.1; ¹⁹F NMR (376 MHz, CD₃CN) δ 53.85 (1F), 52.71 (1F); ESI-MS (m/z): 609.10 [M-H]⁻; HRMS (ESI, m/z): calcd for C₂₃H₂₇O₁₁N₂F₂S₂: 609.1030 [M-H]⁻, found: 609.1033.

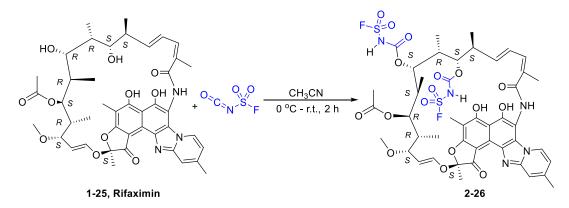
3-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)propane-1,2-diyl bis((fluorosulfonyl)carbamate) (2-23)


Following the **General Procedure 1**, the title compound was prepared from **1-22** (Diprophylline, 254 mg, 1 mmol) and FSI (0.16 mL, 2 mmol) in CH₃CN for 3 hours. After filtration and washed by CH₃CN, the product **2-23** was obtained as a white solid (330 mg, 65% yield), m.p. 164.9 °C (decomposition). ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.29 (br, 2H), 7.96 (s, 1H), 5.12-5.07 (m, 1H), 4.52 (dd, *J* = 10.8, 3.6 Hz, 1H), 4.42 (dd, *J* = 14.4, 8.4 Hz, 1H), 4.11 (dd, *J* = 12.0, 2.0 Hz, 1H), 3.99 (dd, *J* = 12.0, 4.8 Hz, 1H), 3.42 (s, 3H), 3.24 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 155.2, 154.9, 154.6, 151.2, 148.3, 143.2, 106.4, 71.1, 64.0, 46.9, 29.7, 27.7; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 50.13 (1F), 50.02 (1F); ESI-MS (m/z): 505.13 [M+H]⁺; HRMS (DART, m/z):

calcd for $C_{14}H_{15}O_{10}N_6F_2S_2$: 505.0254 [M+H]⁺, found: 505.0254.

(1R,2R)-2-(2,2-dichloroacetamido)-1-(4-nitrophenyl)propane-1,3-diyl bis((fluorosulfonyl)carbamate) (2-24)

Following the **General Procedure 1**, the title compound was prepared from **1-23** (Chloramphenicol, 646 mL, 2 mmol) and FSI (0.32 mL, 4 mmol) in CH₃CN for 3 hours. The physical properties of **2-24** are as follows: white solid (1.1 g, 96% yield), m.p. 67.1 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 8.25 (d, *J* = 8.8 Hz, 2H), 7.64 (d, *J* = 8.8 Hz, 2H), 7.23 (d, *J* = 9.6 Hz, 2H), 6.10 (s, 1H), 6.05 (d, *J* = 5.2 Hz, 1H), 4.69-4.62 (m, 1H), 4.40 (dd, *J* = 11.6, 4.8 Hz, 1H), 4.21 (dd, *J* = 11.2, 6.8 Hz, 1H); ¹³C NMR (101 MHz, CD₃CN) δ 165.2, 149.7, 149.3, 149.2, 143.3, 128.7, 124.8, 77.3, 67.2, 66.1, 53.2; ¹⁹F NMR (376 MHz, CD₃CN) δ 53.32 (1F), 52.86 (1F); ESI-MS (m/z): 570.80 [M-H]⁻; HRMS (DART, m/z): calcd for C₁₃H₁₁O₁₁N₄Cl₂F₂S₂: 570.9216 [M-H]⁻, found: 570.9235.

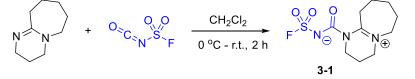


1-24, 1,6-anhydro- β -D-glucopyranose

(1R,2R,3S,4R,5R)-6,8-dioxabicyclo[3.2.1]octane-2,3,4-triyl tris((fluorosulfonyl)carbamate) (2-25)

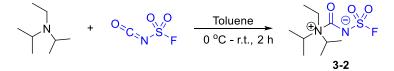
Following the **General Procedure 1**, the title compound was prepared from **1-24** (1,6-anhydro- β -D-glucopyranose, 162 mg, 1 mmol) and FSI (0.24 mL, 3 mmol) in CH₃CN for 10 hours. The physical properties of **2-25** are as follows: white solid (516 mg, 97%),

m.p. 129.7 °C (decomposition). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.94 (s, 2H), 7.90 (s, 7H), 5.31 (s, 1H), 4.55 (d, *J* = 5.8 Hz, 1H), 4.41 (dd, *J* = 3.0, 1.5 Hz, 1H), 4.30 (s, 1H), 4.14 (s, 1H), 3.97 (d, *J* = 7.6 Hz, 1H), 3.62 (dd, *J* = 7.6, 6.0 Hz, 1H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 155.5, 155.4, 155.2, 98.9, 73.5, 71.1, 70.8, 70.1, 64.6; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 50.17 (1F), 49.96 (1F), 49.88 (1F); ESI-MS (m/z): 535.79 [M-H]⁻; HRMS (DART, m/z): calcd for C₉H₉O₁₄N₃F₃S₃: 535.9204 [M-H]⁻, found: 535.9205.


Bis(fluorosulfonyl carbamate) of Rifaximin (2-26)

Following the **General Procedure 1**, the title compound was prepared from **1-25** (Rifaximin, 786 mg, 1 mmol) and FSI (0.16 mL, 2 mmol) in CH₃CN for 2 hours. Recrystallized from ethyl acetate and petroleum ether gave **2-26** as an orange solid (818 mg, 79% yield), m.p. 106.5 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 8.50 (d, *J* = 6.8 Hz, 1H), 8.38 (s, 1H), 7.75 (s, 1H), 7.23 (dd, *J* = 7.2 1.6 Hz, 1H), 6.91 (d, *J* = 11.2 Hz, 1H), 6.44 (d, *J* = 11.2 Hz, 1H), 5.97-5.89 (m, 2H), 4.90 (dd, *J* = 12.8 6.0 Hz, 1H), 4.75 (dd, *J* = 8.0 3.2 Hz, 1H), 4.56 (d, *J* = 10.4 Hz, 1H), 4.31 (dd, *J* = 11.2, 2.8 Hz, 2H), 3.13 (d, *J* = 6.0 Hz, 1H), 2.91 (s, 3H), 2.58 (s, 3H), 2.49-2.42 (m, 1H), 2.21 (s, 3H), 1.97 (s, 3H), 1.87 (s, 3H), 1.79 (s, 3H), 1.53-1.41 (m, 1H), 0.90 (d, *J* = 6.8 Hz, 3H), 0.82 (d, *J* = 7.2 Hz, 3H), 0.77-0.69 (m, 1H), -0.01 (d, *J* = 6.8 Hz, 3H), -0.75 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CD₃CN) δ 191.5, 173.4, 171.5, 170.7, 155.1, 152.0, 150.4, 149.9, 142.4, 140.5, 138.8, 137.9, 134.5, 132.6, 129.9, 129.2, 128.5, 126.2, 123.9, 120.8, 119.5, 116.5, 112.5, 112.1, 109.6, 105.6, 104.9, 100.2, 81.2, 79.2, 77.4, 71.9, 57.0, 40.0, 35.7, 22.3, 21.5, 21.4, 20.9, 20.5, 18.4, 12.6, 8.4, 8.2, 7.6; ¹⁹F NMR (376 MHz, CD₃CN) δ 52.32 (1F), 52.08 (1F); ESI-MS (m/z): 1034.6 [M-H]⁻; HRMS (ESI, ML)

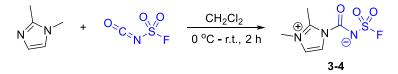
m/z): calcd for C₄₅H₅₂O₁₇N₅F₂S₂: 1036.2762 [M+H]⁺, found: 1036.2770.


Section 3. Ligation of tertiary amines and N-hydroxysuccinimide with FSI.

General Procedure 2 (Tertiary amines with FSI). A solution of amines in dry solvent (1 mol/L) was cooled to 0 °C. FSI (1 equiv.) was added dropwise. The resulting mixture was stirred at room temperature to give the corresponding salts as precipitates.

Compound 3-1,

Following the **General Procedure 2**, the title compound was prepared from DBU (0.745 mL, 5 mmol) and FSI (0.40 mL, 5 mmol) in CH₂Cl₂ for 2 hours. Filtered and washed with CH₂Cl₂, the product (**3-1**) was obtained as a white solid (1.25 g, 90% yield), m.p. 150.7 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 3.76-3.73 (m, 2H), 3.68-3.66 (m, 2H), 3.51 (t, *J* = 6.0 Hz, 2H), 3.05-3.03 (m, 2H), 2.07-2.01 (m, 2H), 1.82-1.72 (m, 6H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.0, 155.9, 54.7, 50.0, 44.0, 31.5, 27.6, 24.8, 22.4, 20.1; ¹⁹F NMR (376 MHz, CD₃CN) δ 47.86; ESI-MS (m/z): 276.1 [M-H]⁻; HRMS (DART, m/z): calcd for C₁₀H₁₅O₃N₃FS: 276.0824 [M-H]⁻, found: 276.0825.


Compound 3-2,

Following the **General Procedure 2**, the title compound was prepared from DIPEA (0.33 mL, 2 mmol) and FSI (0.16 mL, 2 mmol) in toluene for 2 hours. Removal of solvent gave **3-2** as a white solid (484 mg, 95% yield), m.p. 145.3 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 3.74 (hept, J = 6.8 Hz, 2H), 3.21 (q, J = 7.6 Hz, 2H), 1.35 (d, J = 6.8 Hz, 12H), 1.34 (t, J = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CD₃CN) δ 164.4, 55.2, 43.3, 18.3, 12.1; ¹⁹F NMR (376 MHz, CD₃CN) δ 49.47.

Compound 3-3,

Following the **General Procedure 2**, the title compound was prepared from 2,6-lutidine (0.233 mL, 2 mmol) and FSI (0.16 mL, 2 mmol) in toluene for 2 hours. Removal of solvent gave **3-3** as a white solid (435 mg, 94% yield), m.p. 118.5 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 7.99 (t, *J* = 8.0 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 2H), 2.63 (s, 6H); ¹³C NMR (101 MHz, CD₃CN) δ 155.4, 144.5, 124.6, 20.6; ¹⁹F NMR (376 MHz, CD₃CN) δ 49.95.

Compound 3-4,

Following the **General Procedure 2**, the title compound was prepared from 1,2dimethyl-1H-imidazole (480 mg, 5 mmol) and FSI (0.40 mL, 5 mmol) in CH₂Cl₂ for 2 hours. Filtered and washed with CH₂Cl₂, the product **3-4** was obtained as white solid (978 mg, 88% yield), m.p. 148.2 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 7.75 (t, *J* = 2.4 Hz, 1H), 7.16 (d, *J* = 2.4 Hz, 2H), 3.70 (s, 3H), 2.82 (s, 3H); ¹³C NMR (101 MHz, CD₃CN) δ 150.9, 148.0, 122.0, 120.7, 35.7, 12.7; ¹⁹F NMR (376 MHz, CD₃CN) δ 48.39; ESI-MS (m/z): 222.0 [M+H]⁺; HRMS (DART, m/z): calcd for C₆H₉O₃N₃FS: 222.0343 [M+H]⁺, found: 222.0342.

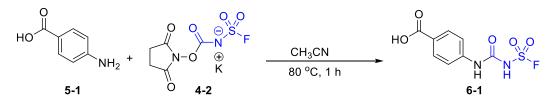
General Procedure 3 (*N*-hydroxysuccinimide with FSI). A solution of dry *N*-hydroxysuccinimide in dry CH₃OH (1 mol/L) was cooled to 0 °C. Base (1 equiv.) was added and stirred at room temperature for 2 hours. After removal of CH₃OH through rotary evaporation, the azeotropic water with further removed with toluene three times. Then dry CH₃CN (1 mol/L) was added and the solution was cooled to 0 °C. After addition of FSI (1 equiv.) in dry CH₃CN (1 mol/L), the resulting mixture was stirred at room temperature for hours until full conversion of the starting materials.

$$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ &$$

Florosulfuryl succinimide tetramethylammonium salt (4-1),

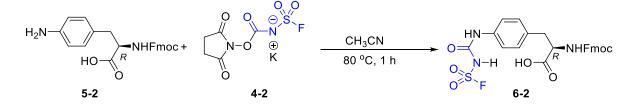
Following the **General Procedure 3**, the title compound was prepared from *N*-hydroxy succinimide (391 mg, 3.4 mmol), tetramethylammonium hydroxide (wt. 25% in CH₃OH) (1.22 g, 3.4 mmol) and FSI (0.27 mL, 3.4 mmol). The mixture of succinimide tetramethylammonium salt and FSI stirred at room temperature for 5 hours. After completion, the mixture was poured into methyl *tert*-butyl ether (30 mL) with vigorous stirring. Filtered and washed with methyl *tert*-butyl ether, the product **4-1** was obtained as a white solid (1.7 g, 80% yield), m.p. 155.6 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 3.08 (s, 12H), 2.70 (s, 4H); ¹³C NMR (101 MHz, CD₃CN) δ 172.2, 154.9, 56.1, 56.0, 56.0, 26.2; ¹⁹F NMR (376 MHz, CD₃CN) δ 48.04; ESI-MS (m/z): 238.9 [M-C₄H₁₂N]⁻; HRMS (DART, m/z): calcd for C₅H₄O₆N₂FS: 238.9780 [M-C₄H₁₂N]⁻, found: 238.9778.

$$\begin{array}{c} O \\ N-OH \end{array} \xrightarrow{tBuOK (1 equiv.)} \\ O \\ O \end{array} \xrightarrow{tBuOK (1 equiv.)} \\ CH_3OH, r.t., 2 h \\ O \end{array} \xrightarrow{tBuOK (1 equiv.)} \\ O \\ CH_3CN, 0 \\ CH_3CN, 0 \\ O \\ CH_3CN, 0 \\ CH_3CN, 0$$


Florosulfuryl succinimide potassium salt (4-2),

Following the **General Procedure 3**, the title compound was prepared from *N*-hydroxy succinimide (11.5 g, 100 mmol), potassium *tert*-butoxide (11.2 g, 100 mmol) and FSI (8.00 mL, 100 mmol). The mixture of succinimide potassium salt and FSI stirred at room temperature overnight. Poured into methyl *tert*-butyl ether (800 mL) with vigorous stirring. Filtered and washed with methyl *tert*-butyl ether, the product **4-2** was obtained as a white solid (24.5 g, 87% yield), m.p. 166.7 °C (decomposition). ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.71 (s, 4H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 171.2, 153.3, 25.3; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 49.79; ESI-MS (m/z): 238.9 [M-K]⁻. HRMS (DART, m/z): calcd for C₅H₄O₆N₂FS: 238.9780 [M-K]⁻, found: 238.9778.

Section 4. Reaction between amines and salt 4-2.

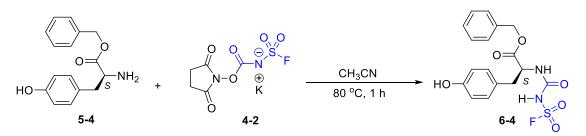

General Procedure 4. A solution of fluorosulfuryl succinimide potassium salt **4-2** (1.2 equiv.) and amines (1.0 equiv.) in dry CH₃CN (0.2 mol/L) was stirred at 80 °C and

monitored by TLC and LC-MS. After completion, the solvent was cooled to room temperature, then added 1M H₂SO₄ (10 mL). The resulting mixture was extracted twice by ethyl acetate, and the organic layer was combined. Under basic conditions, the target product would be deprotonated and redistributed from organic phase to aqueous phase. So we use 0.5M sodium bicarbonate (30 mL) to extract the targeted product from the combined organic layer. Thereafter, the combined sodium bicarbonate solution was acidified to pH = 1, and then re-extracted twice by ethyl acetate. The combined organic phase was washed with brine and dried over Na₂SO₄, concentrated by rotary evaporation and dried in vacuo to give pure product.

4-(3-(fluorosulfonyl)ureido)benzoic acid (6-1),

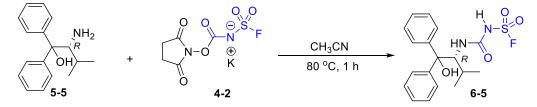

Following the **General Procedure 4**, the title compound was prepared from **5-1** (137 mg, 1.0 mmol) and salt **4-2** (334 mg, 1.2 mmol) for 1 hour. The physical properties of **6-1** are as follows: white solid (236mg, 89%), m.p. 138.2 °C(decomposition). ¹H NMR (400 MHz, CD₃OD) δ 7.96 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (101 MHz, CD₃OD) δ 169.5, 144.2, 132.6, 131.8, 126.5, 119.7; ¹⁹F NMR (376 MHz, CD₃OD) δ 53.45; ESI-MS (m/z): 261.01 [M-H]⁻; HRMS (DART, m/z): calcd for C₈H₆O₅N₂FS: 260.9987 [M-H]⁻, found: 260.9985.

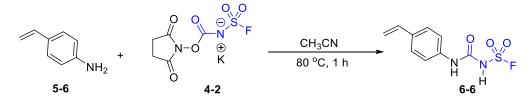
(*R*)-2-((((9*H*-fluoren-9-yl)methoxy)carbonyl)amino)-3-(4-(3-(fluorosulfonyl)ureido)phenyl)propanoic acid **6-2**,


Following the **General Procedure 4**, the title compound was prepared from **5-2** (201 mg, 0.5 mmol) and salt **4-2** (167 mg, 0.6 mmol) for 1 hour. The physical properties of **6-2** are as follows: orange solid (205mg, 78% yield), m.p. 168.6 °C (decomposition).

¹H NMR (400 MHz, CD₃OD) δ 7.77 (d, J = 7.6 Hz, 2H), 7.58 (t, J = 7.2 Hz, 2H), 7.39-7.35 (m, 4H), 7.28 (td, J = 7.2, 3.2 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H), 4.40 (dd, J = 9.6, 4.8 Hz, 1H), 4.30 (dd, J = 10.4, 7.2 Hz, 1H), 4.22 (dd, J = 10.4, 7.2 Hz, 1H), 4.15 (t, J = 7.2 Hz, 1H), 3.18 (dd, J = 13.6, 4.4 Hz, 1H), 2.91 (dd, J = 13.6, 9.6 Hz, 1H); ¹³C NMR (101 MHz, CD₃CN) δ 173.5, 157.0, 144.9, 144.9, 142.0, 136.9, 134.2, 130.8, 128.6, 128.0, 126.0, 121.1, 120.9, 67.3, 56.0, 47.8. 37.2; ¹⁹F NMR (376 MHz, CD₃OD) δ 52.83; ESI-MS (m/z): 526.09 [M-H]⁻; HRMS (DART, m/z): calcd for C₂₅H₂₁O₇N₃FS: 526.1090 [M-H]⁻, found: 526.1086.

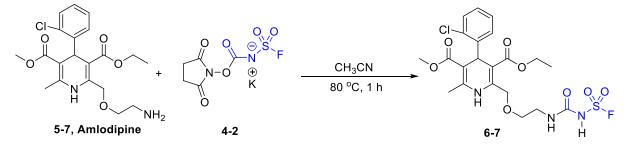
((4-ethynylphenyl)carbamoyl)sulfamoyl fluoride (6-3)


Following the **General Procedure 4**, the title compound was prepared from **5-3** (117 mg, 1.0 mmol) and salt **4-2** (334 mg, 1.2 mmol) for 1 hour. The physical properties of **6-3** are as follows: orange solid (199 mg, 83% yield), m.p. 121.2 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 8.07 (br, 1H), 7.48-7.43 (m, 4H), 3.36 (s, 1H); ¹³C NMR (101 MHz, CD₃CN) δ 148.0, 138.7, 133.7, 120.8, 118.8, 83.7, 78.6; ¹⁹F NMR (376 MHz, CD₃CN) δ 53.48; ESI-MS (m/z): 241.06 [M-H]⁻; HRMS (DART, m/z): calcd for C₉H₆O₃N₂FS: 241.0089 [M-H]⁻, found: 241.0086.


Benzyl ((fluorosulfonyl)carbamoyl)-L-tyrosinate 6-4

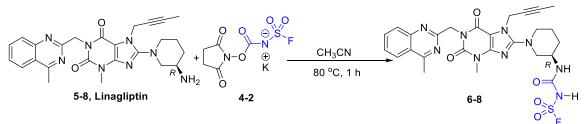
Following the **General Procedure 4**, the title compound was prepared from **5-4** (136 mg, 0.5 mmol) and salt **4-2** (167 mg, 0.6 mmol) for 1 hour. The physical properties of **6-4** are as follows: white solid (182 mg, 92% yield), m.p. 61.3 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 7.35 (d, *J* = 9.6 Hz, 4H), 6.95 (d, *J* = 8.0 Hz, 2H), 6.69 (d,

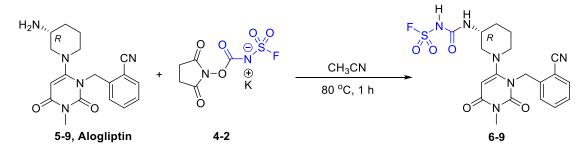
J = 8.0 Hz, 2H), 6.28 (d, J = 6.8 Hz, 1H), 5.10 (s, 2H), 4.52 (dd, J = 12.8, 6.0 Hz, 1H), 2.99 (m, 3H); ¹³C NMR (101 MHz, CD₃CN) δ 172.1, 156.7, 153.5, 136.6, 131.3, 129.4, 129.1, 128.1, 116.1, 67.7, 55.9, 37.1; ¹⁹F NMR (376 MHz, CD₃CN) δ 53.08; ESI-MS (m/z): 395.15 [M-H]⁻; HRMS (DART, m/z): calcd for C₁₇H₁₆O₆N₂FS: 395.0719 [M-H]⁻, found: 395.0716.


(*R*)-((*1*-hydroxy-3-methyl-1,1-diphenylbutan-2-yl)carbamoyl)sulfamoyl fluoride **6-5** Following the **General Procedure 4**, the title compound was prepared from **5-5** (255 mg, 1.0 mmol) and salt **4-2** (334 mg, 1.2 mmol) for 1 hour, then was cooled to room temperature and added 1M H₂SO₄ (10 mL). The mixture was extracted twice with ethyl acetate. The combined organic layer was washed with 0.5M sodium bicarbonate, 1M H₂SO₄ (acidification) and saturated brine quickly. The organic layer was dried over Na₂SO₄, concentrated by rotary evaporation and dried in vacuo to give **6-5** as a white solid (346 mg, 91% yield), m.p. 68.7 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 7.50 (dd, *J* = 8.0, 1.6 Hz, 4H), 7.31 (t, *J* = 7.2 Hz, 2H), 7.25 (t, *J* = 7.2 Hz, 2H), 7.19 (t, *J* = 7.6 Hz, 1H), 7.15 (t, *J* = 7.6 Hz, 1H), 4.72 (d, *J* = 2.0 Hz, 1H), 1.89 (heptd, *J* = 6.8, 2.4 Hz, 1H), 0.93 (d, *J* = 6.8 Hz, 3H), 0.87 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CD₃CN) δ 151.9, 147.6, 146.9, 129.2, 129.0, 127.8, 127.7, 126.8, 126.8, 82.6, 61.3, 30.1, 23.4, 18.1; ¹⁹F NMR (376 MHz, CD₃CN) δ 53.23; ESI-MS (m/z): 379.24 [M-H]⁻; HRMS (DART, m/z): calcd for C₁₈H₂₀O₄N₂FS: 379.1133 [M-H]⁻, found: 379.1133.

((4-vinylphenyl)carbamoyl)sulfamoyl fluoride (6-6)

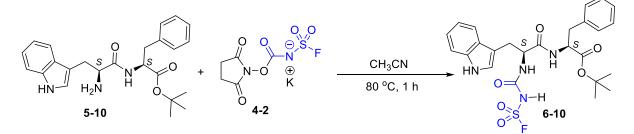
Following the **General Procedure 4**, the title compound was prepared from **5-6** (119 mg, 1.0 mmol) and salt **4-2** (334 mg, 1.2 mmol) for 1 hour, then was cooled to room


temperature and added 1M H₂SO₄ (10 mL). The mixture was extracted twice with ethyl acetate. The combined organic layer was washed with 0.5M sodium bicarbonate, 1M H₂SO₄ (acidification) and saturated brine quickly. The organic layer was dried over Na₂SO₄, concentrated by rotary evaporation and dried in vacuo to give **6-6** as a yellow solid (183 mg, 75% yield), m.p. 105.0 °C (decomposition). ¹H NMR (400 MHz, CD₃OD) δ 7.39 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 6.61 (dd, *J* = 17.6, 11.2 Hz, 1H), 5.62 (d, *J* = 17.6, Hz, 1H), 5.09 (d, *J* = 17.6, Hz, 1H); ¹³C NMR (101 MHz, CD₃CN) δ 141.7, 140.0, 137.2, 130.2, 123.4, 115.5; ¹⁹F NMR (376 MHz, CD₃OD) δ 52.55; ESI-MS (m/z): 243.01 [M-H]⁻; HRMS (DART, m/z): calcd for C₉H₈O₃N₂FS: 243.0245 [M-H]⁻, found: 243.0247.


3-ethyl 5-methyl 4-(2-chlorophenyl)-2-((2-(3-(fluorosulfonyl)ureido)ethoxy)methyl)-6methyl-1,4-dihydropyridine-3,5-dicarboxylate **6-7**

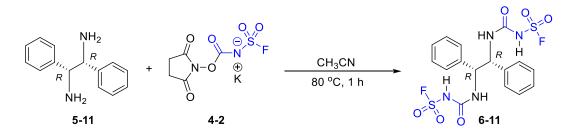
Following the **General Procedure 4**, the title compound was prepared from **5-7** (Amlodipine, 204 mg, 0.5 mmol) and salt **4-2** (167 mg, 0.6 mmol) for 1 hour, then was cooled to room temperature and added 1M H₂SO₄ (10 mL). The mixture was extracted twice with ethyl acetate. The combined organic layer was washed with 0.5M sodium bicarbonate, 1M H₂SO₄ (acidification) and saturated brine quickly. The organic layer was dried over Na₂SO₄, concentrated by rotary evaporation and dried in vacuo to give **6-7** as a yellow solid (233 mg, 87% yield), m.p. 110.0 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 7.47 (br, 1H), 7.41 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.26 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.20 (td, *J* = 8.0, 1.6 Hz, 1H), 7.10 (td, *J* = 8.0, 1.6 Hz, 1H), 6.23 (br, 1H), 5.36 (s, 1H), 4.71-4.58 (m, 2H), 4.00 (qd, *J* = 7.2, 3.2 Hz, 2H), 3.62 (t, *J* = 4.8 Hz, 2H), 3.54 (s, 3H), 3.45-3.42 (m, 2H), 2.31 (s, 3H), 1.14 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CD₃CN) δ 168.7, 167.7, 147.0, 146.3, 145.7, 132.7, 132.4, 130.0, 128.7, 128.2, 103.9, 102.2, 70.6, 68.4, 60.5, 51.1, 40.9, 38.2, 27.2, 19.0, 14.6; ¹⁹F NMR (376 MHz,

CD₃CN) δ 53.44; ESI-MS (m/z): 534.14 [M+H]⁺; HRMS (DART, m/z): calcd for C₂₁H₂₄O₈N₃FClS: 532.0951 [M+H]⁺, found: 532.0948.


(*R*)-((*1*-(7-(*but*-2-*yn*-1-*yl*)-3-*methyl*-1-((4-*methylquinazolin*-2-*yl*)*methyl*)-2,6-*dioxo-2,3,6,7-tetrahydro-1H-purin*-8-*yl*)*piperidin*-3-*yl*)*carbamoyl*)*sulfamoyl fluoride* **6-8**, Following the **General Procedure 4**, the title compound was prepared from **5-8** (Linagliptin, 170 mg, 0.5 mmol) and salt **4-2** (167 mg, 0.6 mmol) for 1 hour. And we use dichloromethane and methanol (3:1, 20 mL) for extraction instead of ethyl acetate. The physical properties of **6-8** are as follows: white solid (236 mg, 79% yield), m.p. 95.6 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 8.19 (d, *J* = 8.0 Hz, 1H), 7.89 (t, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 8.4 Hz, 1H), 7.65 (t, *J* = 7.6 Hz, 1H), 6.63 (br, 1H), 5.40 (s, 2H), 4.86 (s, 2H), 3.99-3.93 (m, 1H), 3.67 (s, 3H), 3.60 (dd, *J* = 12.0, 3.2 Hz, 1H), 3.43 (s, 3H), 3.41-3.27 (m, 4H), 3.22-3.19 (m, 1H), 2.90 (s, 3H), 1.91-1.86 (m, 2H), 1.75 (s, 3H), 1.75-1.68 (m, 2H); ¹³C NMR (101 MHz, CD₃CN) δ 170.1, 162.5, 157.5, 155.0, 152.5, 150.5, 149.3, 134.8, 128.8, 127.9, 126.5, 123.8, 104.8, 82.1, 74.4, 55.5, 46.8, 36.5, 30.4, 30.3, 30.0, 24.0, 22.1; ¹⁹F NMR (376 MHz, CD₃CN) δ 52.91; ESI-MS (m/z): 596.10 [M-H]⁻; HRMS (ESI, m/z): calcd for C₂₅H₃₁O₉N₅FS: 596.1832 [M-H]⁻, found: 596.1854.

(*R*)-((1-(3-(2-cyanobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4yl)piperidin-3-yl)carbamoyl)sulfamoyl fluoride **6-9**,

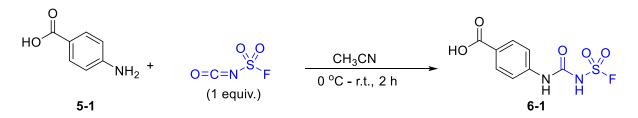
Following the General Procedure 4, the title compound was prepared from 5-9


(Alogliptin, 170 mg, 0.5 mmol) and salt **4-2** (167 mg, 0.6 mmol) for 1 hour. The physical properties of **6-9** are as follows: white solid (223 mg, 95% yield), m.p. 133.7 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 7.71 (d, *J* = 8.0 Hz, 1H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 1H), 6.21 (br, 1H), 5.32 (s, 1H), 5.21 (s, 2H), 3.80-3.71 (m, 1H), 3.19-3.11 (m, 1H), 3.13 (s, 3H), 2.95-2.87 (m, 1H), 2.78-2.64 (m, 3H), 1.87-1.83 (m, 1H), 1.77-1.70 (m, 1H), 1.65-1.56 (m, 1H), 1.53-1.47 (m, 1H); ¹³C NMR (101 MHz, CD₃CN) δ 171.1, 163.9, 161.0, 153.3, 142.2, 134.2, 134.0, 128.7, 128.2, 111.6, 90.7, 56.0, 52.5, 47.1, 28.0, 26.3, 26.1; ¹⁹F NMR (376 MHz, CD₃CN) δ 53.22; ESI-MS (m/z): 463.17 [M-H]⁻; HRMS (ESI, m/z): calcd for C₁₉H₂₀O₅N₆FS: 463.1205 [M-H]⁻, found: 463.1203.

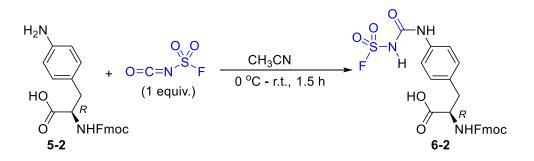
tert-butyl ((fluorosulfonyl)carbamoyl)-L-tryptophyl-L-phenylalaninate 6-10,

Following the **General Procedure 4**, the title compound was prepared from **5-10** (222 mg, 0.5 mmol) and salt **4-2** (167 mg, 0.6 mmol) for 1 hour, then was cooled to room temperature and added 1M H₂SO₄ (10 mL). The mixture was extracted twice with ethyl acetate. The combined organic layer was washed with 0.5M sodium bicarbonate, 1M H₂SO₄ (acidification) and saturated brine quickly. The organic layer was dried over Na₂SO₄, concentrated by rotary evaporation and dried in vacuo to give **6-10** as a white solid (251 mg, 95% yield), m.p. 81.7 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 9.18 (s, 1H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.27-7.21 (m, 3H), 7.12 (dd, *J* = 14.4, 7.2 Hz, 3H), 7.04 (ddd, *J* = 14.4, 6.4, 2 Hz, 2H), 6.66 (dd, *J* = 238.4, 7.2 Hz, 1H), 4.55-4.47 (m, 2H), 3.21 (dd, *J* = 14.8, 6.0 Hz, 1H), 3.10 (dd, *J* = 14.8, 6.0 Hz, 1H), 3.01 (dd, *J* = 14.0, 2.4 Hz, 1H), 2.92(dd, *J* = 14.0, 6.8 Hz, 1H), 1.39 (s, 9H); ¹³C NMR (101 MHz, CD₃CN) δ 171.8, 170.8, 149.6, 137.5, 137.3, 130.4, 129.2, 128.5, 127.7, 125.0, 122.5, 120.0, 119.3, 112.3, 109.9, 82.9, 55.4, 55.2, 38.3, 29.1, 28.1; ¹⁹F NMR (376 MHz, CD₃CN) δ 53.47; ESI-MS (m/z): 531.19 [M-H]⁻; HRMS (ESI, m/z):

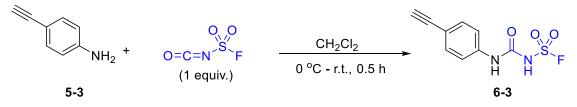
calcd for C₂₅H₂₈O₆N₄FS: 531.1726 [M-H]⁻, found: 531.1726.



(((1R,2R)-2-(3-(fluorosulfonyl)ureido)-1,2-diphenylethyl)carbamoyl)sulfamoyl fluoride **6-11**,


Following the **General Procedure 4**, the title compound was prepared from **5-9** (170 mg, 0.5 mmol) and salt **4-2** (167 mg, 0.6 mmol) for 1 hour. The physical properties of **6-11** are as follows: white solid (185 mg, 80%), m.p. 139.7 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 7.23-7.18 (m, 6H), 7.17-7.12 (m, 4H), 5.07 (dd, *J* = 5.2, 2.4 Hz, 2H), 2.71 (br, 1H); ¹³C NMR (101 MHz, CD₃CN) δ 139.8, 129.3, 128.8, 128.6, 60.1; ¹⁹F NMR (376 MHz, CD₃CN) δ 53.17; ESI-MS (m/z): 463.1 [M+H]⁺; HRMS (DART, m/z): calcd for C₁₆H₁₇O₆N₄F₂S₂: 463. 0552 [M-H]⁻, found: 463. 0550.

Section 5. Direct reaction of anilines and aliphatic amines with FSI.


General Procedure 5 (Anilines with FSI). A solution of anilines in dry acetonitrile (or dichloromethane, 0.5 mol/L) was cooled to 0 °C. FSI was added dropwise. The resulting mixture was stirred at room temperature and monitored by TLC. After completion, the solvent was removed to give targeted product without further purification.

Following the **General Procedure 5**, the title compound was prepared from **5-1** (275 mg, 2 mmol) and FSI (0.16 mL, 2 mmol) in CH₃CN for 2 hours. Filtered and washed with CH₃CN, the product **6-1** was obtained as a white solid (446 mg, 85% yield).

Following the **General Procedure 5**, the title compound was prepared from **5-2** (804 mg, 2 mmol) and FSI (0.16 mL, 2 mmol) in CH₃CN for 1.5 hour. Filtered and washed with CH₃CN, the product **6-2** was obtained as an orange solid (446 mg, 85% yield).

Following the **General Procedure 5**, the title compound was prepared from **5-3** (234 mg, 2 mmol) and FSI (0.16 mL, 2 mmol) in CH_2Cl_2 for 0.5 hour. Filtered and washed with CH_2Cl_2 , the product **6-3** was obtained as an orange solid (426 mg, 88% yield).

The reaction between **5-3** and FSI in CH_2Cl_2 was monitored by LC-MS (Figure S1).

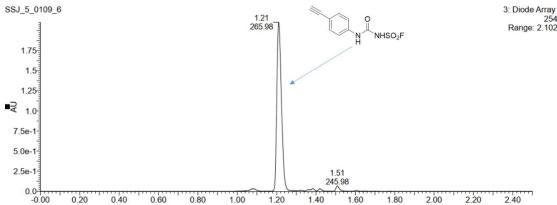
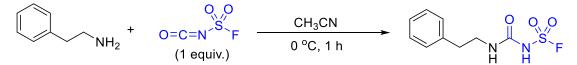



Figure S1. Nearly full conversion to product 6-3 after 0.5 h.

Phenethylamine with FSI.

A solution of phenethylamine (0.252 mL, 2 mmol) in dry acetonitrile (20 mL, 0.1 mol/L) was cooled to 0 °C. FSI was added dropwise. The resulting mixture was stirred at 0 °C

for 1h and monitored by LC-MS. (Figure S2).

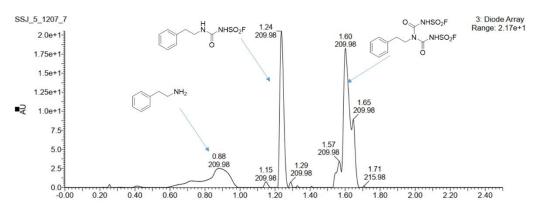
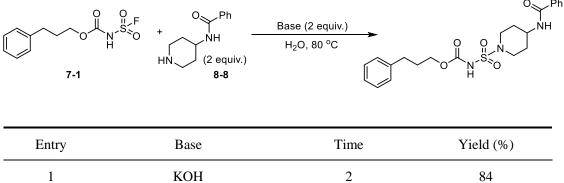


Figure S2. LC spectrum of the reaction mixture after 1 hour.

Section 6. Reaction between N-sulfonyl fluorides and amines.

Table 1, Screen of solvents.

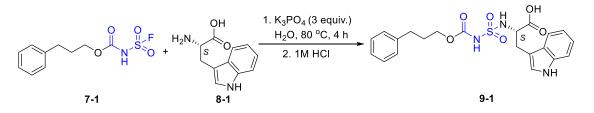

0 N ⁻⁵⁵ 7-1	F O Ph NH HN (2 equiv.) 8-8	Na ₂ CO ₃ (2 equiv.) Solvent, 80 °C	
Entry	Solvent	Time	Yield (%)
1	H ₂ O	4	88
2	CH ₃ CN	6	75
3ª	THF	4	74
4^{a}	DCE	8	32
5	DMF	8	< 5
6	DMSO	8	< 5
7	Toluene	8	< 5

[a] Reflux.

To a solution of **7-1** (130 mg, 0.5 mmol, 1 equiv, 0.25 mol/L) and Na₂CO₃ (106 mg, 1 mmol) was added **8-8** (204 mg, 1 mmol) at room temperature. The reaction was heated to 80 °C and monitored by TLC and LC-MS. After completion, the resulting mixture was cooled to room temperature, quenched by 1M HCl (10 mL) and then extracted by ethyl acetate (10 mL, three times). The combined organic layer was washed with saturated brine and dried over Na₂SO₄ subsequently. Filtration and removal of solvent

gave the crude mixture which was further purified by column chromatography (eluent: PE : EA = 2:1).

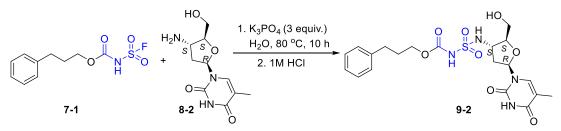
Table 2, Screen of bases.


1	КОН	2	84
2	Na ₂ CO ₃	4	88
3	K_2CO_3	4	87
4	Cs ₂ CO ₃	3	88
5	NaHCO ₃	9	52
6	K ₃ PO ₄	2	89
7	Na ₃ PO ₄	2	88
8	DMAP	4	87
9	Pyridine	9	33
10	DBU	8	76
11	Et ₃ N	6	59
12	Imidazole	10	37
13	N-MethylImidazole	10	43
14 ^a	K ₃ PO ₄	2	89

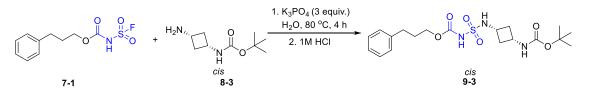
[a] 1.5 equiv. 8-8.

To a solution of **7-1** (130 mg, 0.5 mmol), base (2 equiv.) and H₂O (0.25 mol/L) was added **8-8** (204 mg, 1 mmol) at room temperature. The reaction was heated to 80 $^{\circ}$ C and monitored by TLC and LC-MS. After completion, the resulting mixture was cooled to room temperature, quenched by 1M HCl (10 mL) and then extracted by ethyl acetate (10 mL, three times). The combined organic layer was washed with saturated brine and

dried over Na_2SO_4 subsequently. Filtration and removal of solvent gave the crude mixture which was further purified by column chromatography (PE : EA = 2:1).

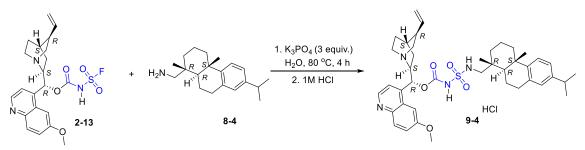

Scope of substrates. General Procedure 6. A solution of the *N*-oxycarbonyl-fluorsulfurylamid or *N*-aminocarbonyl-fluorsulfurylamid (1 equiv.) and tripotassium phosphate (3 equiv.) in H₂O (0.25 mol/L) was added amines (1.5 equiv.) at room temperature. Heated to 80 °C and monitored by TLC and LC-MS. After completion, the resulting mixture was cooled to room temperature, quenched by 1M HCl (10 mL) and then extracted by ethyl acetate (10 mL, three times). The combined organic layer was washed with saturated brine and dried over Na₂SO₄ subsequently. Filtration and removal of solvent gave the crude mixture which was further purified by column chromatography. (During the process of these reactions, most of the raw materials and nearly all of the final products were not well dissolved in water. We believe it is an on water reaction taking place at the interface of the aqueous phase, rather than a homogenous in water reaction.)

(N-((3-phenylpropoxy)carbonyl)sulfamoyl)-L-tryptophan 9-1


Following the **General Procedure 6**, the title compound was prepared from **7-1** (130 mg, 0.5 mmol) and **8-1** (153 mg, 0.75 mmol) in water for 4 hours. The crude product was purified by column chromatography on silica gel (eluent: $CH_2Cl_2-CH_3OH = 10:1$) to give **9-1** as a white solid (165 mg, 74% yield), m.p. 63.9-68.5 °C (decomposition). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.87 (s, 1H), 8.16 (d, *J* = 8.0 Hz, 1H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.27 (t, *J* = 7.6 Hz, 2H), 7.20-7.17 (m, 4H), 7.07 (t, *J* = 7.6 Hz, 1H), 6.97 (t, *J* = 7.6 Hz, 1H), 4.13 (d, *J* = 6.8 Hz, 1H), 3.94 (t, *J* = 6.0 Hz, 2H), 3.14 (dd, *J* = 14.4, 5.2 Hz, 1H), 3.02 (dd, *J* = 13.2, 6.8 Hz, 1H), 2.61 (t, *J* = 7.2 Hz, 2H), 1.87-1.80 (m, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.7, 151.6, 141.2, 136.1, 128.4, 128.3, 127.2, 125.9, 123.9, 120.9, 118.4, 118.1, 111.4, 109.2, 64.6, 57.1,

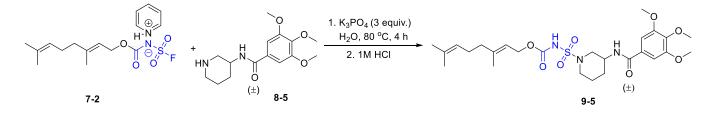
31.2, 29.8, 28.1; ESI-MS (m/z): 446.43 [M+H]⁺; HRMS (ESI, m/z): calcd for $C_{21}H_{24}O_6N_3S$: 446.1380 [M+H]⁺, found: 446.1378.

3-phenylpropyl (*N-((2R,4S,5S)-2-(hydroxymethyl)-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-3-yl)sulfamoyl)carbamate* **9-2**,

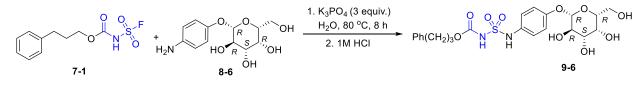

Following the **General Procedure 6**, the title compound was prepared from **7-1** (130 mg, 0.5 mmol) and **8-2** (181 mg, 0.75 mmol) in water for 10 hours. The crude product was purified by column chromatography on silica gel (eluent: CH₂Cl₂-CH₃OH = 10:1) to give **9-2** as a white solid (137 mg, 56% yield), m.p. 56.5-62.1 °C (decomposition). ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.32 (s, 2H), 8.36 (d, *J* = 8.0 Hz, 1H), 7.73 (s, 1H), 7.27 (t, *J* = 7.6 Hz, 2H), 7.20-7.16 (m, 3H), 6.12 (t, *J* = 6.4 Hz, 1H), 5.76 (s, 1H), 5.15 (t, *J* = 5.2 Hz, 1H), 4.06 (t, *J* = 6.4 Hz, 2H), 3.98-3.91 (m, 1H), 3.84-3.80 (m, 1H), 3.67 (d, *J* = 11.2 Hz, 1H), 3.56-3.51 (m, 1H), 2.63 (t, *J* = 7.2 Hz, 2H), 2.22-2.15 (m, 2H), 1.92-1.77 (m, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 163.7, 151.7, 150.3, 141.0, 136.2, (m/z): 483.39 [M+H]⁺; HRMS (ESI, m/z): calcd for C₂₀H₂₇O₈N₄S: 483.1544 [M+H]⁺, found: 483.1542.

tert-butyl ((1s,3s)-3-((N-((3-phenylpropoxy)carbonyl)sulfamoyl)amino)cyclobutyl) carbamate **9-3**,

Following the **General Procedure 6**, the title compound was prepared from **7-1** (130 mg, 0.5 mmol) and **8-3** (140 mg, 0.75 mmol) in water for 4 hours. The crude product was purified by column chromatography on silica gel (eluent: P. Ether-EtOAc = 2:1) to give **9-3** as a white solid (186 mg, 87% yield), m.p. 147.4-149.9 °C (decomposition).


¹H NMR (400 MHz, DMSO-*d*₆) δ 11.13 (s, 1H), 8.04 (d, *J* = 8.0 Hz, 1H), 7.29 (t, *J* = 7.6 Hz, 2H), 7.21-7.17 (m, 3H), 7.12 (d, *J* = 6.4 Hz, 1H), 4.04 (t, *J* = 6.4 Hz, 2H), 3.55 (dd, *J* = 14.8, 7.2 Hz, 1H), 3.34 (dd, *J* = 14.8, 7.2 Hz, 1H), 2.64 (t, *J* = 7.6 Hz, 2H), 2.46-2.40 (m, 2H), 1.92-1.79 (m, 4H), 1.35 (s, 9H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 154.6, 151.6, 141.0, 128.3, 128.3, 125.9, 77.6, 64.4, 41.5, 37.9, 31.1, 29.8, 28.2; ESI-MS (m/z): 426.1 [M-H]⁻; HRMS (ESI, m/z): calcd for C₁₉H₂₈O₆N₃S: 426.1704 [M-H]⁻, found: 426.1703.

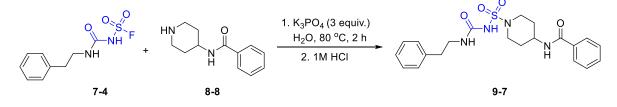
(1R)-(6-methoxyquinolin-4-yl)((2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl (N-(((1R,4aS,10aR)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10aoctahydrophenanthren-1-yl)methyl)sulfamoyl)carbamate **9-4**,


Following the **General Procedure 6**, the title compound was prepared from **2-13** (112 mg, 0.25 mmol) and **8-4** (107 mg, 0.375 mmol) in water for 4 hours. Cooled to room temperature and added CH₂Cl₂ and ^{*i*}PrOH (10 mL, 5:1) and 1M HCl (10 mL). The water layer was extracted with CH₂Cl₂ and ^{*i*}PrOH (10 mL, 5:1). The combined organic layer was subsequently washed with saturated brine, dried with Na₂SO₄, filtered and concentrated. The crude product was purified by column chromatography on silica gel (eluent: CH₂Cl₂-CH₃OH = 10:1) to give **9-4** as a yellow solid (126 mg, 67% yield), m.p. 147.3 °C (decomposition). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.72 (d, *J* = 4.4 Hz, 1H), 8.32 (s, 1H), 7.96 (d, *J* = 9.2 Hz, 1H), 7.53 (d, *J* = 2.4 Hz, 1H), 7.50 (d, *J* = 4.8 Hz, 1H), 7.44 (dd, *J* = 9.2, 2.4 Hz, 1H), 7.10 (d, *J* = 8.0 Hz, 1H), 6.92 (d, *J* = 8.0 Hz, 1H), 6.82 (s, 1H), 6.48 (br, 1H), 5.91-5.82 (m, 1H), 5.06 (d, *J* = 17.2 Hz, 1H), 4.99 (d, *J* = 14.8 Hz, 1H), 3.96 (s, 3H), 3.63-3.51 (m, 1H), 2.79-2.72 (m, 3H), 2.50-2.38 (m, 3H), 2.30-2.25 (m, 1H), 2.18 (d, *J* = 12.8 Hz, 1H), 1.92-1.85 (m, 1H), 1.78-1.70 (m, 2H), 1.65-1.58 (m, 3H), 1.54-1.34 (m, 4H), 1.25-1.21 (m, 2H), 1.16-1.11 (m, 1H), 1.15 (d, *J* = 6.8 Hz, 6H), 1.07 (s, 3H), 1.00 (d, *J* = 13.6 Hz, 1H), 0.88-0.83 (m, 1H), 0.71 (s, 3H); ¹³C

NMR (101 MHz, CDCl₃) δ 160.0, 157.8, 147.3, 147.1, 145.6, 144.0, 141.2, 137.1, 134.9, 131.5, 126.8, 125.2, 124.3, 123.9, 122.0, 118.0, 117.4, 99.9, 69.2, 60.0, 55.8, 55.3, 54.4, 45.1, 44.1, 38.4, 37.5, 36.9, 36.0, 33.5, 30.2, 29.8, 29.4, 26.8, 25.4, 24.1, 19.0, 18.8, 18.7; ESI-MS (m/z): 715.60 [M+H]⁺; HRMS (ESI, m/z): calcd for C₄₁H₅₅O₅N₄S: 715.3888 [M+H]⁺, found: 715.3890.

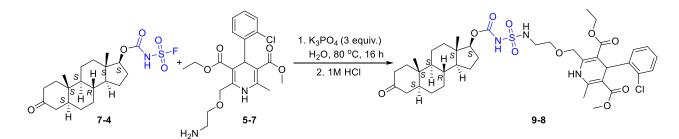
(*E*)-3,7-dimethylocta-2,6-dien-1-yl ((3-(3,4,5-trimethoxybenzamido)piperidin-1yl)sulfonyl)carbamate **9-5**,

Following the **General Procedure 6**, the title compound was prepared from **7-2** (179 mg, 0.5 mmol) and **8-5** (220 mg, 0.75 mmol) in water for 4 hours. The crude product was purified by column chromatography on silica gel (eluent: P. Ether-EtOAc = 2:1) to give **9-5** as a white solid (197 mg, 74% yield), m.p. 41.6 °C (decomposition). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (br, 1H), 7.08 (s, 2H), 6.86 (d, *J* = 7.8 Hz, 1H), 5.28 (t, *J* = 7.2 Hz, 1H), 5.05 (t, *J* = 6.8 Hz, 1H), 4.66-4.58 (m, 2H), 4.38-4.32 (m, 1H), 3.91 (s, 6H), 3.88 (s, 3H), 3.75-3.72 (m, 2H), 3.38 (dd, *J* = 12.4, 2.4 Hz, 1H), 3.15 (t, *J* = 7.6 Hz, 1H), 2.08-2.01 (m, 5H), 1.68 (s, 3H), 1.67 (s, 3H), 1.60 (s, 3H), 1.81-1.63 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 153.2, 151.6, 144.1, 141.0, 132.1, 129.7, 123.5, 117.1, 104.8, 63.7, 61.0, 56.4, 50.9, 47.3, 44.9, 39.6, 28.1, 26.3, 25.7, 21.4, 17.8, 16.5; ESI-MS (m/z): 554.40 [M+H]⁺; HRMS (ESI, m/z): calcd for C₂₆H₃₉O₈N₃SNa: 576.2350 [M+Na]⁺, found: 576.2351.

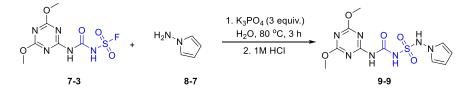

3-phenylpropyl

(N-(4-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-

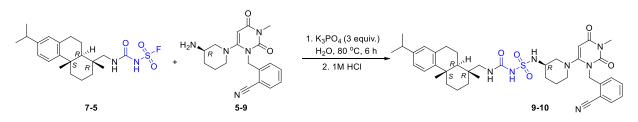
(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)sulfamoyl)carbamate 9-6,


Following the **General Procedure 6**, the title compound was prepared from **7-1** (65 mg, 0.25 mmol) and **8-6** (101 mg, 0.375 mmol) in water for 8 hours. The crude product

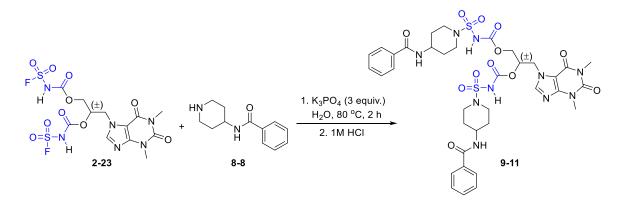
was purified by thin layer chromatography (CH₂Cl₂:CH₃OH = 5:1) to give **9-6** as a white solid (85 mg, 66% yield), m.p. 126.1-129.3 °C (decomposition). ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.46 (s, 1H), 10.18 (s, 1H), 7.28 (t, *J* = 7.6 Hz, 2H), 7.20-7.15 (m, 3H), 7.09 (d, *J* = 8.4 Hz, 2H), 6.99 (d, *J* = 8.4 Hz, 2H), 5.15 (d, *J* = 4.8 Hz, 1H), 4.87 (d, *J* = 4.0 Hz, 1H), 4.73 (d, *J* = 7.6 Hz, 1H), 4.65 (t, *J* = 4.4 Hz, 1H), 4.51 (d, *J* = 2.8 Hz, 1H), 4.02 (t, *J* = 6.4 Hz, 2H), 3.68 (s, 1H), 3.53-3.47 (m, 4H), 2.57 (t, *J* = 7.2 Hz, 2H), 1.86-1.83 (m, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 154.6, 151.4, 140.9, 131.2, 128.4, 128.3, 125.9, 122.1, 116.8, 101.3, 75.5, 73.3, 70.3, 68.1, 64.7, 60.4, 31.0, 29.7; ESI-MS (m/z): 511.25 [M-H]⁻; HRMS (ESI, m/z): calcd for C₂₂H₂₇O₁₀N₂S: 511.1392 [M-H]⁻, found: 511.1392.


N-(1-(N-(phenethylcarbamoyl)sulfamoyl)piperidin-4-yl)benzamide **9-7**,

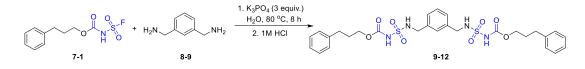
Following the **General Procedure 6**, the title compound was prepared from **7-4** (123 mg, 0.5 mmol) and **8-8** (153 mg, 0.75 mmol) in water for 2 hours. The crude product was purified by column chromatography on silica gel (eluent: P. Ether-EtOAc = 2:1) to give **9-7** as a white solid (160 mg, 74% yield), m.p. 159.2-162.7 °C (decomposition). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.99 (s, 1H), 8.33 (d, *J* = 7.2 Hz, 1H), 7.84 (d, *J* = 7.2 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 2H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.31(t, *J* = 7.6 Hz, 2H), 7.23-7.21 (m, 3H), 6.33 (s, 1H), 3.91-3.82 (m, 1H), 3.58 (d, *J* = 12.8 Hz, 2H), 3.33-3.29 (m, 2H), 2.84 (t, *J* = 11.6 Hz, 2H), 2.74 (t, *J* = 7.2 Hz, 2H), 1.87 (d, *J* = 10.4 Hz, 2H), 1.61-1.53 (m, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 165.8, 151.9, 139.1, 134.6, 131.1, 128.7, 128.4, 128.2, 127.3, 126.2, 46.0, 45.5, 40.6, 35.3, 30.8; ESI-MS (m/z): 431.22 [M+H]⁺; HRMS (ESI, m/z): calcd for C₂₁H₂₇O₄N₄S: 431.1748 [M+H]⁺, found: 431.1751.


3-ethyl 5-methyl 4-(2-chlorophenyl)-2-((2-((N-((((5S,8R,9S,10S,13S,14S,17S)-10,13dimethyl-3-oxohexadecahydro-1H-cyclopenta[a]phenanthren-17yl)oxy)carbonyl)sulfamoyl)amino)ethoxy)methyl)-6-methyl-1,4-dihydropyridine-3,5dicarboxylate **9-8**,

Following the General Procedure 6, the title compound was prepared from 7-4 (104 mg, 0.25 mmol) and 5-7 (212 mg, 0.375 mmol) in water for 16 hours. The crude product was purified by column chromatography on silica gel (eluent: $CH_2Cl_2:CH_3OH = 20:1$) to give **9-8** as a white solid (183 mg, 91% yield), m.p. 113.0-115.7 °C (decomposition). ¹H NMR (400 MHz, DMSO- d_6) δ 11.17 (d, J = 6.0 Hz, 1H), 8.35 (d, J = 4.4 Hz, 1H), 7.86-7.81 (m, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.27-7.20 (m, 2H), 7.12 (td, J = 7.6, 1.6 Hz, 1H), 5.30 (d, J = 4.4 Hz, 1H), 4.64 (dd, J = 14.8, 4.0 Hz, 1H), 4.52-4.39 (m, 2H), 3.98-3.91 (m, 2H), 3.56-3.53 (m, 2H), 3.49 (d, J = 6.0 Hz, 3H), 3.20-3.14 (m, 2H), 2.46-2.38 (m, 1H), 2.34 (d, J = 10.8 Hz, 3H), 2.29-2.26 (m, 1H), 2.11-1.99 (m, 2H), 1.93-1.86 (m, 2H), 1.65-1.58 (m, 2H), 1.53-1.38 (m, 5H), 1.31-1.17 (m, 6H), 1.12-1.06 (m, 4H), 0.97-0.95 (m, 4H), 0.88-0.83 (m, 1H), 0.74 (d, J = 1.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 212.3, 168.1, 167.3, 151.9, 145.8, 145.0, 144.7, 132.4, 131.6, 129.3, 127.4, 127.0, 103.9, 101.6, 85.6, 68.1, 59.9, 53.7, 50.9, 50.4, 46.6, 44.6, 43.5, 42.9, 42.8, 38.5, 38.1, 35.7, 35.2, 31.1, 28.7, 27.5, 23.4, 20.9, 19.3, 14.3, 12.1, 11.5; ESI-MS (m/z): 804.62 [M+H]⁺; HRMS (ESI, m/z): calcd for C₄₀H₅₅O₁₀N₃SCl: 804.3291 [M+H]⁺, found: 804.3292.


Compound 9-9,

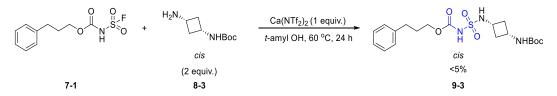
Following the **General Procedure 6**, the title compound was prepared from **7-3** (141 mg, 0.5 mmol) and **8-7** (0.058 mL, 0.75 mmol) in water for 3 hours. The crude product was purified by column chromatography on silica gel (eluent: CH₂Cl₂:CH₃OH = 10:1) to give **9-9** as a white solid (69 mg, 40% yield), m.p. 160.2-162.3 °C (decomposition). ¹H NMR (400 MHz, CD₃OD) δ 6.64 (t, *J* = 2.4 Hz, 2H), 6.00 (t, *J* = 2.4 Hz, 2H), 3.97 (s, 6H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 171.9, 122.1, 105.8, 54.5; ESI-MS (m/z): 344.29 [M+H]⁺; HRMS (ESI, m/z): calcd for C₁₀H₁₄O₅N₇S: 344.0772 [M+H]⁺, found: 344.0771.


Compound 9-10,

Following the **General Procedure 6**, the title compound was prepared from **7-5** (103 mg, 0.25 mmol) and **5-9** (127 mg, 0.375 mmol) in water for 6 hours. The crude product was purified by column chromatography on silica gel (eluent: CH₂Cl₂:CH₃OH = 20:1) to give **9-10** as a white solid (103 mg, 55% yield), m.p. 136.7 °C (decomposition). ¹H NMR (400 MHz, CD₃CN) δ 7.60 (d, *J* = 7.6 Hz, 1H), 7.56 (t, *J* = 8.0 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.23 (d, *J* = 8.0 Hz, 1H), 7.15 (t, *J* = 8.0 Hz, 1H), 6.97 (d, *J* = 8.0 Hz, 1H), 6.88 (s, 1H), 5.95-5.78 (m, 2H), 5.28-5.11 (m, 3H), 3.41 (br, 1H), 3.23-3.10 (m, 2H), 3.12 (s, 3H), 2.95 (dd, *J* = 14.0, 6.8 Hz, 1H), 2.84-2.80 (m, 2H), 2.57 (br, 1H), 2.26 (d, *J* = 12.8 Hz, 2H), 1.77-1.55 (m, 7H), 1.42-1.35 (m, 3H), 1.31-1.24 (m, 4H), 1.16 (d, *J* = 6.8 Hz, 6H), 1.15 (s, 3H), 0.88 (s, 3H), 0.86-0.80 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 163.5, 159.5, 152.9, 152.5, 147.0, 145.8, 140.6, 134.8, 133.5, 133.4, 128.1, 127.0, 124.4, 123.9, 117.7, 110.4, 90.7, 56.7, 51.0, 50.4, 49.9, 46.4, 45.6, 38.6, 37.7, 37.6, 36.0, 33.5, 30.5, 29.8, 28.1, 25.5, 24.1, 19.0, 18.7, 18.6; ESI-MS (m/z): 730.64 [M+H]⁺; HRMS (ESI, m/z): calcd for C₃₉H₅₂O₅N₇S: 730.3745 [M+H]⁺, found: 730.3748.

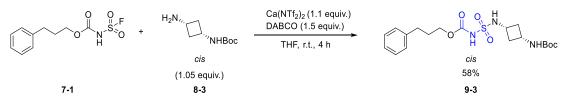
Compound 9-11,

Following the **General Procedure 6**, the title compound was prepared from **2-23** (126 mg, 0.25 mmol) and **8-8** (153 mg, 0.75 mmol) in water for 2 hours. Using CH₂Cl₂ and ⁱPrOH (10 mL, 5:1) for extraction instead of ethyl acetate, the crude product was purified by column chromatography on silica gel (eluent: CH₂Cl₂:CH₃OH = 10:1) to give **9-11** as a white solid (166 mg, 76% yield), m.p. 101.9 °C (decomposition). ¹H NMR (400 MHz, CD₃OD) δ 7.95 (s, 1H), 7.90 (s, 1H), 7.80 (t, *J* = 7.2 Hz, 4H), 7.50 (td, *J* = 7.2, 2.0 Hz, 2H), 7.50 (dd, *J* = 7.6, 7.2 Hz, 4H), 5.51-5.46 (m, 1H), 4.74 (dd, *J* = 14.4, 3.2 Hz, 1H), 4.60-4.51 (m, 2H), 4.26 (dd, *J* = 12.4, 6.0 Hz, 2H), 4.05-3.99 (m, 2H), 3.85 (d, *J* = 12.4, Hz, 2H), 3.74 (d, *J* = 12.4, Hz, 2H), 3.54 (s, 3H), 3.34 (s, 3H), 3.14-3.05 (m, 4H), 2.98-2.89 (m, 4H), 2.05-1.96 (m, 4H), 1.74-1.60 (m, 4H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 165.7, 154.6, 151.0, 148.3, 143.2, 134.6, 131.1, 128.1, 127.3, 106.3, 79.3, 46.0, 45.9, 45.5, 30.9, 29.5, 27.6; ESI-MS (m/z): 873.70 [M+H]⁺; HRMS (ESI, m/z): calcd for C₃₆H₄₅O₁₂N₁₀S₂: 873.2654 [M+H]⁺, found: 873.2656.


Compound 9-12,

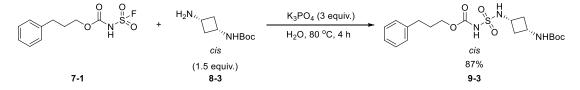
Following the **General Procedure 6**, the title compound was prepared from **7-1** (391 mg, 1.5 mmol) and **8-9** (0.066 mL, 0. 5 mmol) in water for 8 hours. The crude product was purified by column chromatography on silica gel (eluent: CH₂Cl₂:CH₃OH = 20:1) to give **9-12** as a white solid (301 mg, 97% yield), m.p. 125.3-127.7 °C (decomposition). ¹H NMR (400 MHz, DMSO- d_6) δ 11.17 (s, 2H), 8.29 (t, *J* = 6.0 Hz, 2H), 7.31-7.27 (m,

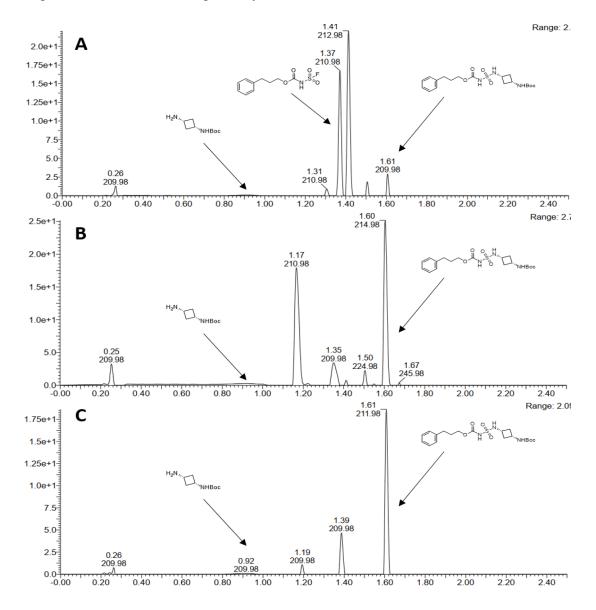
4H), 7.23-7.17 (m, 10H), 4.10 (d, J = 6.4 Hz, 4H), 3.98 (t, J = 6.4 Hz, 4H), 2.62 (t, J = 7.6 Hz, 4H), 1.89-1.82 (m, 4H); ¹³C NMR (101 MHz, DMSO- d_6) δ 151.6, 141.1, 137.7, 128.4, 128.3, 128.1, 126.9, 126.5, 125.9, 64.6, 46.3, 31.1, 29.8; ESI-MS (m/z): 619.56 [M+H]⁺; HRMS (ESI, m/z): calcd for C₂₈H₃₅O₈N₄S₂: 619.1891 [M+H]⁺, found: 619.1890.


Examine the Ca(NTf₂)₂ promoted SuFEx ligation.

Experiment A^{2:}

To a 25 mL flask containing **7-1** (79 mg, 0.3 mmol) and **8-3** (112 mg, 0.6 mmol), $Ca(NTf_2)_2$ (180 mg, 0.3 mmol) and *t*-amyl alcohol (1.2 mL) were added. The reaction mixture was stirred at 60 °C for 24 h, then cooled to room temperature and partitioned between ethyl acetate and ether 0.5M HCl (1x) and brine. The brine layer was washed with ethyl acetate. The organic fractions were combined and dried over sodium sulfate and the concentrated under reduced pressure. The crude residue was monitored by LC-MS (Figure 1A) and purified by column chromatography (PE : EtOAc = 1:1) to give a white solid (6 mg, 5% yield).




To a 25 mL flask containing **7-1** (79 mg, 0.3 mmol), **8-3** (59 mg, 0.315 mmol), $Ca(NTf_2)_2$ (198 mg, 0.33 mmol), and DABCO (51 mg, 0.45 mmol), was added THF (0.6 mL). The reaction mixture was stirred at room temperature for 24 h, then diluted with ethyl acetate. The organic layer was washed with satd. Aq. NH₄Cl followed by brine. The organic phase was dried with anhydrous sodium sulfate and concentrated under reduced pressure. The crude residue was monitored by LC-MS (Figure 1B) and purified by column chromatography (PE : EA = 1:1) to give a white solid (75 mg, 58%)

yield).

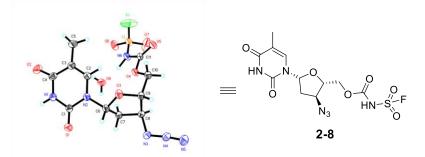
Experiment C (Our protocol):

Following the **General Procedure 6**, the title compound was prepared from **7-1** (130 mg, 0.5 mmol), **8-3** (140 mg, 0.75 mmol) and K_3PO_4 (318 mg, 1.5 mmol) on water at 80 °C for 8 hours. The product was purified by column chromatography (PE : EA = 1:1) to give a white solid (186 mg, 87% yield).

Figure S3. A) $Ca(NTf_2)_2$ as catalyst in t-amyl OH. B) $Ca(NTf_2)_2$ as catalyst in THF. C) K_3PO_4 as base in water.

Section 7. Crystallographic Data.

N-trans-2-azido-1-cyclohexanoxycarbonyl-fluorsulfurylamid (2-6)



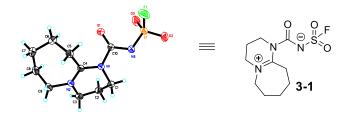
Deposition NO. CCDC 2094855

Table S1. Crystal data and structure refinement for 2-6.		
Identification code	mo_d8v18639_0m	
Empirical formula	C7 H11 F N4 O4 S	
Formula weight	266.26	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 11.4963(5) Å	$\alpha = 90^{\circ}$.
	b = 9.4769(4) Å	$\beta = 110.756(2)^{\circ}.$
	c = 11.6960(6) Å	$\gamma = 90^{\circ}.$
Volume	1191.57(10) Å ³	
Z	4	
Density (calculated)	1.484 Mg/m ³	
Absorption coefficient	0.295 mm ⁻¹	
F(000)	552	
Crystal size	0.190 x 0.170 x 0.120	mm ³
Theta range for data collection	2.844 to 25.997°.	
Index ranges	-14<=h<=14, -11<=k<	=11, -14<=l<=14
Reflections collected	21572	
Independent reflections	2334 [R(int) = 0.0577]]
Completeness to theta = 25.242°	99.4 %	
Absorption correction	Multi-scna	
Max. and min. transmission	0.7456 and 0.6088	
Refinement method	Full-matrix least-squar	tes on F ²

Data / restraints / parameters	2334 / 0 / 155
Goodness-of-fit on F^2	1.061
Final R indices [I>2sigma(I)] R indices (all data)	R1 = 0.0535, wR2 = 0.1449 R1 = 0.0703, wR2 = 0.1615
Largest diff. peak and hole	0.318 and -0.262 e.Å ⁻³

N- 3'-azido-2',3'-deoxythymidinoxycarbonyl-fluorsulfurylamid (**2-8**)

Table S2. Crystal data and structure refinement for 2-8.		
Identification code	mo_d8v18703_0m	
Empirical formula	<mark>C11 H15 F N6 O8 S</mark>	
Formula weight	<mark>410.35</mark>	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21	
Unit cell dimensions	a = 7.2157(8) Å	α= 90°.
	b = 8.4485(9) Å	$\beta = 91.567(4)^{\circ}$.
	c = 14.2834(16) Å	$\gamma = 90^{\circ}.$
Volume	870.42(17) Å ³	
Z	2	
Density (calculated)	<mark>1.566 Mg/m³</mark>	
Absorption coefficient	0.252 mm ⁻¹	
F(000)	<mark>424</mark>	
Crystal size	0.150 x 0.120 x 0.070 m	m ³
Theta range for data collection	2.824 to 25.996°.	
Index ranges	-8<=h<=8, -10<=k<=10,	-17<=l<=17
S	43	


Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Largest diff. peak and hole *Compound 3-1* 9899 3367 [R(int) = 0.0586] 98.9 % Semi-empirical from equivalents 0.7456 and 0.4441

Full-matrix least-squares on F²

<mark>3367 / 13 / 253</mark>

1.067

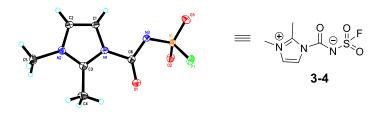
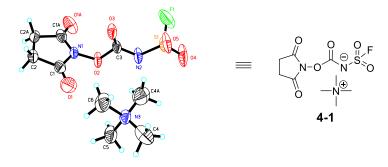

R1 = 0.0464, wR2 = 0.1191 R1 = 0.0511, wR2 = 0.1247 -0.01(5) 0.405 and -0.288 e.Å⁻³

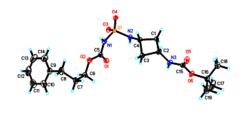
Table S3. Crystal data and structure refinement for 3-1.		
Identification code	mo_d8v18414_0m	
Empirical formula	C10 H16 F N3 O3 S	
Formula weight	277.32	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 7.2670(8) Å	$\alpha = 101.275(4)^{\circ}.$
	b = 8.6077(10) Å	β=102.063(4)°.
	c = 10.2762(11) Å	$\gamma = 91.602(4)^{\circ}.$
Volume	614.88(12) Å ³	
Z	2	
Density (calculated)	1.498 Mg/m ³	


Absorption coefficient	0.281 mm ⁻¹
F(000)	292
Crystal size	0.200 x 0.170 x 0.120 mm ³
Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max, and min, transmission	2.419 to 25.993°. -8<=h<=8, -10<=k<=10, -12<=l<=12 9626 2373 [R(int) = 0.0373] 98.8 % Semi-empirical from equivalents 0.7456 and 0.5860
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters Goodness-of-fit on F ²	2373 / 0 / 164 1.060
Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient	R1 = 0.0396, wR2 = 0.1068 R1 = 0.0465, wR2 = 0.1134 0.067(12)
Largest diff. peak and hole	0.318 and -0.396 e.Å ⁻³

Compound 3-4

Table S4. Crystal data and structure refinement for 3-4.		
Identification code	mo_d8v18420_0m	
Empirical formula	C6 H8 F N3 O3 S	
Formula weight	221.21	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/n	
Unit cell dimensions	a = 7.1356(2) Å	$\alpha = 90^{\circ}$.
	b = 10.1704(3) Å	$\beta = 91.1050(10)^{\circ}.$

	$c = 12.1404(4) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	880.89(5) Å ³
Z	4
Density (calculated)	1.668 Mg/m ³
Absorption coefficient	0.370 mm ⁻¹
F(000)	456
Crystal size	0.200 x 0.170 x 0.130 mm ³
Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters	3.340 to 26.000°. -8<=h<=8, -12<=k<=12, -14<=l<=14 9935 1716 [R(int) = 0.0277] 98.7 % Semi-empirical from equivalents 0.7456 and 0.6701 Full-matrix least-squares on F ² 1716 / 0 / 129
Goodness-of-fit on F^2	1.095
Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole <i>Compound 4-1</i>	R1 = 0.0329, wR2 = 0.0881 R1 = 0.0341, wR2 = 0.0890 n/a 0.438 and -0.269 e.Å ⁻³



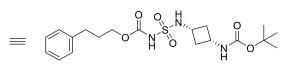

Deposition NO. CCDC 2094858

Table S5. Crystal data and structure refinement for 4-1.Identification codemo_d8v18900_0m

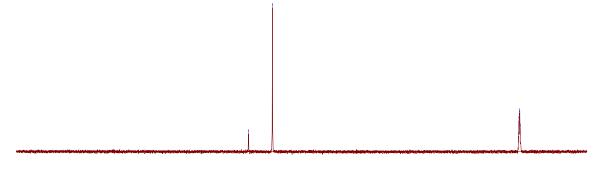
Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	C9 H16 F N3 O6 S 313.31 293(2) K 0.71073 Å Orthorhombic C m c 21 a = 9.526(2) Å b = 19.130(4) Å c = 7.9949(16) Å	$ α = 90^\circ. $ $ β = 90^\circ. $ $ γ = 90^\circ. $
Volume	1456.9(5) Å ³	1 20.
Z	4	
Density (calculated)	1.428 Mg/m ³	
Absorption coefficient	0.261 mm ⁻¹	
F(000)	656	
Crystal size	0.190 x 0.160 x 0.130 mm	3
Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission	2.129 to 25.981°. -11<=h<=11, -19<=k<=23 5742 1514 [R(int) = 0.0566] 99.5 % Semi-empirical from equi 0.7456 and 0.5339	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	1514 / 1 / 120	
Goodness-of-fit on F ²	1.127	
Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient	R1 = 0.0657, wR2 = 0.182 R1 = 0.0785, wR2 = 0.193 0.6(3) 0.074(16)	
Largest diff. peak and hole	0.329 and -0.249 e.Å ⁻³	

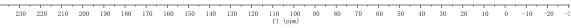
Compound 9-3

9-3

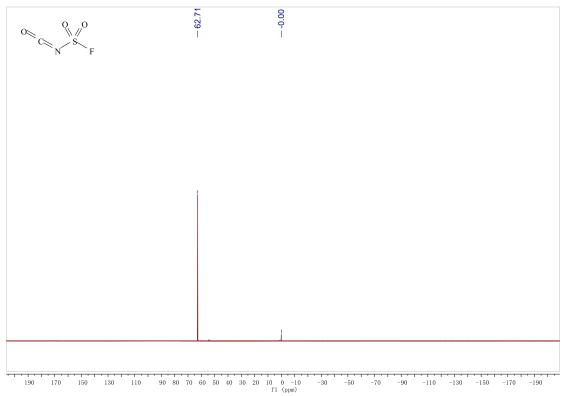
Deposition NO. CCDC 2094839		
Table S6. Crystal data and structure refine	ment for 9-3 .	
Identification code	d8v20624	
Empirical formula	C19 H29 N3 O6 S	
Formula weight	427.51	
Temperature	192(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 20.7604(12) Å	<i>α</i> = 90°.
	b = 9.1510(5) Å	$\beta = 106.682(2)^{\circ}.$
	c = 11.9951(8) Å	$\gamma = 90^{\circ}.$
Volume	2182.9(2) Å ³	
Z	4	
Density (calculated)	1.301 Mg/m ³	
Absorption coefficient	0.187 mm ⁻¹	
F(000)	912	
Crystal size	0.180 x 0.140 x 0.080 mm ³	
Theta range for data collection	2.846 to 26.000°.	
Index ranges	-25<=h<=25, -11<=k<	=11, -14<=l<=14
Reflections collected	21329	
Independent reflections	4270 [R(int) = 0.0756]	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.5475	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4270 / 0 / 270	
Goodness-of-fit on F ²	1.019	

Final R indices [I>2sigma(I)]	R1 = 0.0502, wR2 = 0.1131
R indices (all data)	R1 = 0.0704, wR2 = 0.1273
Extinction coefficient	0.0057(12)
Largest diff. peak and hole	0.467 and -0.419 e.Å ⁻³

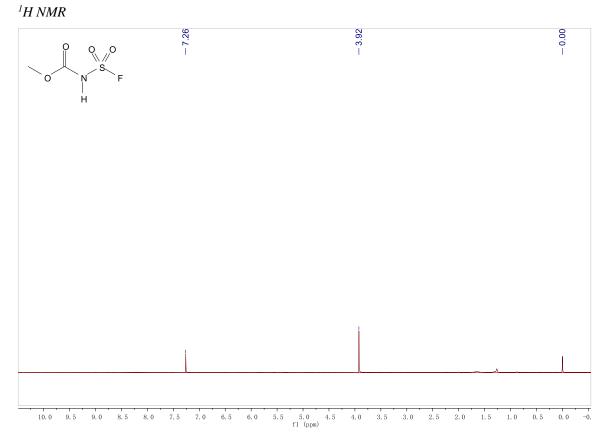

Section 8. NMR Spectra for Compounds

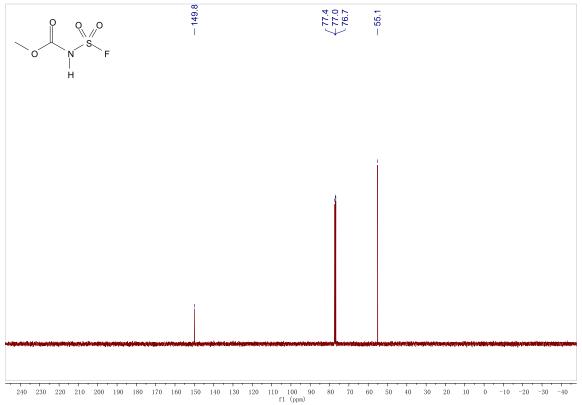

Fluorosulforyl Isocyanate(**FSI**) ¹³C NMR(CD₃CN)

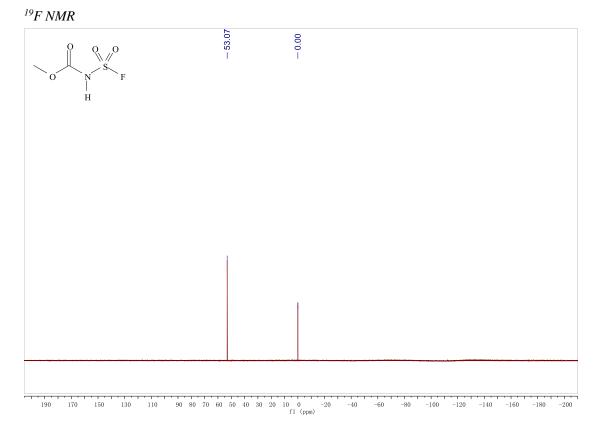
° C N S F



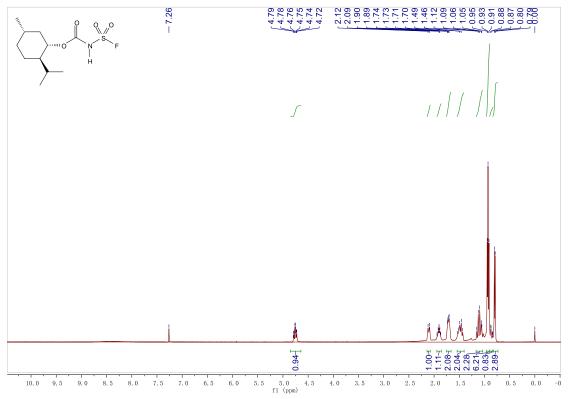
1.7 1.5 1.1 0.9

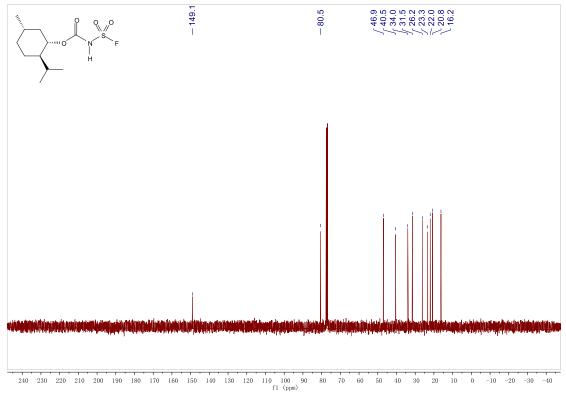



¹⁹F NMR

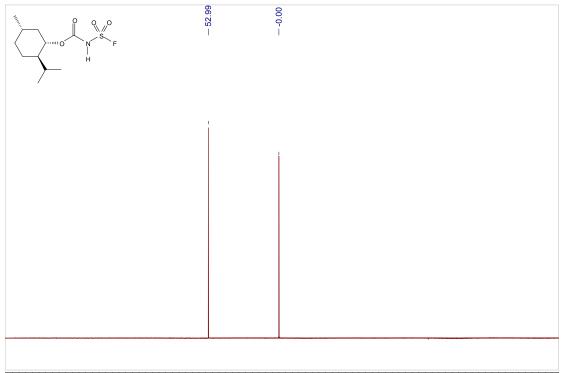


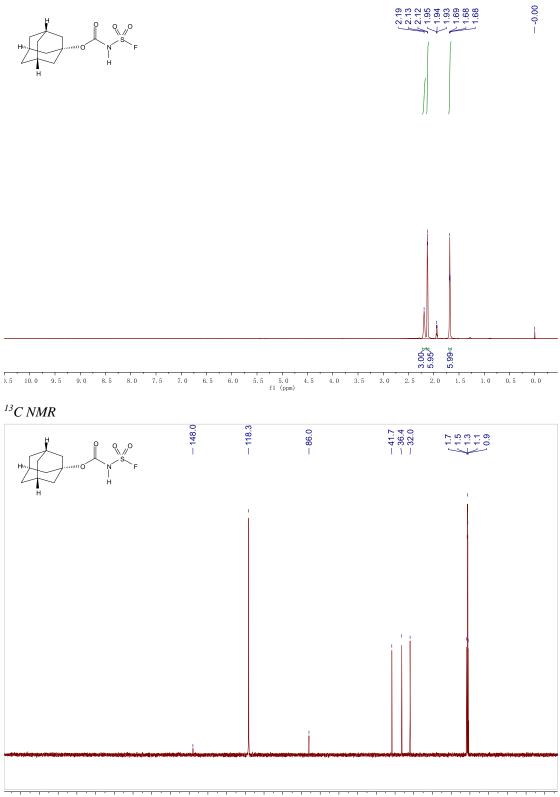
N-Methoxycarbonyl-fluorsulfurylamid(2-1)


¹³C NMR

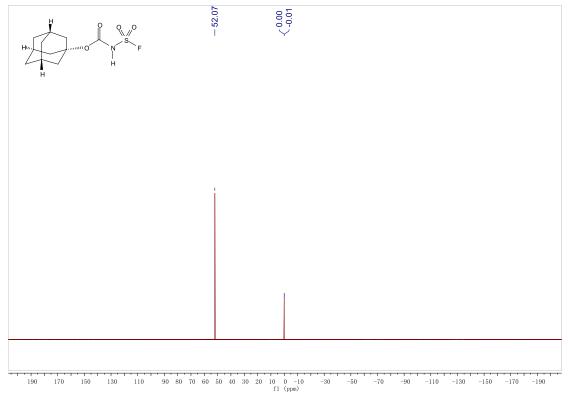


N-(1S,2R,5S)-(+)-menthoxycarbonyl-fluorsulfurylamid(2-2).

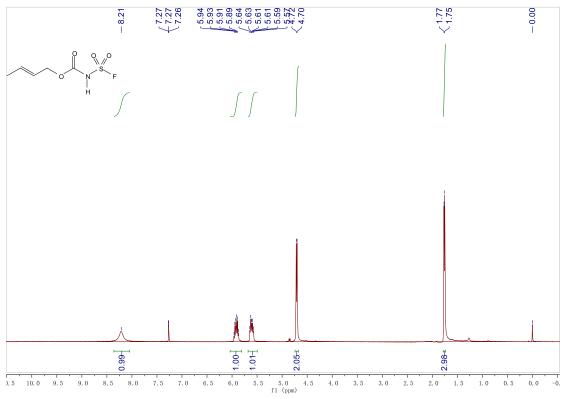

 $^{1}HNMR$

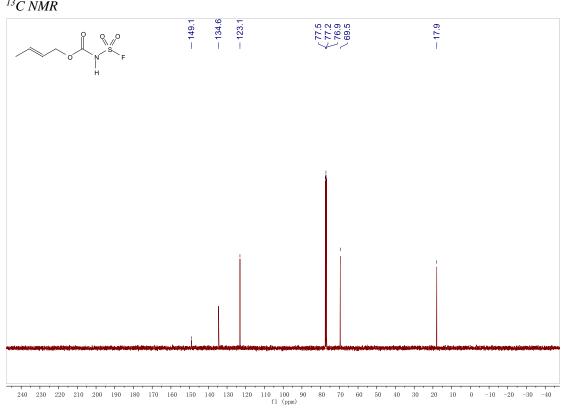


¹⁹F NMR

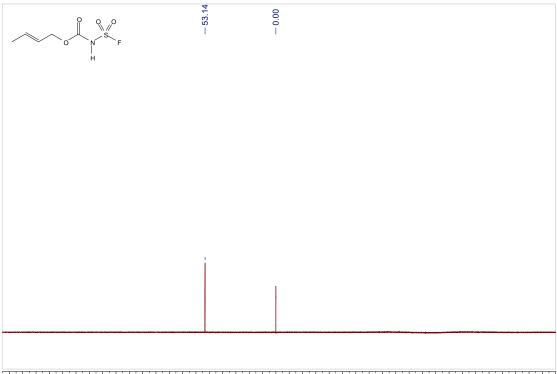

190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 f1 (ppm) N-1-adamanthanoxycarbonyl-fluorsulfurylamid (2-3).

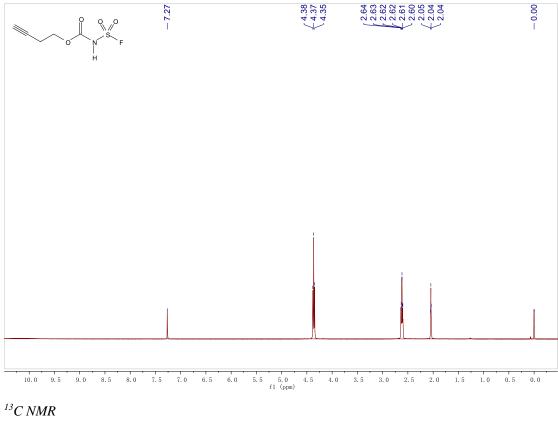
¹H NMR

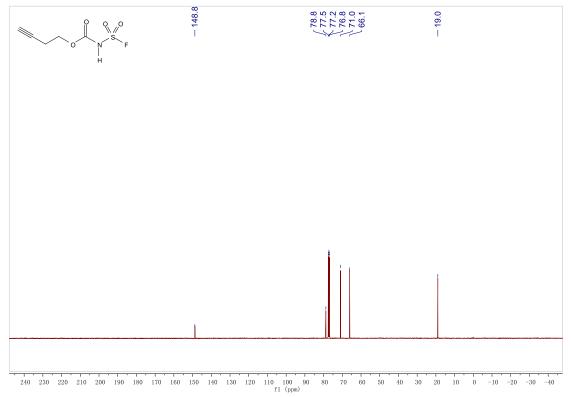

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 fl (ppm)

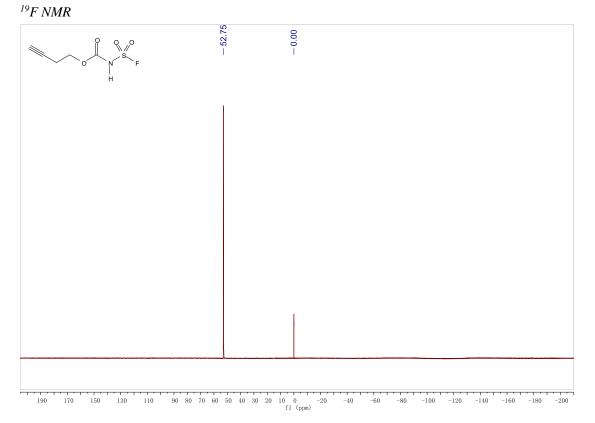


N-(*E*)-but-2-enoxycarbonyl-fluorsulfurylamid(2-4)


 $^{1}HNMR$

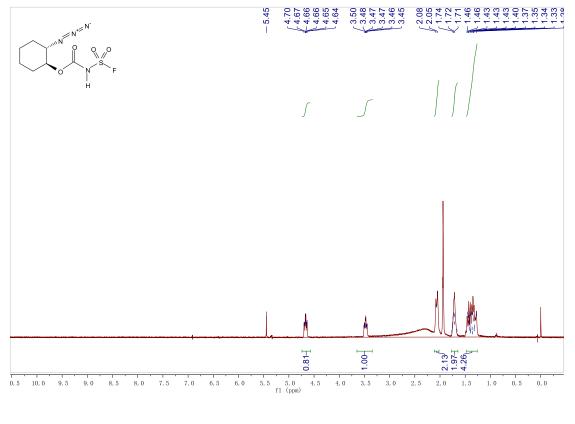


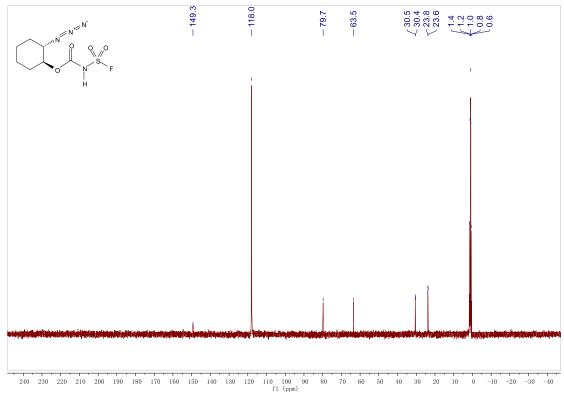



190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 fil (ppm)

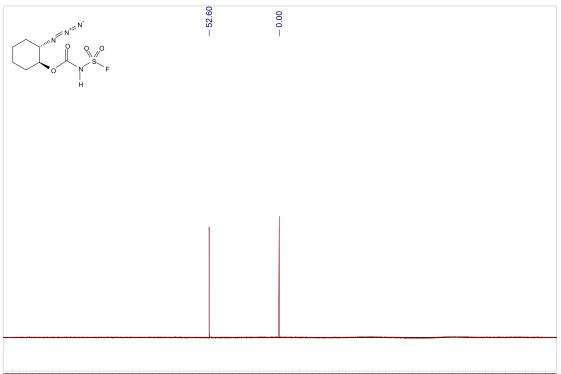
N-1-butynloxycarbonyl-fluorsulfurylamid(2-5)

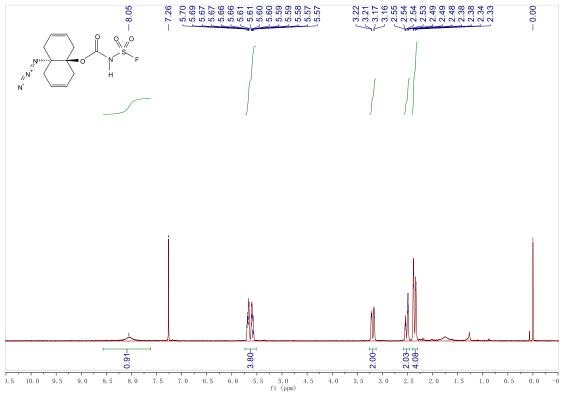
 $^{1}HNMR$

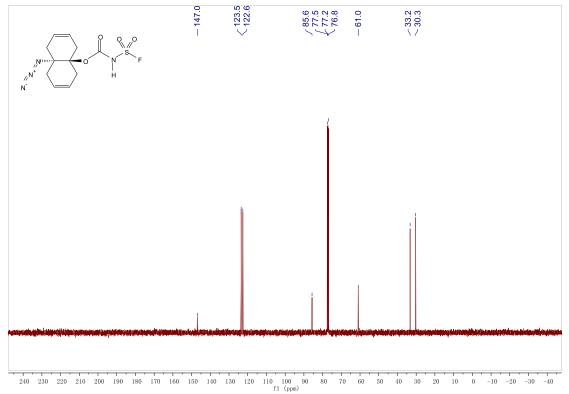




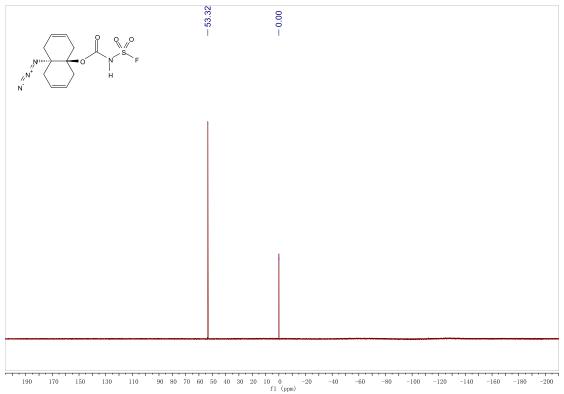
 $N-trans-2-azido-1-cyclohexanoxy carbonyl-fluor sulfury lamid ({\it 2-6}).$

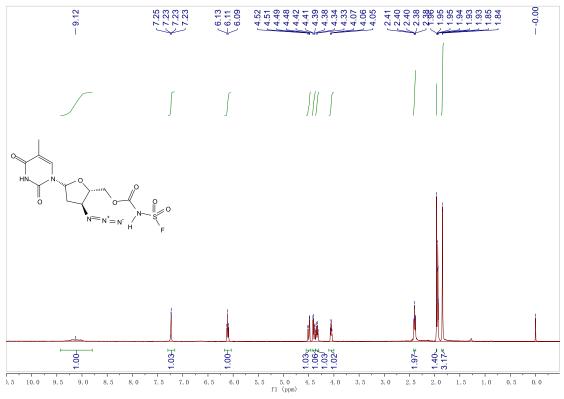

 $^{1}HNMR$


¹⁹F NMR

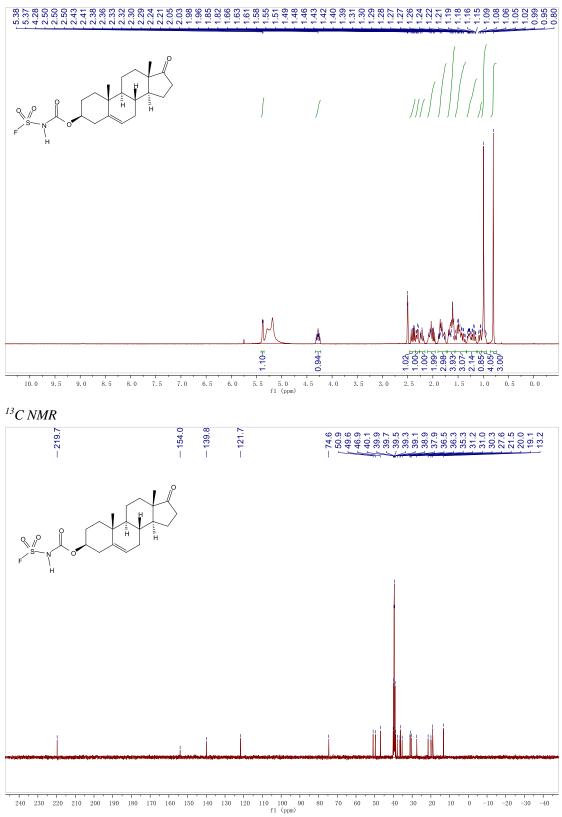

190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm) N-anti-8a-azido-1,4,4a,5,8,8a-hexahydro-4a-naphthalenoxy carbonyl-1,4,4a,5,8,8a-hexahydro-4a-naphthalenoxy carbonyl-1,4,4a-hexahydro-4a-naphthalenoxy carbonyl-1,4,4a-hexahydro-4a-naphthalenoxy c

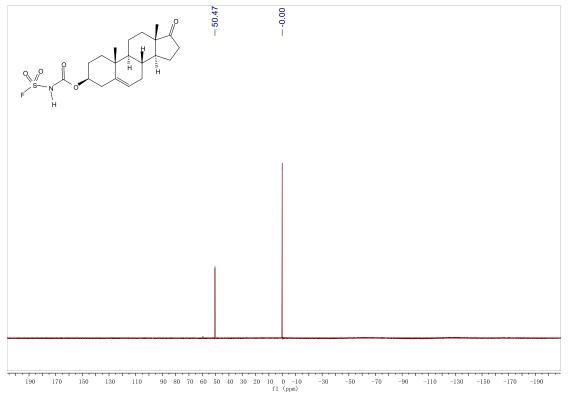
fluorsulfurylamid(2-7).



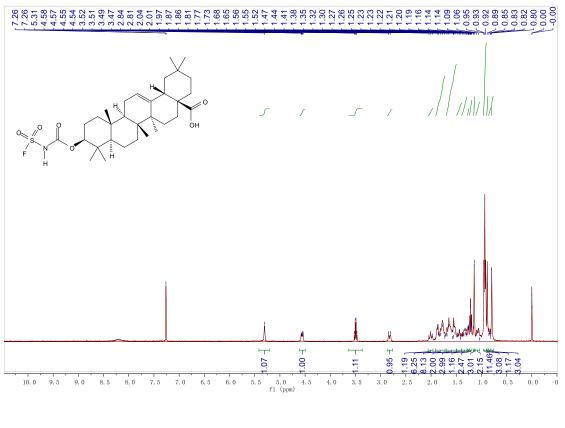


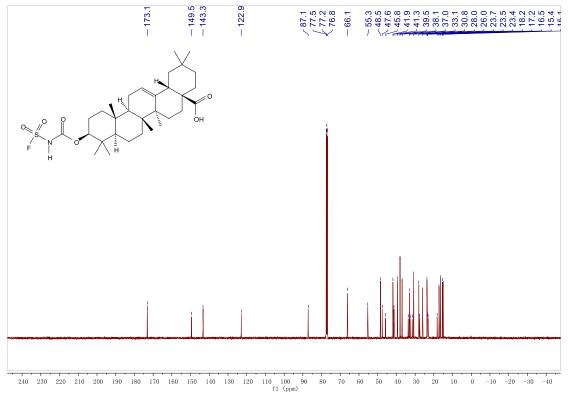
N-3'-azido-2',3'-deoxythymidinoxycarbonyl-fluorsulfurylamid(**2-8**).



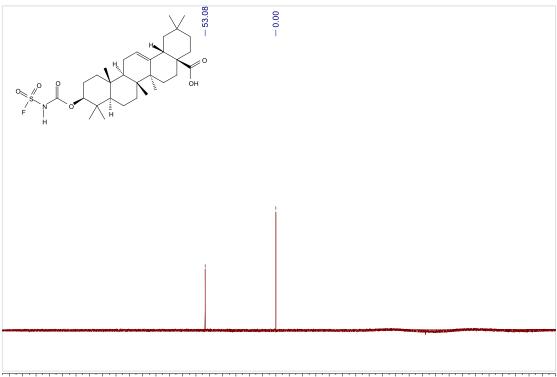

190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

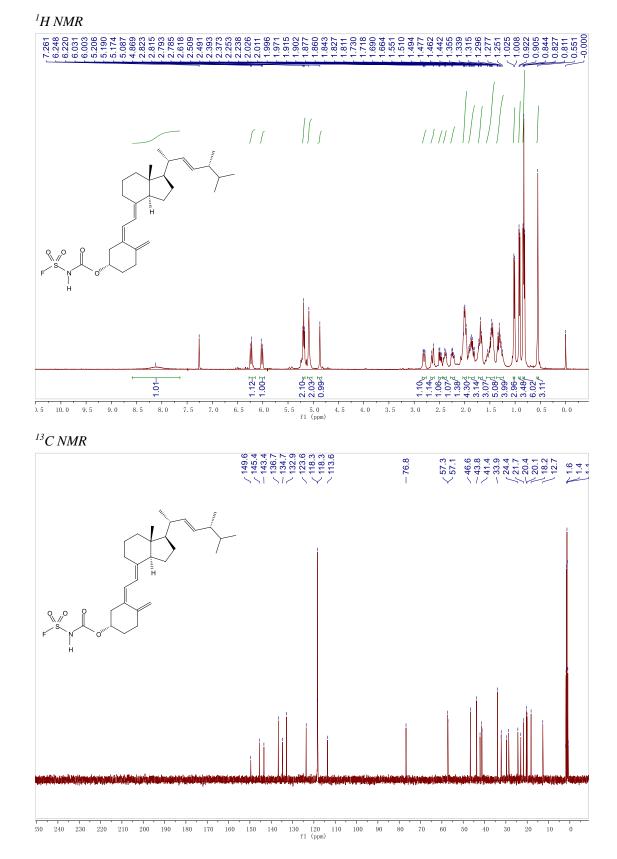
N- dehydroepiandrosteronoxycarbonyl-fluorsulfurylamid (2-9).


 $^{1}HNMR$

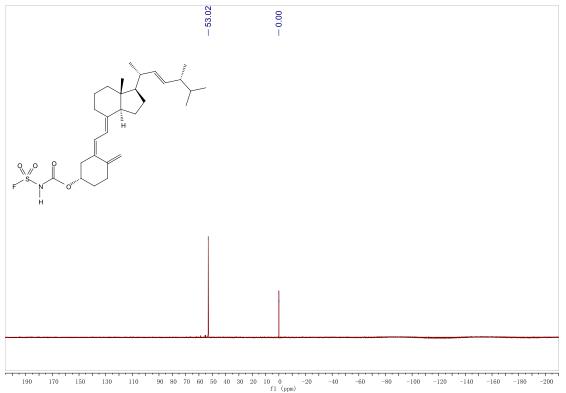


N- oleanoxycarbonyl-fluorsulfurylamid (2-10).

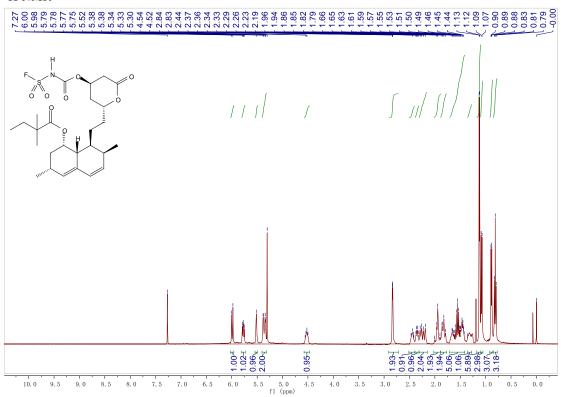

$^{1}HNMR$



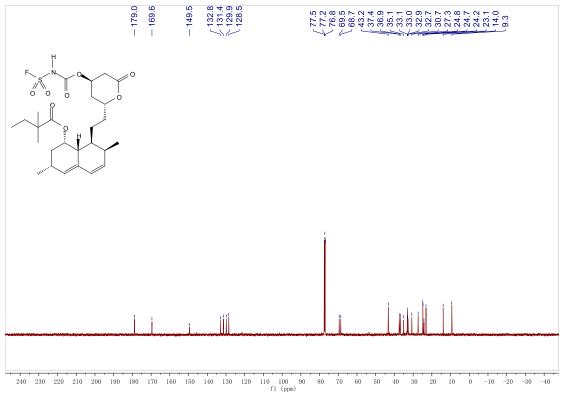
¹⁹F NMR



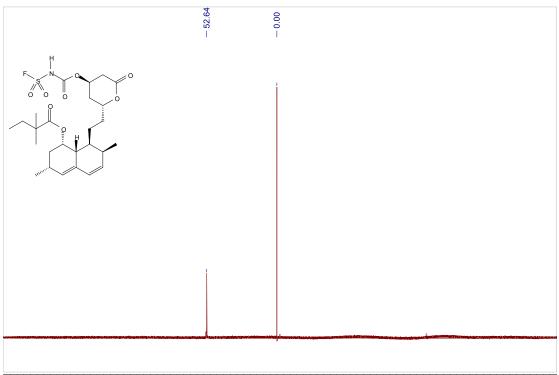
190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 f1 (ppm)



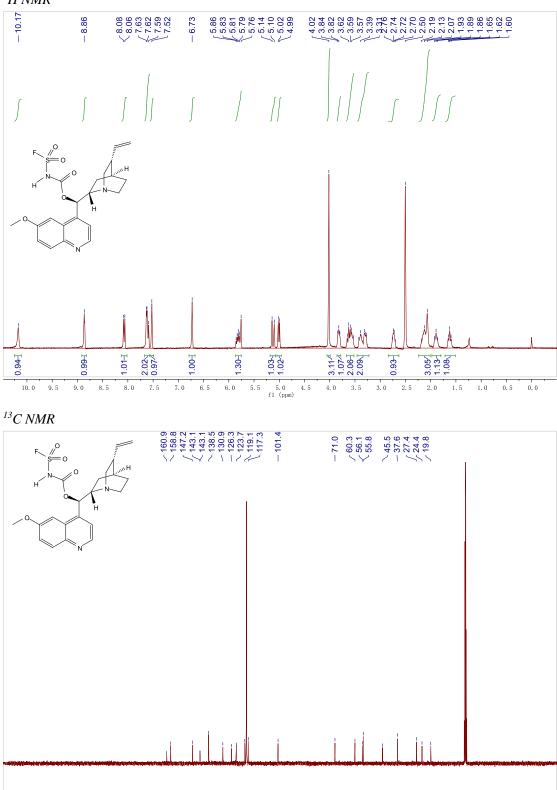
N- ergocalciferoxycarbonyl-fluorsulfurylamid (2-11).



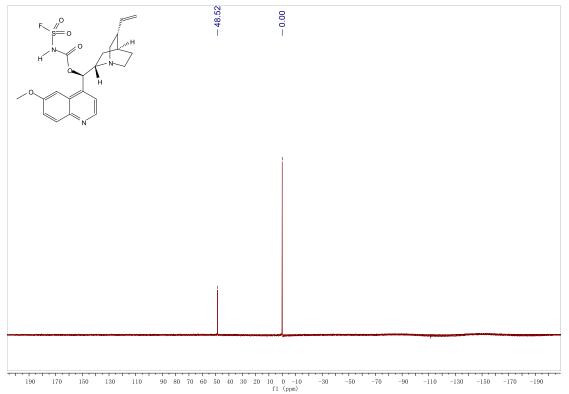
N- Simvastatinoxycarbonyl-fluorsulfurylamid (2-12).

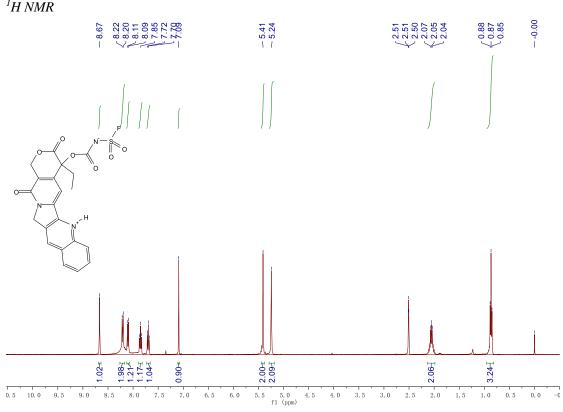


¹H NMR

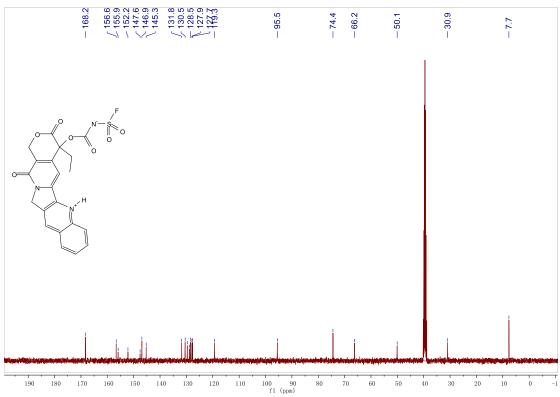


190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 f1 (ppm)

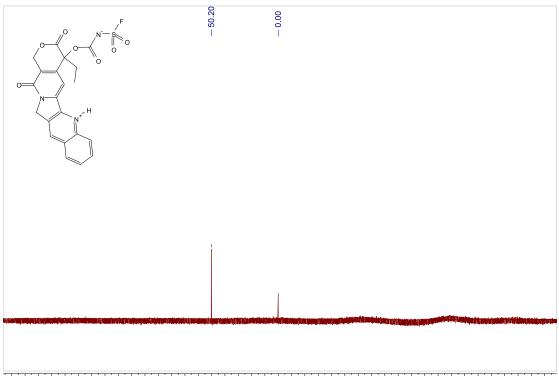

N- Cinchonan-9-oxycarbonyl-fluorsulfurylamid (2-13)



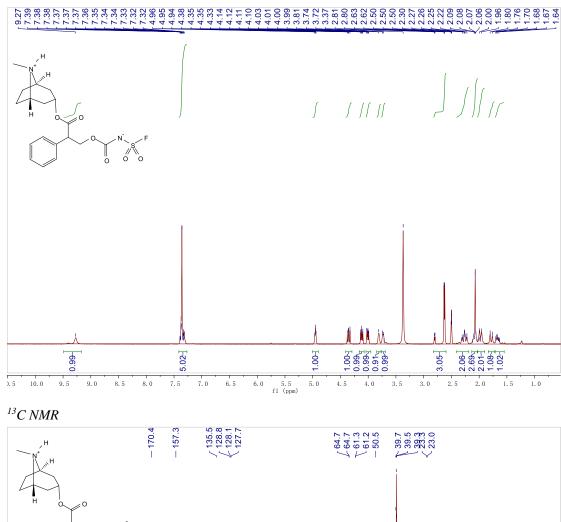
240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 fl (ppm)



N-camptothecinoxycarbonyl-fluorsulfurylamid (2-14).

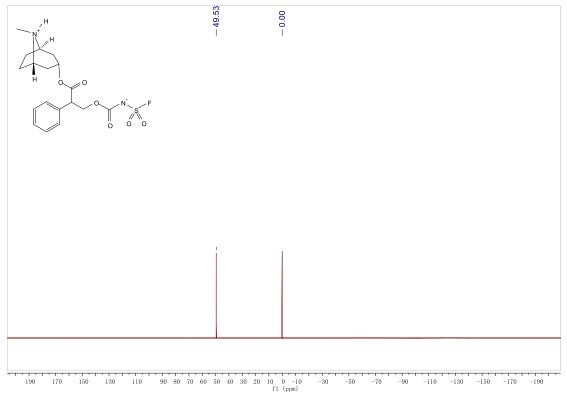


 $^{1}HNMR$



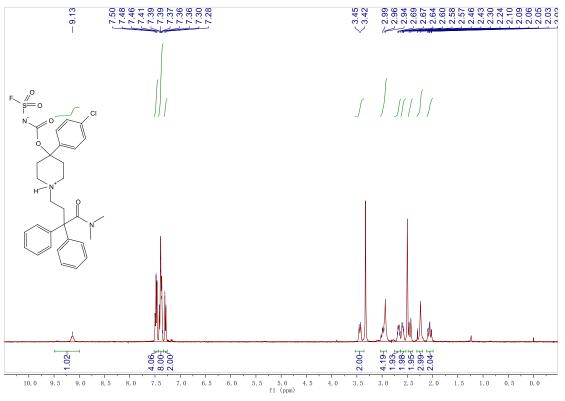
¹⁹F NMR

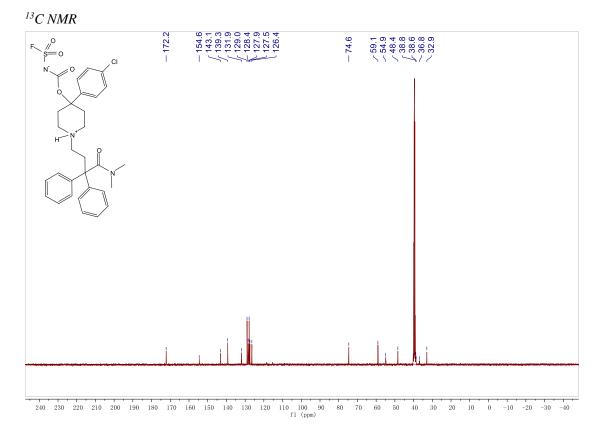
190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

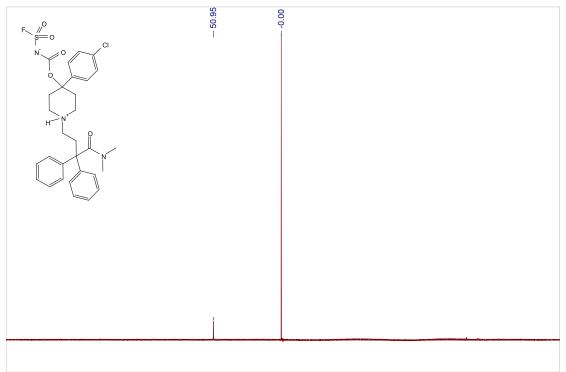


N- atropinoxycarbonyl-fluorsulfurylamid (2-15).

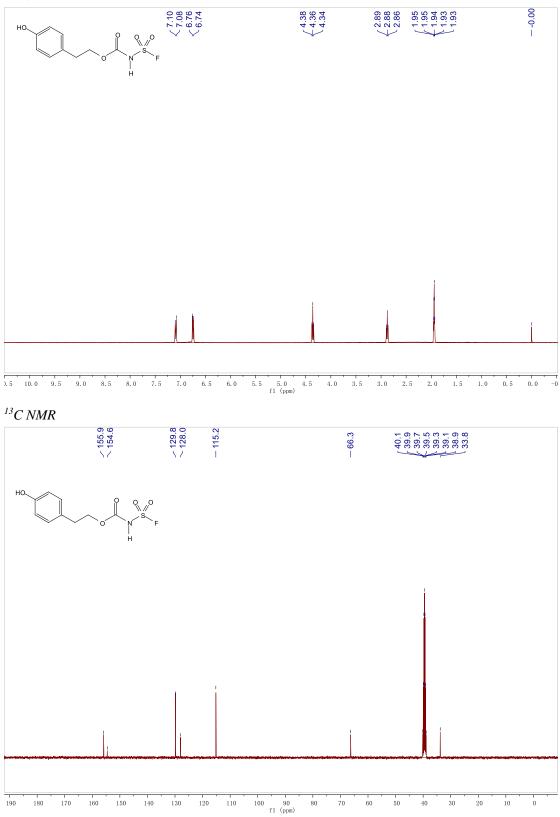
 $^{1}HNMR$

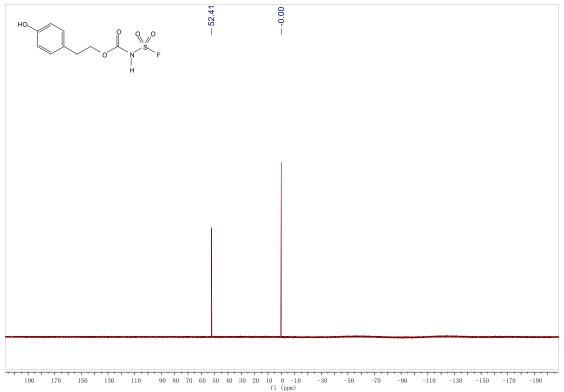

 $\begin{array}{c} \mathsf{F}_{\mathsf{1}} \\ \mathsf{F}_{\mathsf{1$




N- loperamidoxycarbonyl-fluorsulfurylamid (2-16)

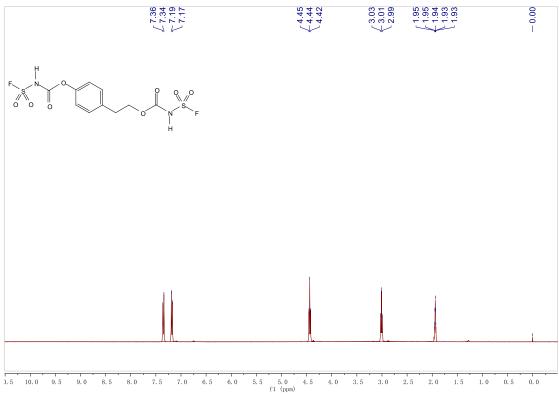
 $^{1}HNMR$

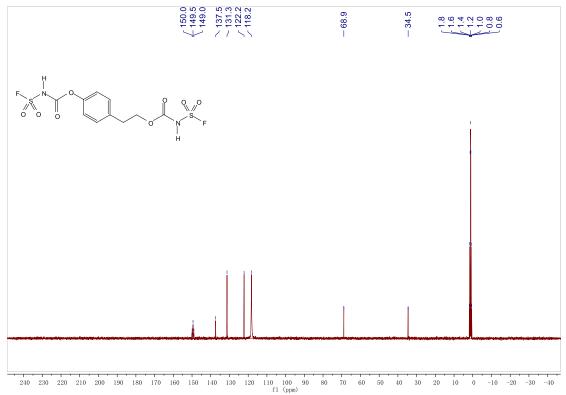




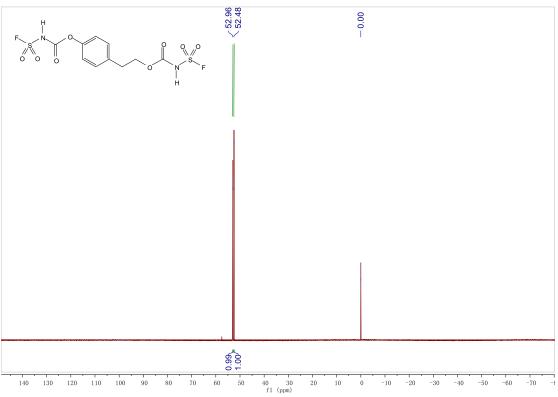
190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

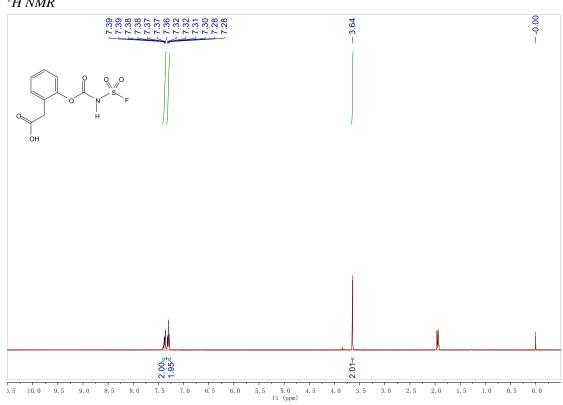
N-4-Hydroxyphenethyl aethoxycarbonyl-fluorsulfurylamid (2-17).

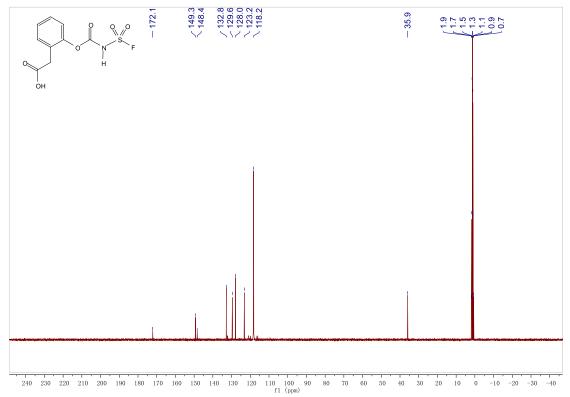


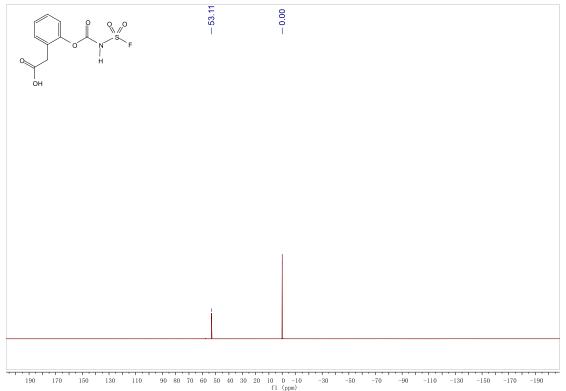


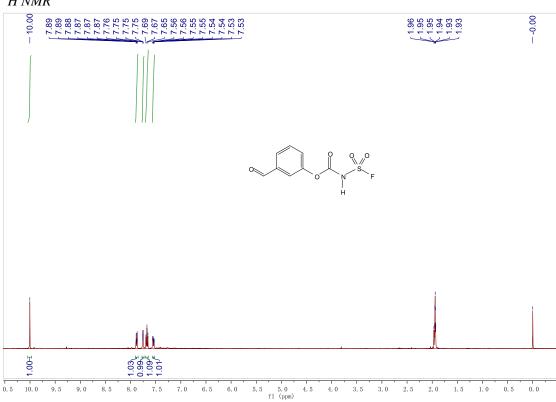
 $N-4-Hydroxy phenethyl\ aethoxy carbonyl-fluor sulfury lamid\ (\textbf{2-18}).$

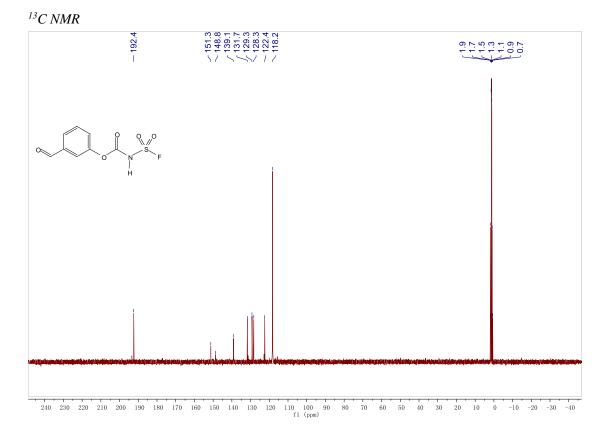


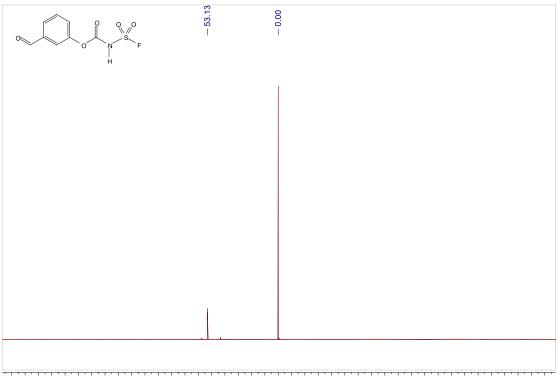




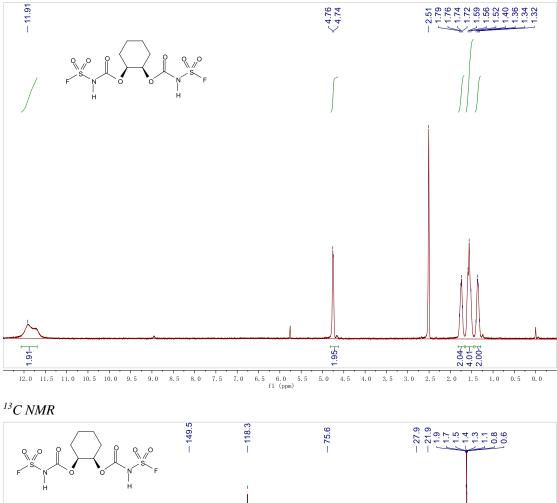

N-Fluorsulfonyl-carbaminsaeure-2-ethyl carboxylphenylester (2-19).

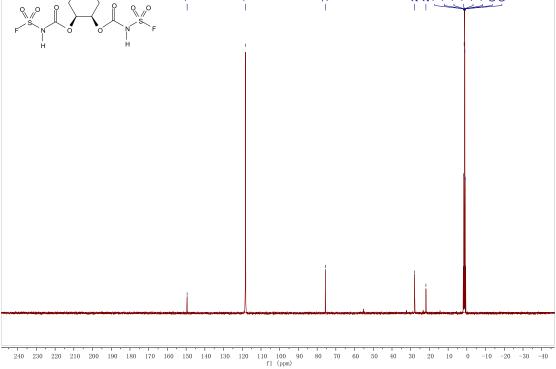

¹³C NMR

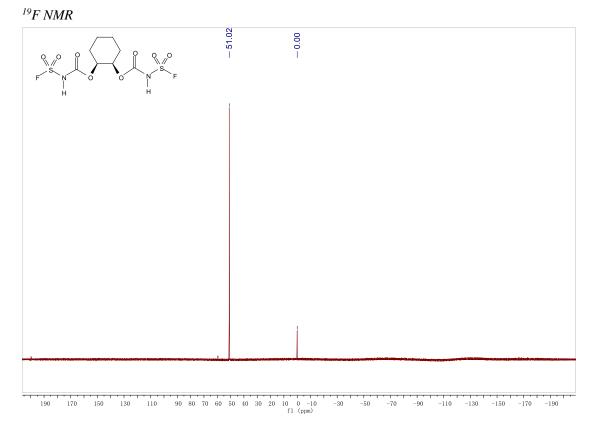



N-Fluorsulfonyl-carbaminsaeure-3-aldehydephenylester (2-20).

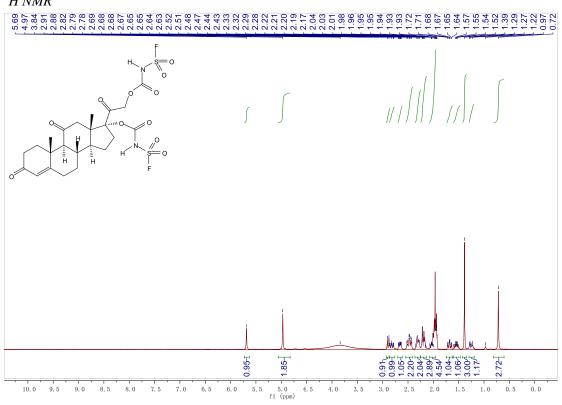
 $^{1}HNMR$

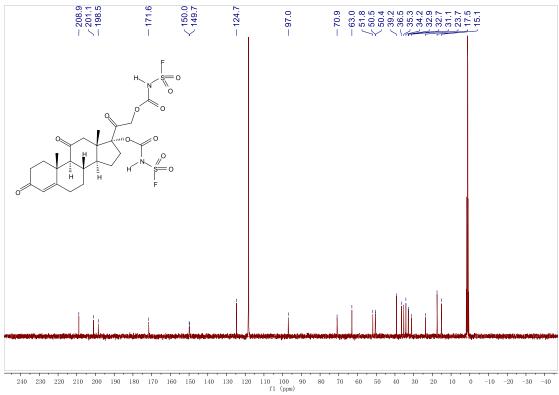

¹⁹F NMR

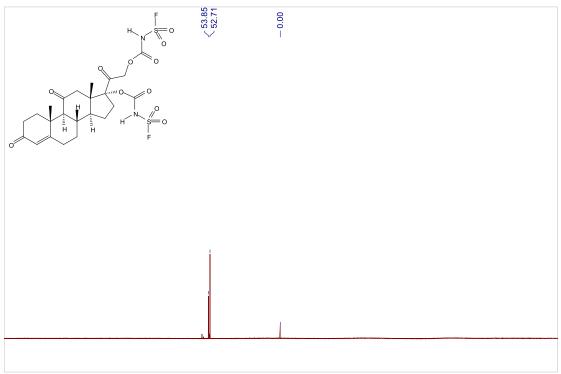


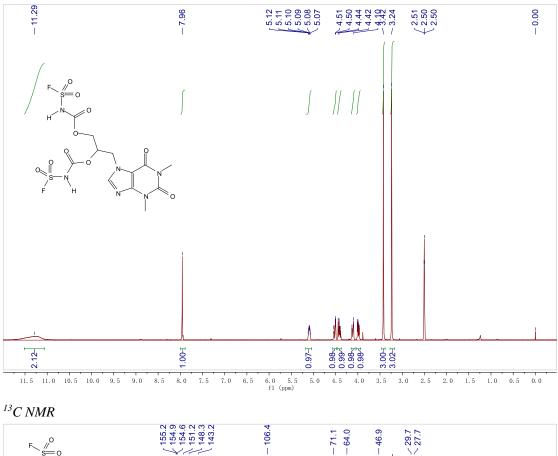

190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

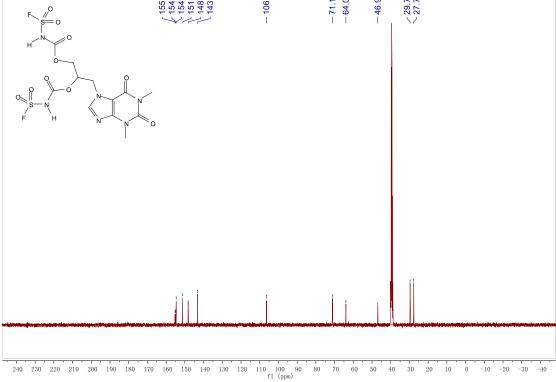
N-cis-cyclohexane-1,2-dioxycarbonyl-fluorsulfurylamid (2-22).

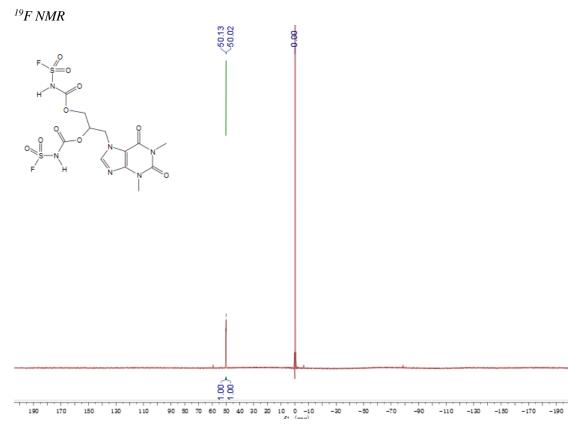




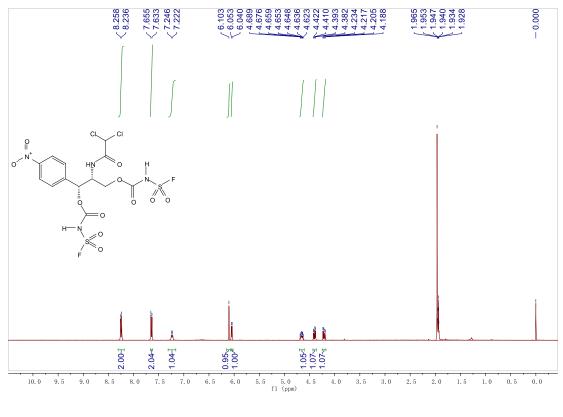

N- cortisonoxycarbonyl-fluorsulfurylamid (2-22).

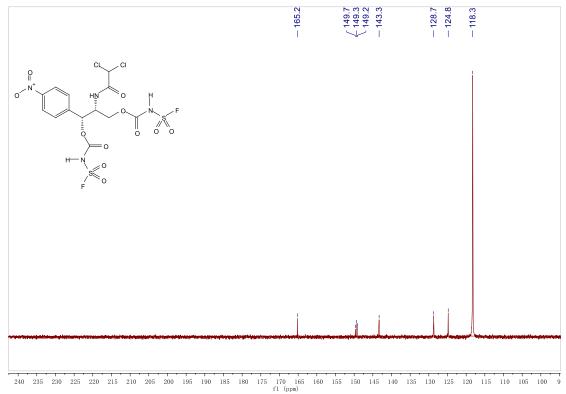




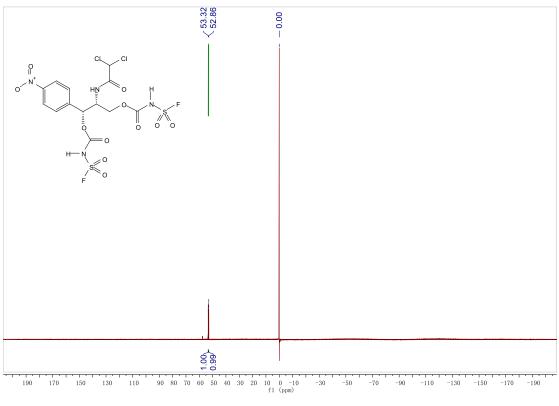

190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

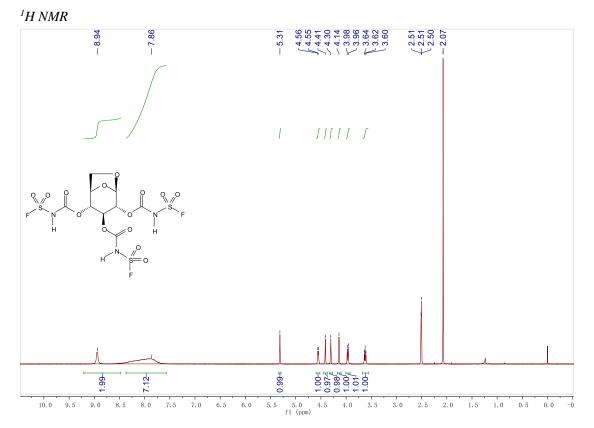
N- diprophyllinoxycarbonyl-fluorsulfurylamid (2-23).

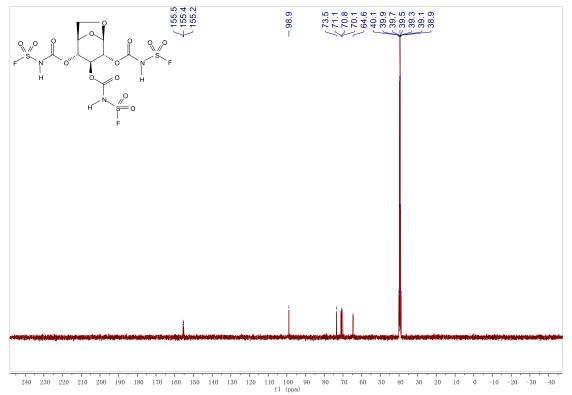


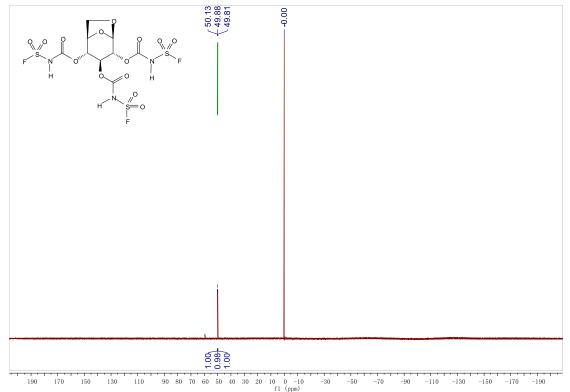


 $N-\ chloramphenic oxy carbonyl-fluor sulfury lamid\ (\textbf{2-24}).$

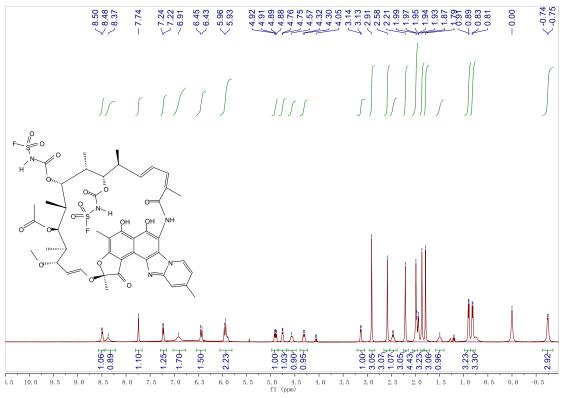

 $^{1}HNMR$

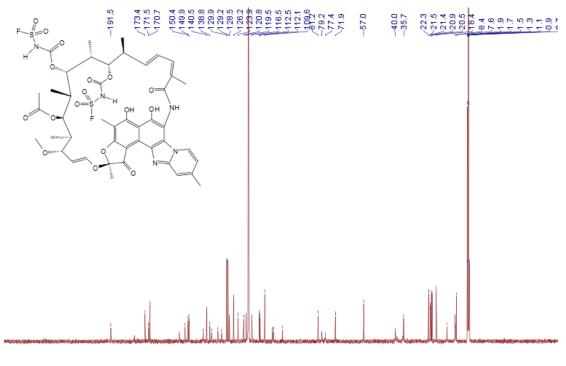





fluorsulfurylamid (2-25).

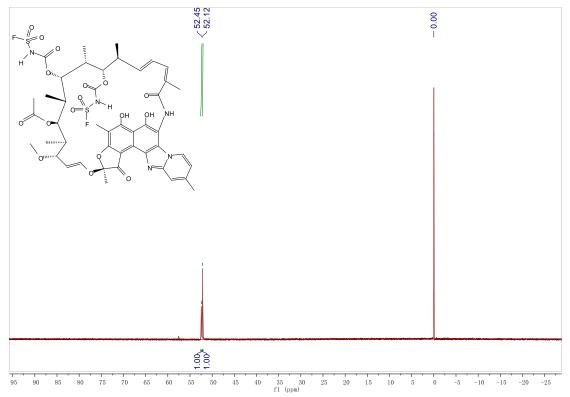
¹³C NMR ¹



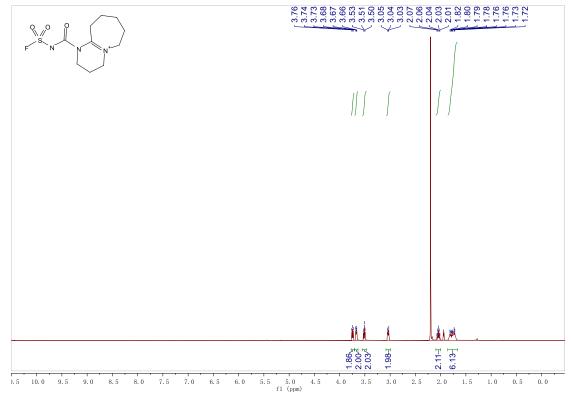


N- rifaximinoxycarbonyl-fluorsulfurylamid(Compound 2-26).

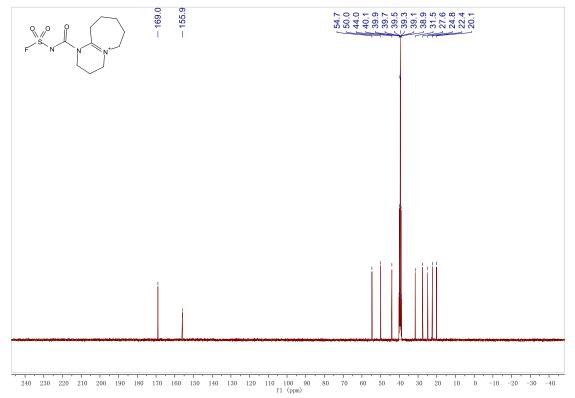
 $^{1}HNMR$

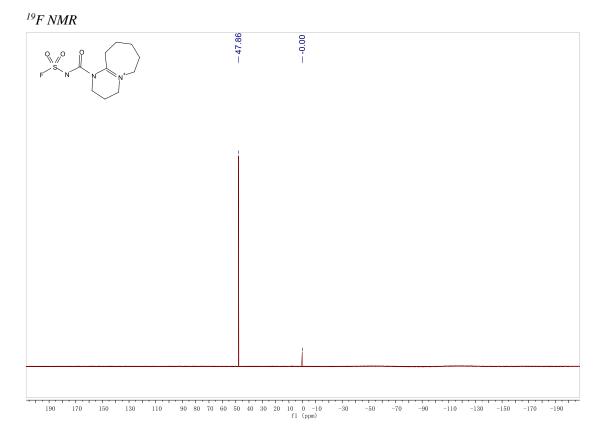


¹³C NMR

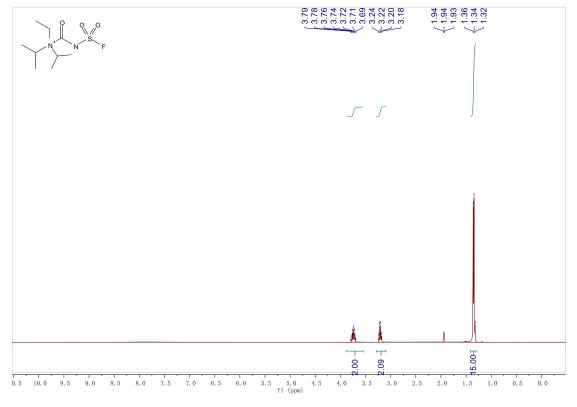


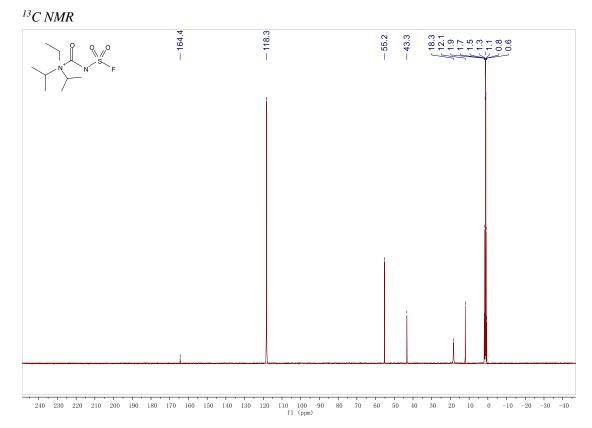
240 230 220 210 200 190 150 170 160 150 140 130 120 110 100 90 50 70 60 50 40 30 20 10 0 -10 -20 -30 -40

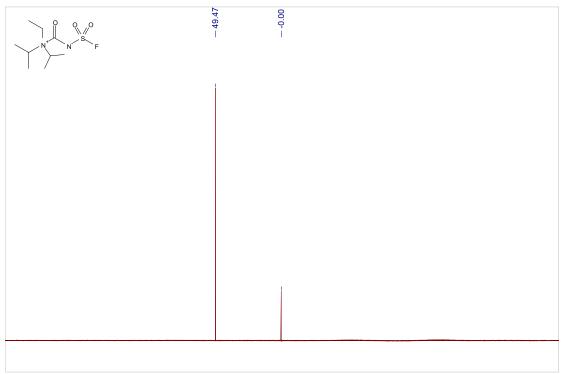

¹⁹F NMR



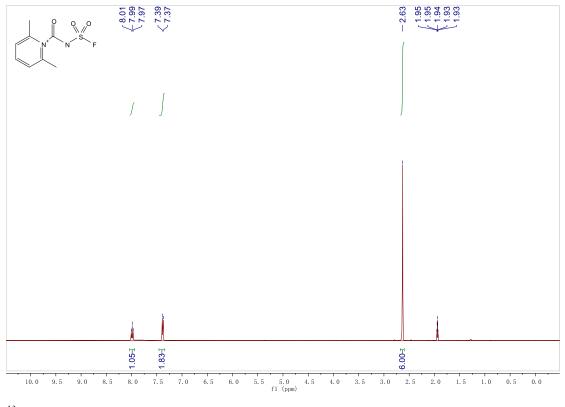
Compound 3-1

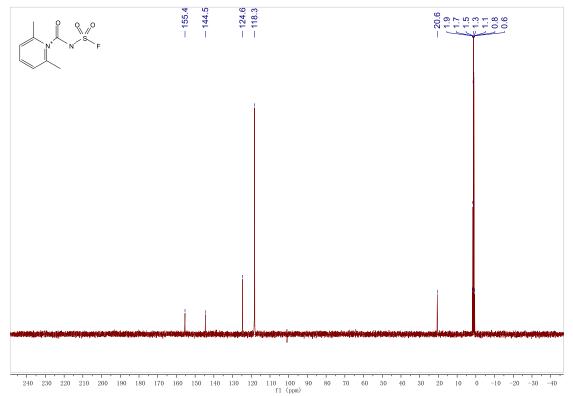

$^{13}CNMR$

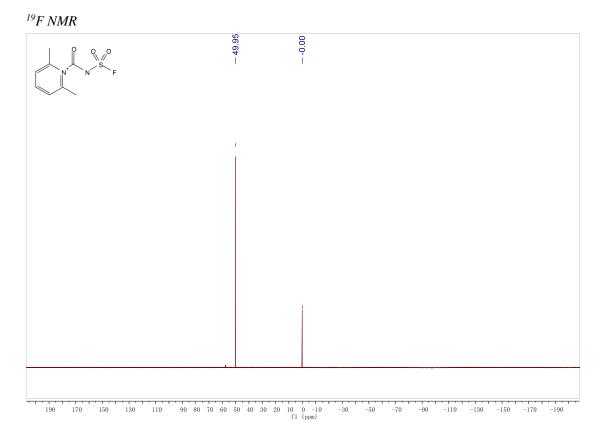



Compound 3-2

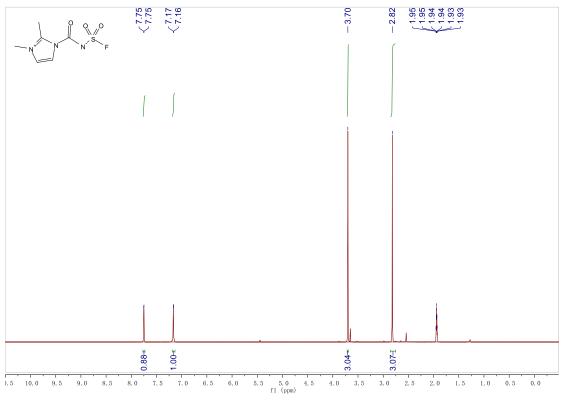
 $^{1}HNMR$

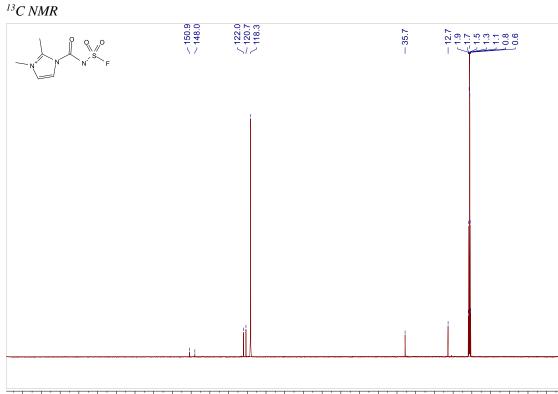




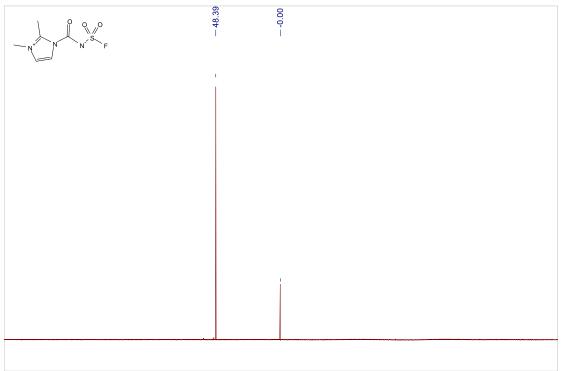

190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

Compound 3-3

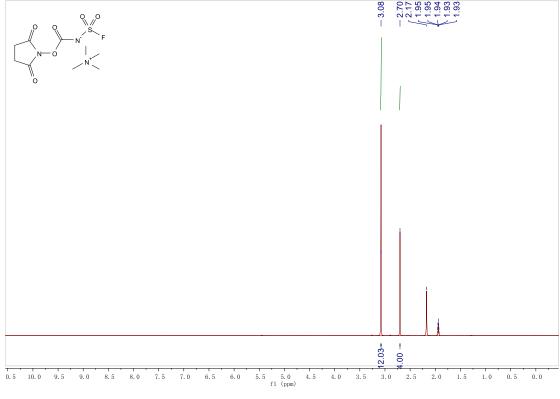

¹³C NMR

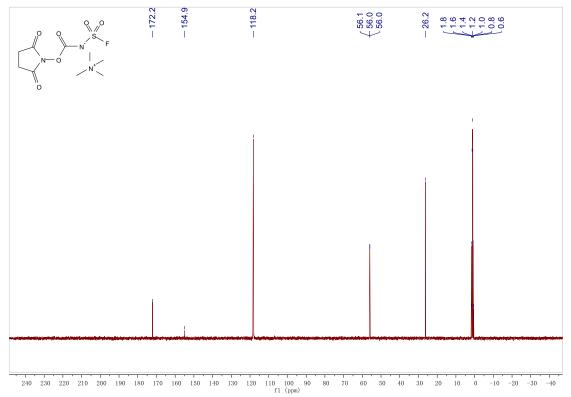


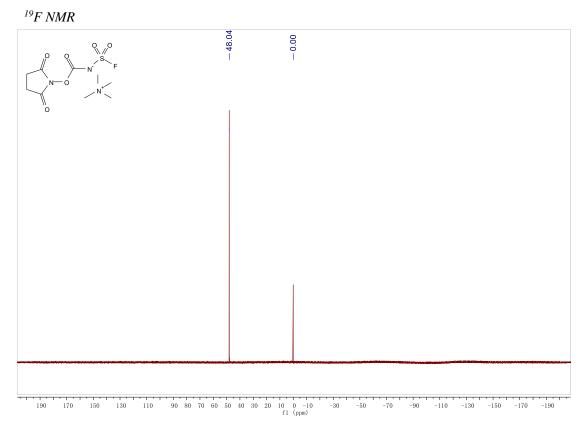
Compound 3-4

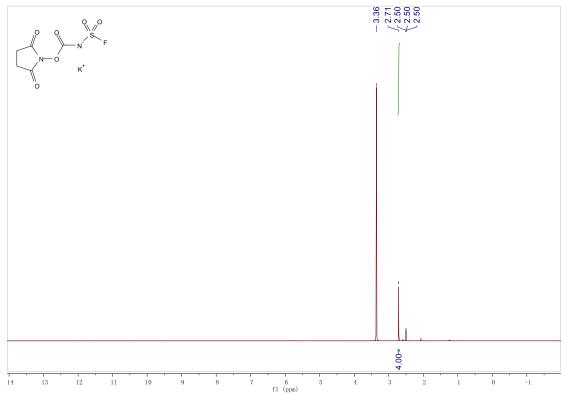


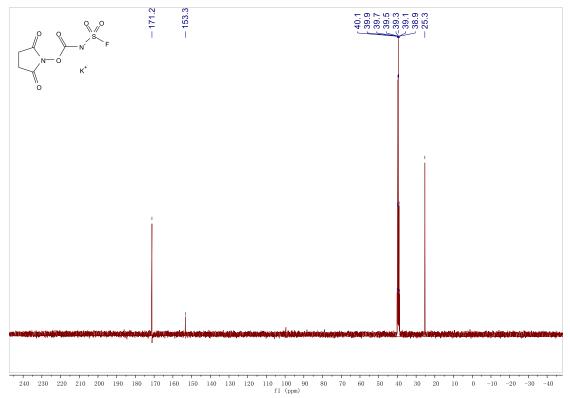
240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)



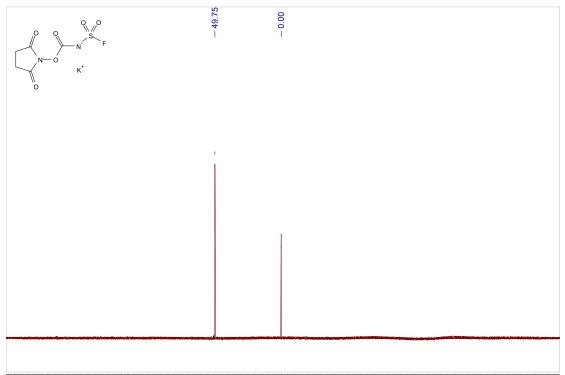

190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

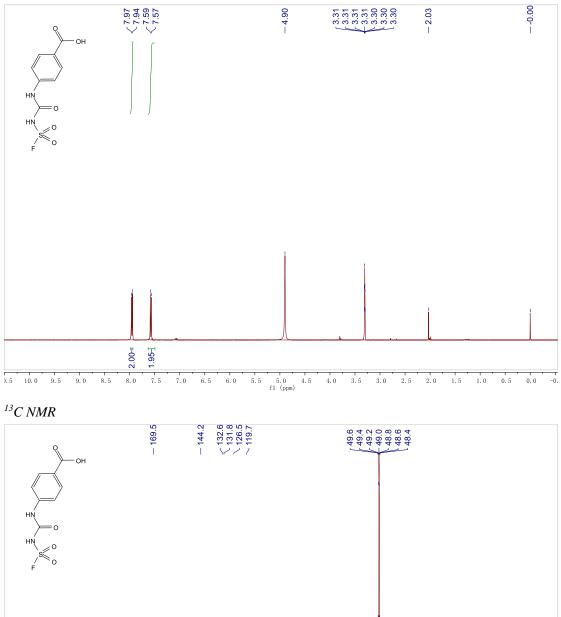

Florosulfonyl succinimide tetramethylammonium salt (4-1).

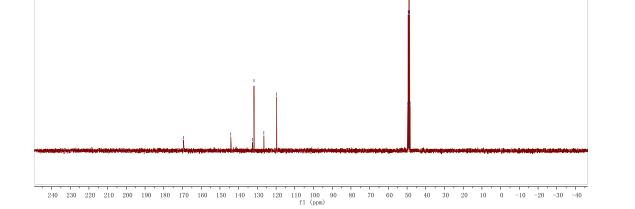

$^{13}CNMR$

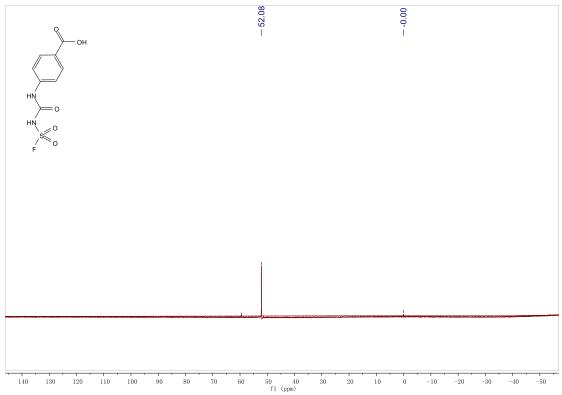


Florosulfonyl succinimide potassium salt (4-2).

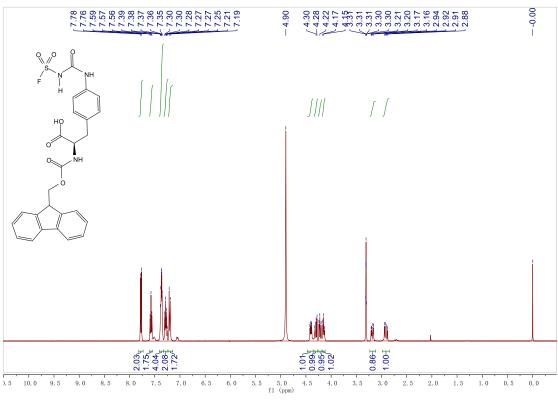


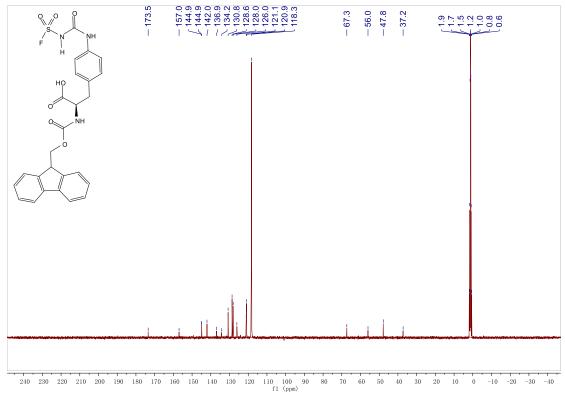




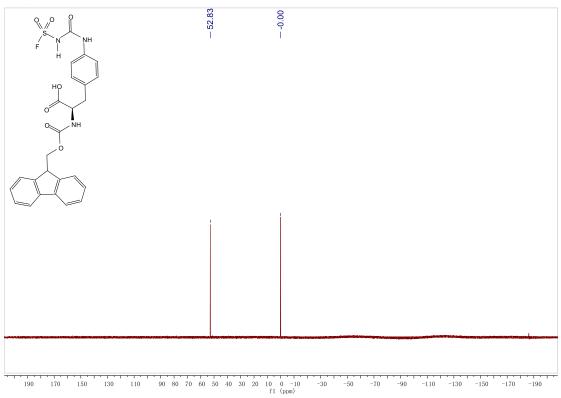

190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

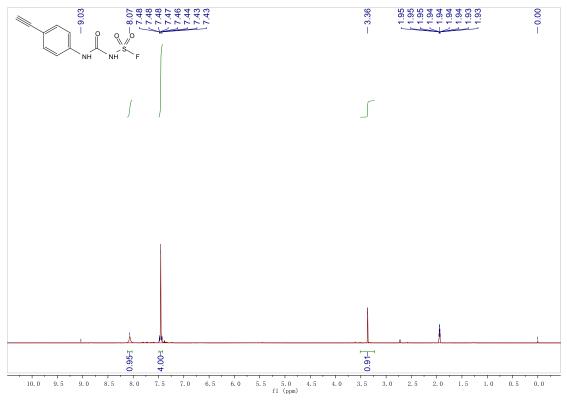
N-4-carboxylphenylaminocarbonyl-fluorsulfurylamid (6-1)

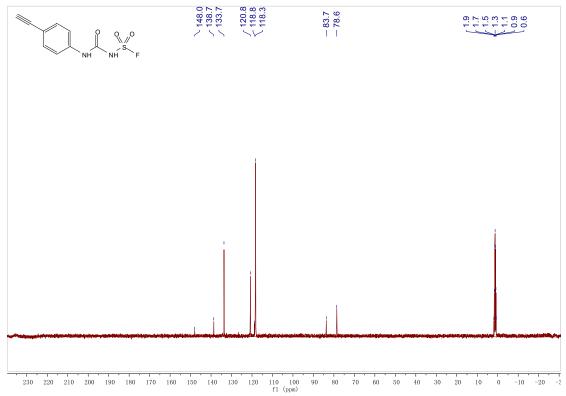


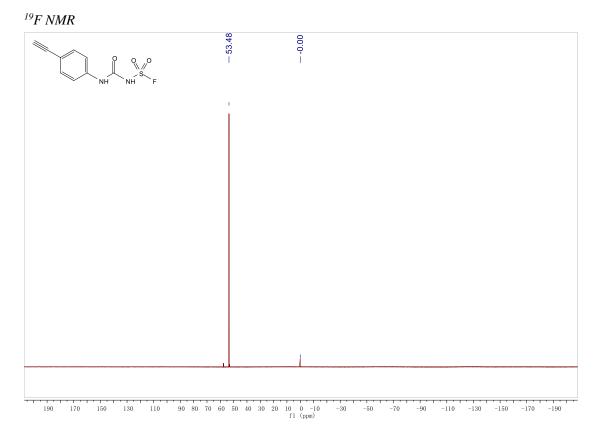


Compound 6-2

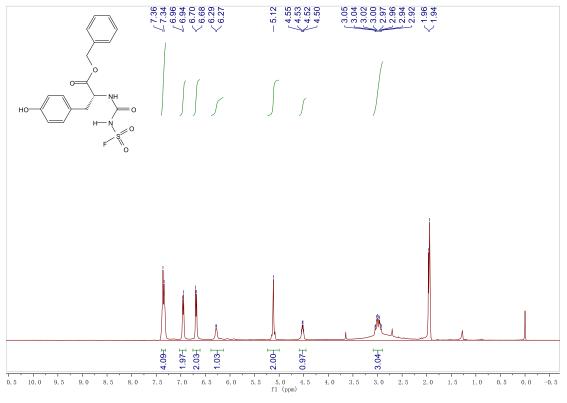


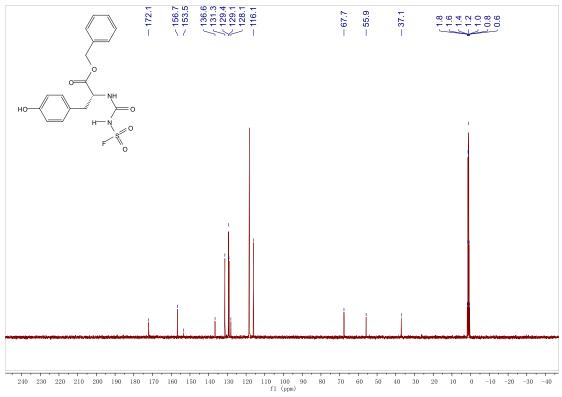




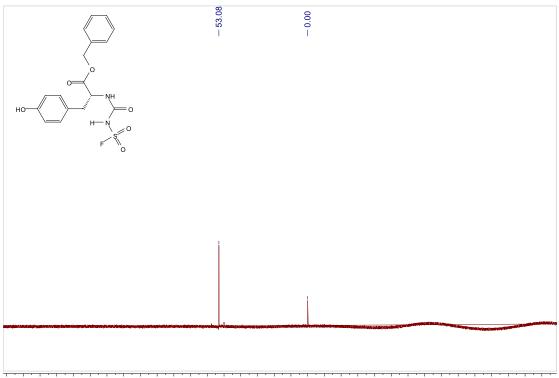

S101

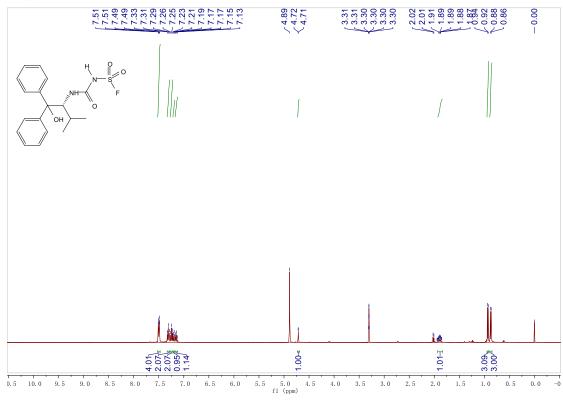
N-4-ethynylaminocarbonyl-fluorsulfurylamid (6-3).

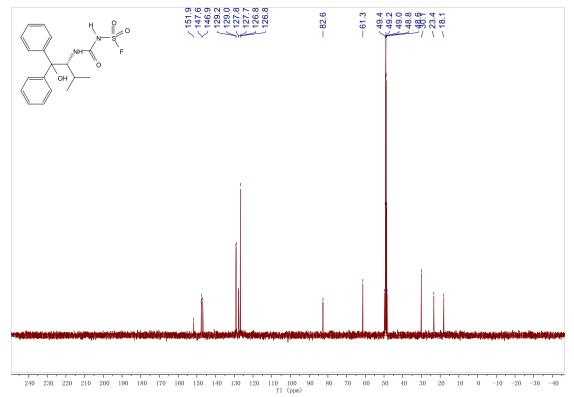

¹³C NMR

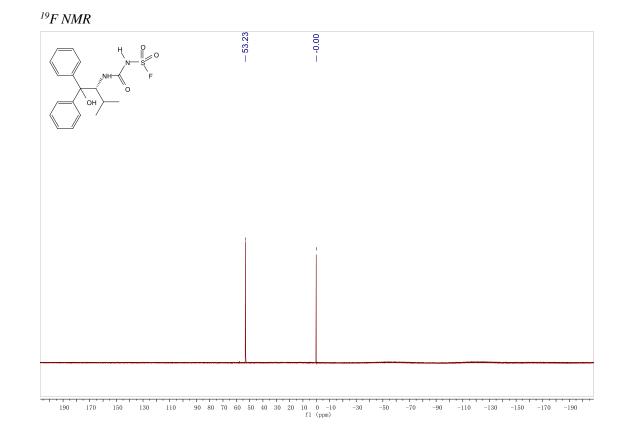


Compound 6-4

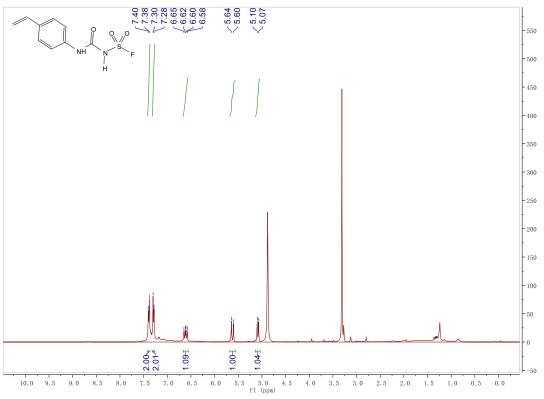


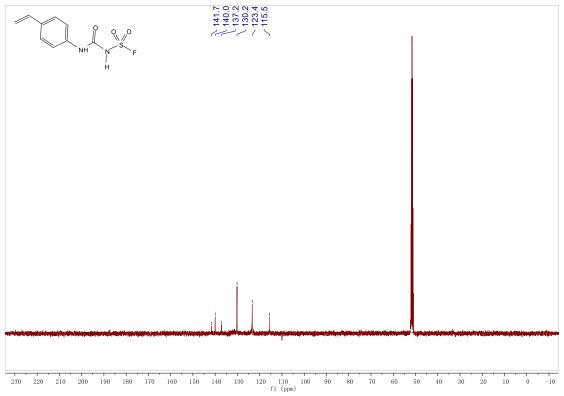



180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 fl (ppm)

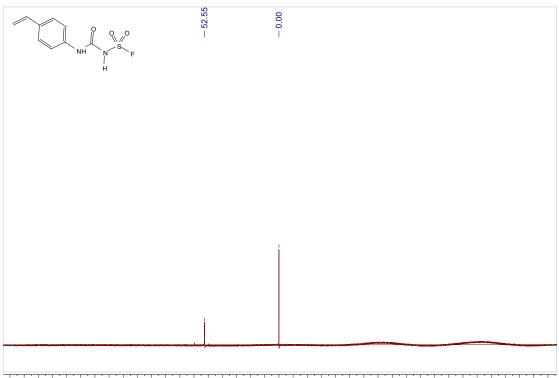

Compound 6-5

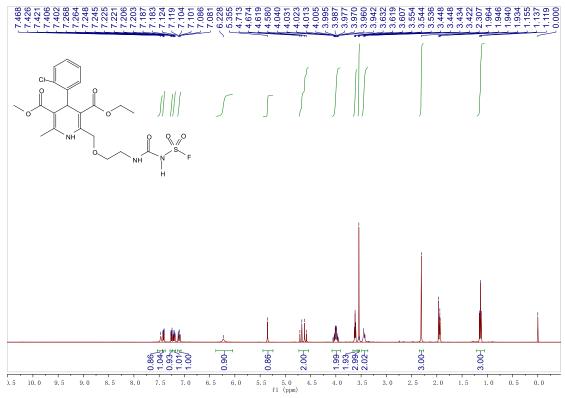
 $^{1}HNMR$

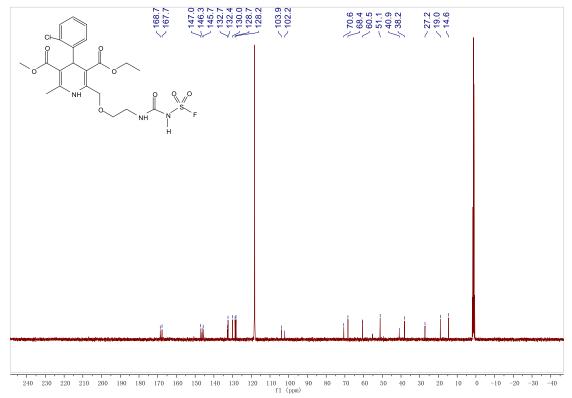

¹³C NMR



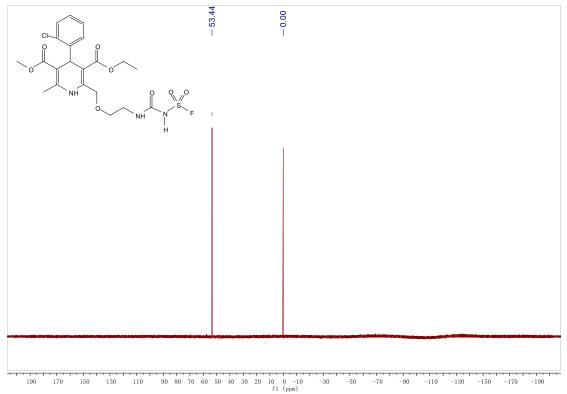
N-4-ethenylaminocarbonyl-fluorsulfurylamid (6-6)

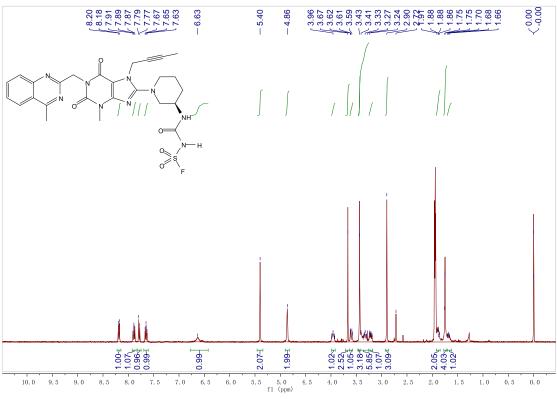

 $^{1}HNMR$

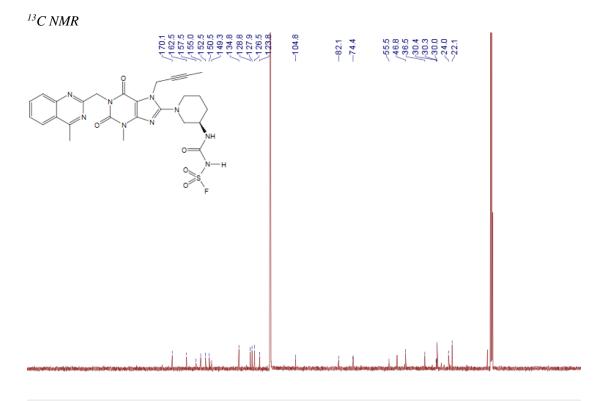


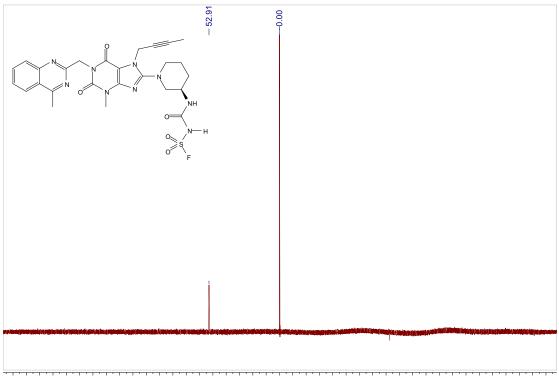


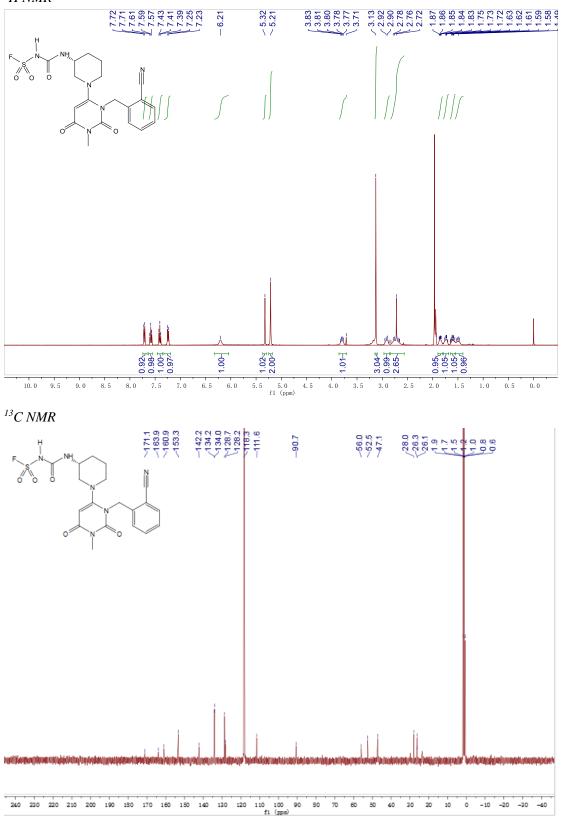
190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 f1 (ppm)


 $^{1}HNMR$

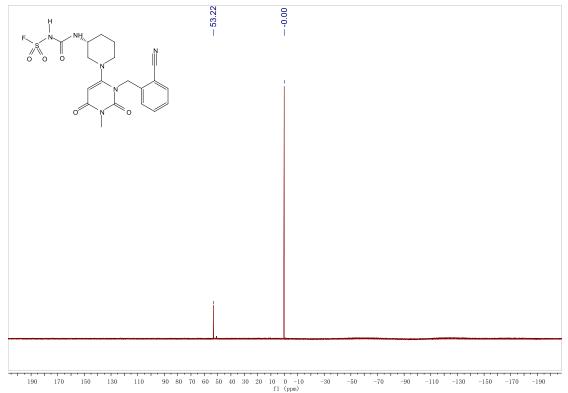

¹³C NMR

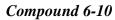


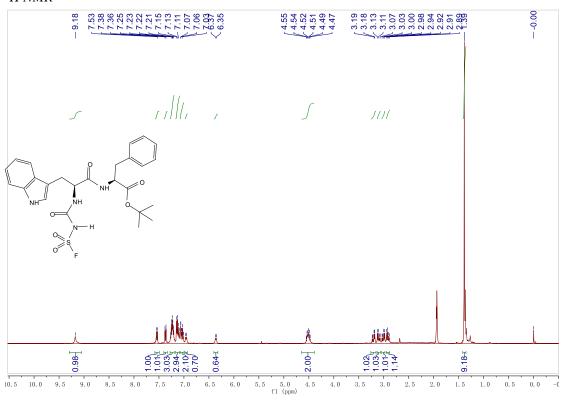


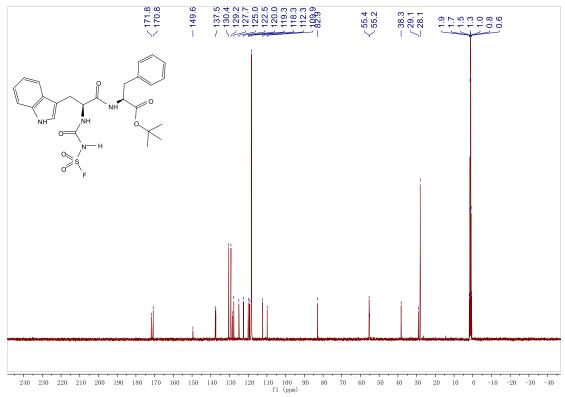


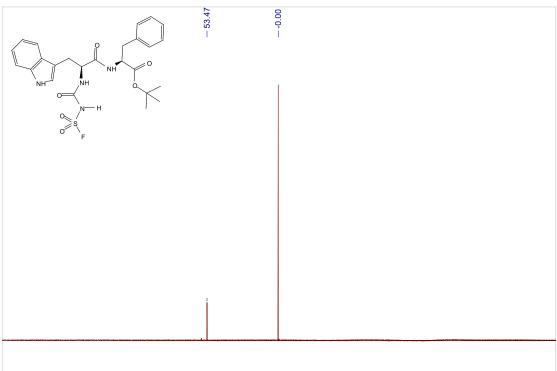
240 230 220 210 200 190 150 170 160 150 140 120 120 110 100 90 50 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

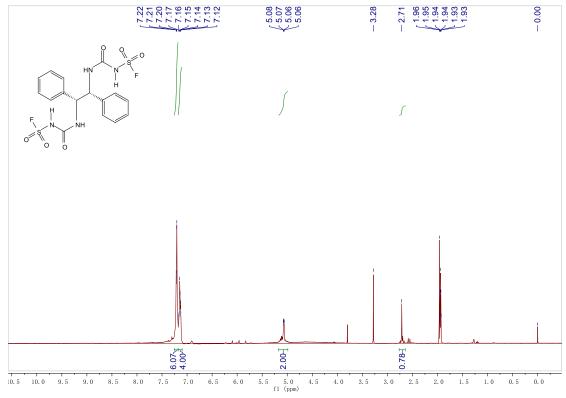

¹⁹F NMR

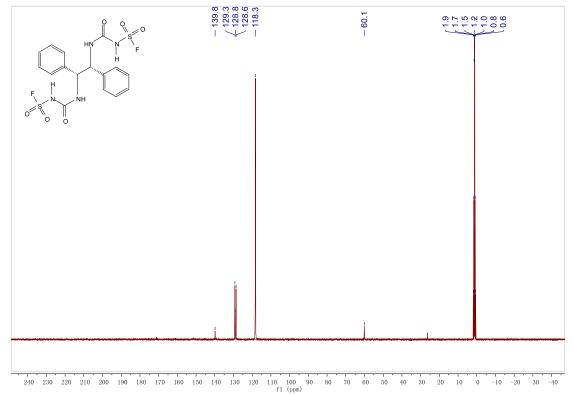



190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

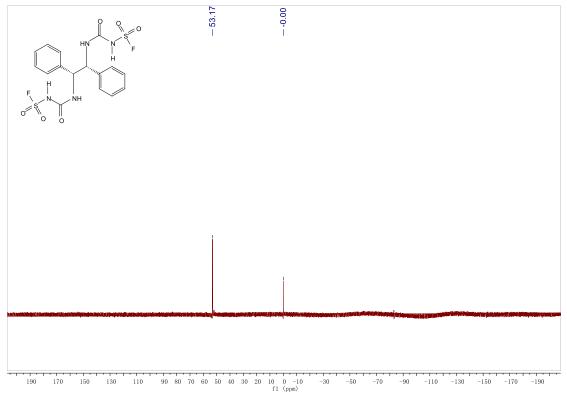


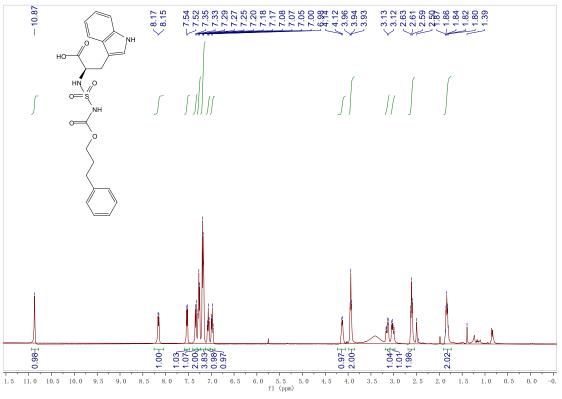


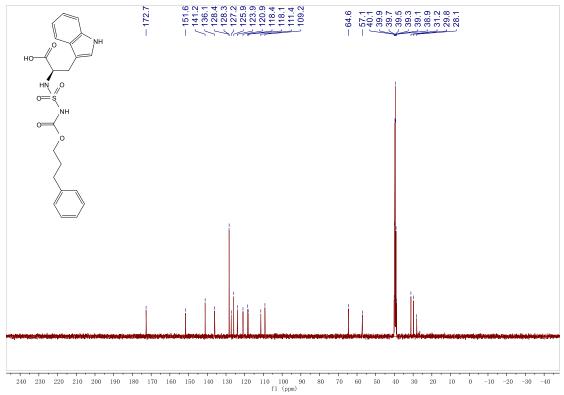


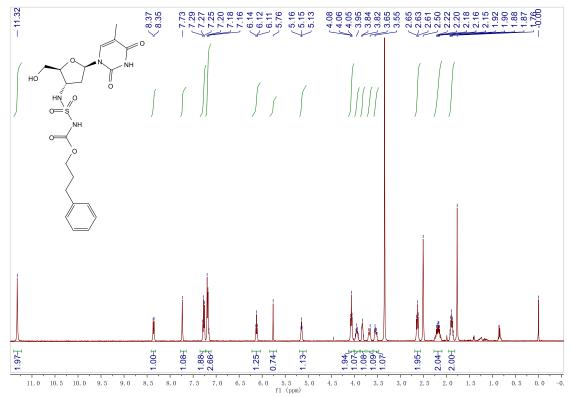


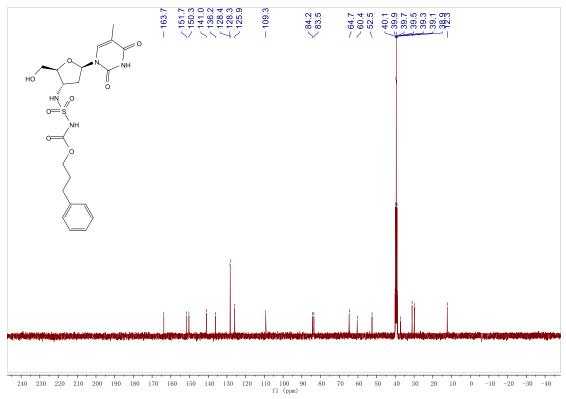
190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

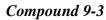

 $^{1}HNMR$

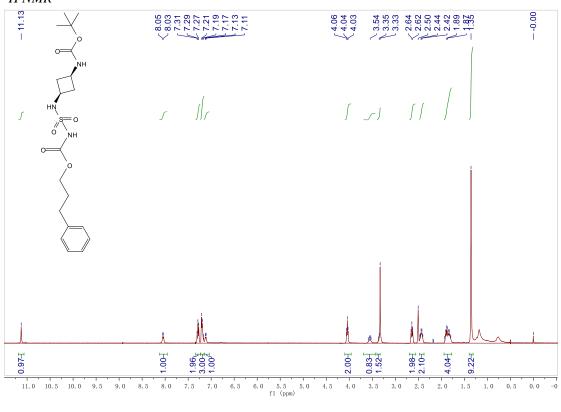

¹³C NMR

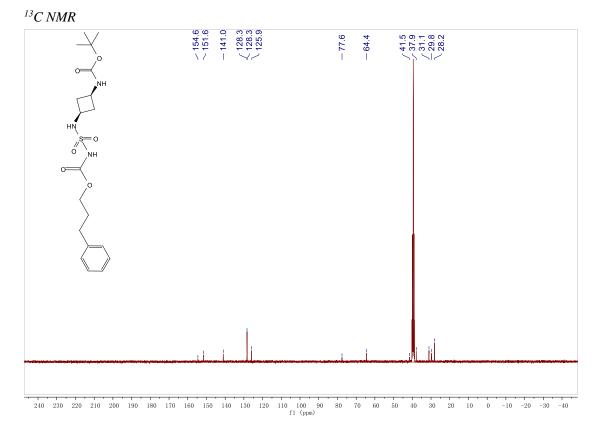


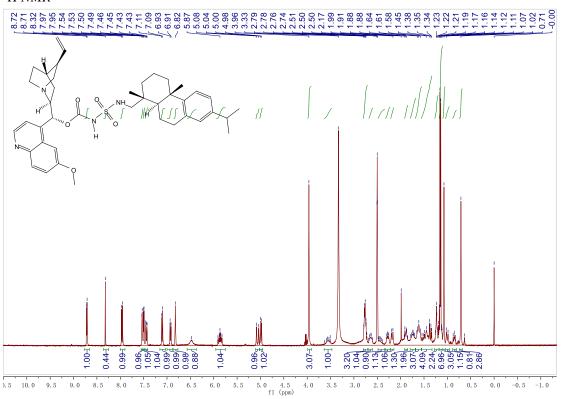


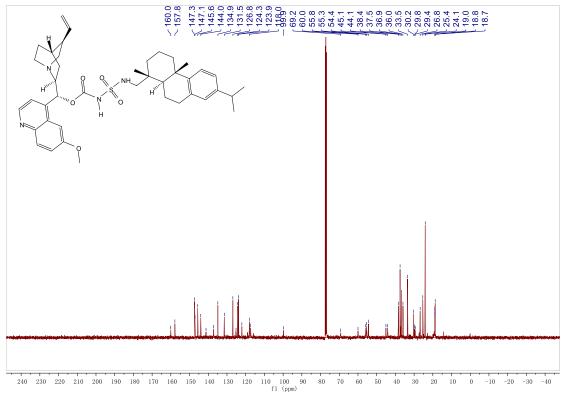


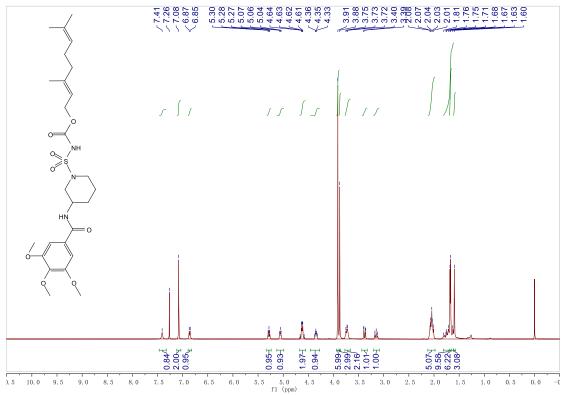


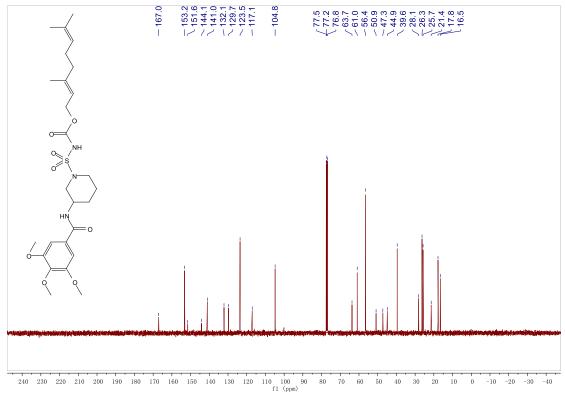


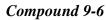


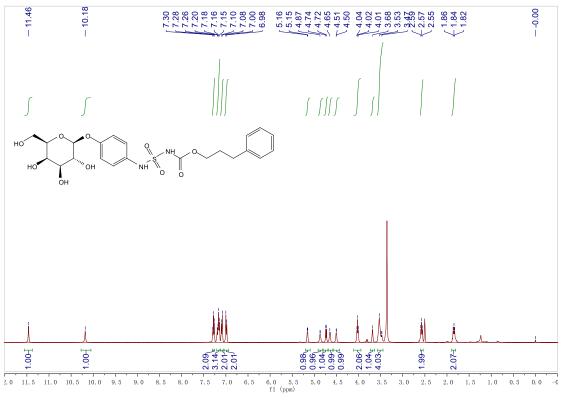


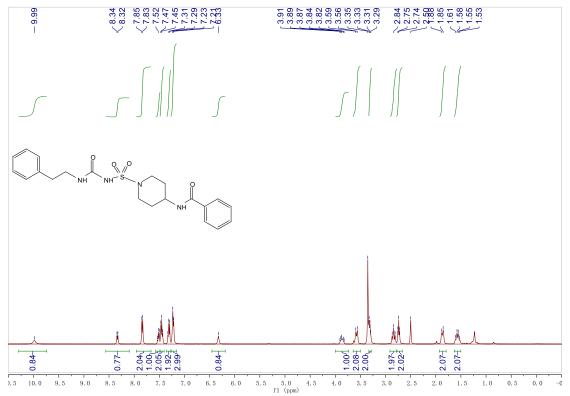


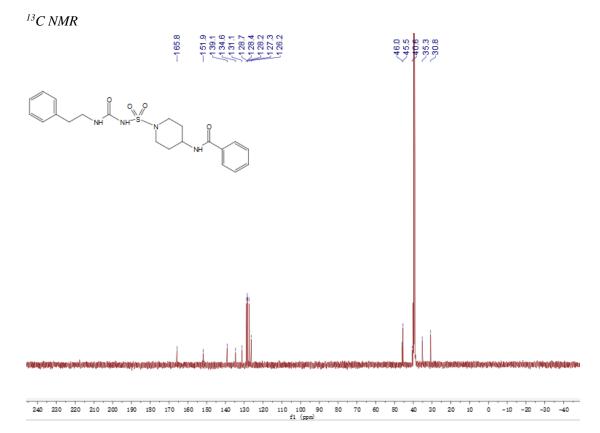




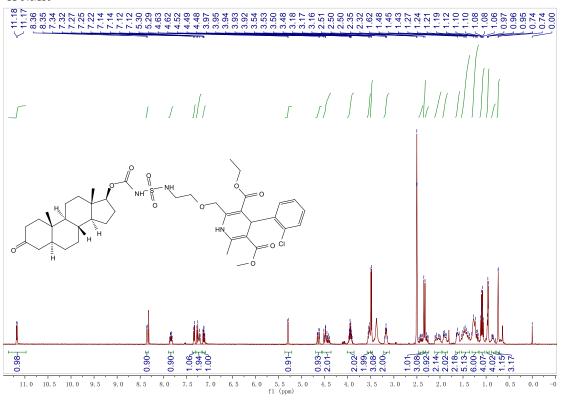


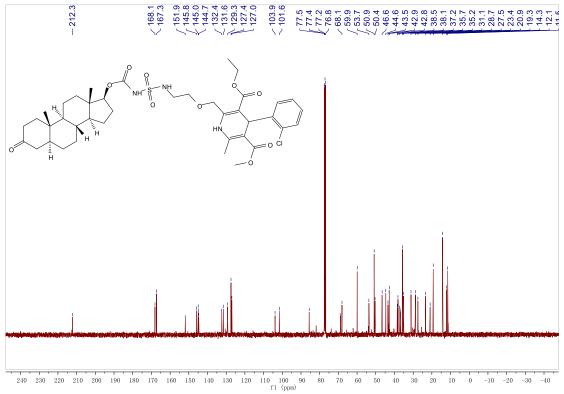




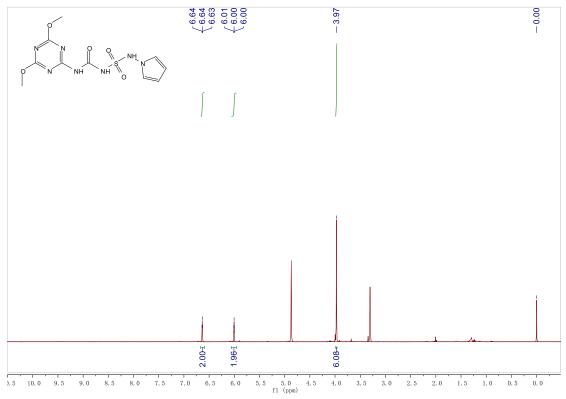


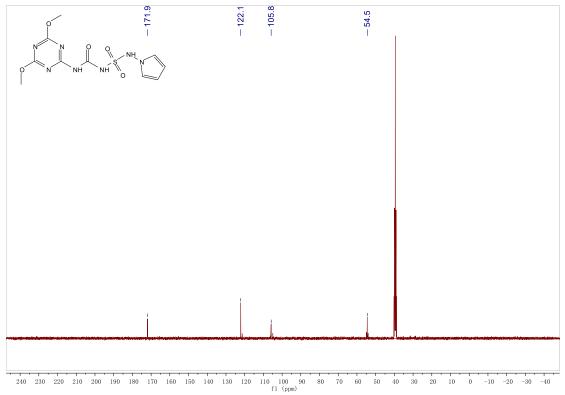
Compound 9-7

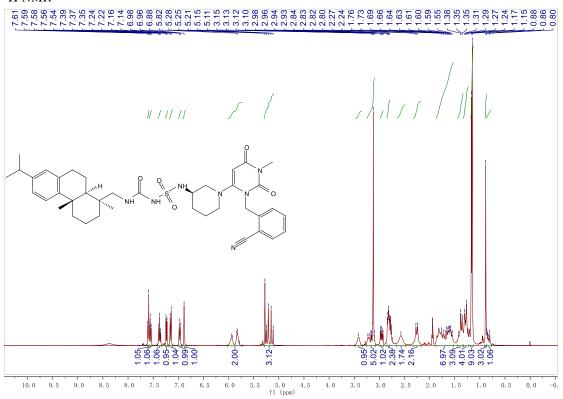

 $^{1}HNMR$



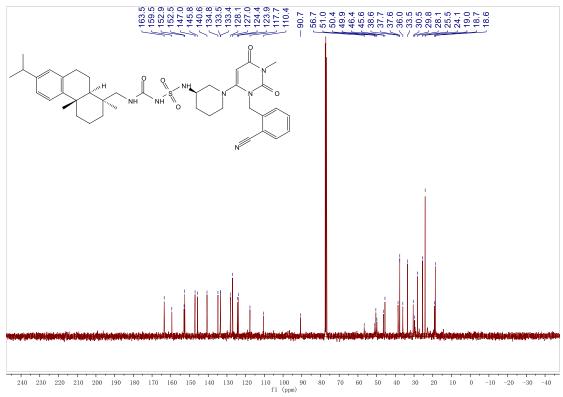
Compound 9-8

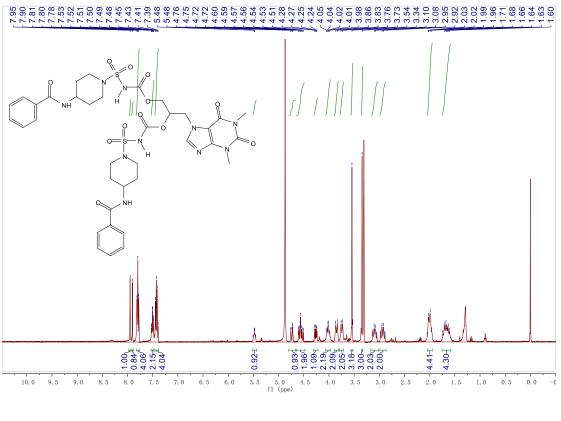


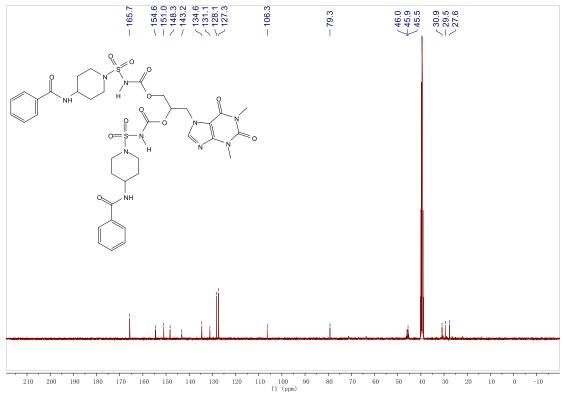


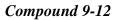


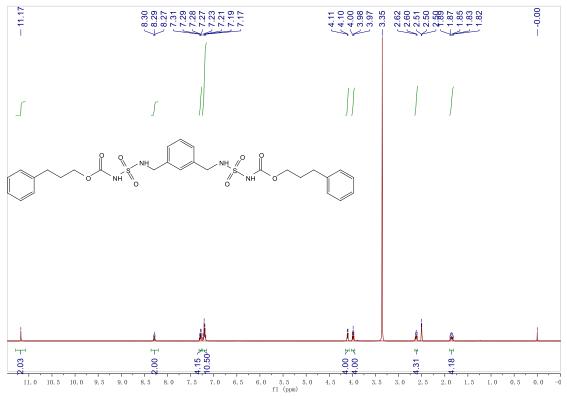
¹H NMR

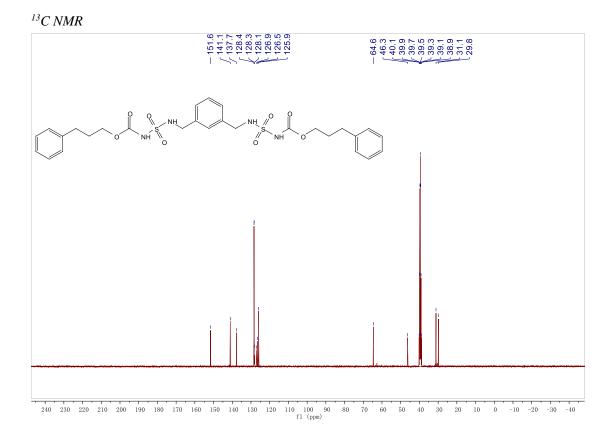












 $^{1}HNMR$

Section 9. References for the Known Compounds

- (1) H. W. Roesky, A. Hoff, Chem. Ber. 1968, 101, 162-173.
- (2) P. Mukherjee, C. P. Woroch, L. Cleary, M. Rusznak, R. W. Franzese, M. R. Reese, J. W. Tucker, J. M. Humphrey, S. M. Etuk, S. C. Kwan, C. W. am Ende, N. D. Ball, *Org. Lett.* 2018, *20*, 3943-3947.
- (3) S. Mahapatra, C. P. Woroch, T. W. Butler, S. N. Carneiro, S. C. Kwan, S. R. Khasnavis, J. Gu, J. K. Dutra, B. C. Vetelino, J. Bellenger, Ch. W. am Ende, N. D. Ball, *Org. Lett.* 2020, 22, 4389-4394.