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Abstract

Background Malignant Pleural Mesothelioma (MPM) is a rare understudied cancer associated
with exposure to asbestos. So far, MPM patients have benefited marginally from the genomics
medicine revolution due to the limited size or breadth of existing molecular studies. In the context
of the MESOMICS project, we have performed the most comprehensive molecular
characterization of MPM to date, with the underlying dataset made of the largest whole genome
sequencing series yet reported, together with transcriptome sequencing and methylation arrays
for 120 MPM patients. Results We first provide comprehensive quality controls for all samples,
of both raw and processed data. Due to the difficulty in collecting specimens from such rare
tumors, a part of the cohort does not include matched normal material. We provide a detailed
analysis of data processing of these tumor-only samples, showing that all somatic alteration calls
match very stringent criteria of precision and recall. Finally, integrating our data with previously
published multi-omic MPM datasets (n=374 in total), we provide an extensive molecular
phenotype map of MPM based on the multi-task theory. The generated map can be interactively
explored and interrogated on the UCSC TumorMap portal
(https://tumormap.ucsc.edu/?p=RCG MESOMICS/MPM Archetypes). Conclusions This new

high quality MPM multi-omics dataset, together with the state-of-art bioinformatics and
interactive visualization tools we provide, will support the development of precision medicine in
MPM that is particularly challenging to implement in rare cancers due to limited molecular

studies.
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Context

Malignant Pleural Mesothelioma (MPM) is a deadly pleural cancer with currently limited
therapeutic opportunities that translate into poor outcomes for patients. The latest WHO
classification [1] recognises three different histopathological types, namely epithelioid (MME,
median overall survival of 14.4 months), biphasic (MMB, 9.5 months), and sarcomatoid (MMS, 5.3
months). Multi-omic sequencing data [2,3] have been key in the identification of driver genes,
developing and refining the characterisation of molecular profiles from initial discrete clusters to
a continuum [4-6], and uncovering rare genotypes such as near-haploid genomes. Such advances
have revealed the rich molecular heterogeneity in MPM, and have fueled the implementation of
drug trials for more tailored MPM treatments. Despite their important findings, these multi-omic
studies have profiled only a reduced representation of the MPM genome (primarily exomes) and
have mainly focused on describing simple mutational processes (i.e. copy number alterations and
point mutations). Therefore, there is still a need for comprehensive multi-omic datasets including
whole MPM genome sequences to allow the study of complex mutational processes—e.g., whole-
genome doubling (WGD), chromothripsis, extrachromosomal DNA (ecDNA)-that have been
described in other cancer types [7-9] but not in MPM. Furthermore, understanding how genomic
events impact tumor phenotypes remains poorly studied in MPM. Finally, given that MPM is a
rare disease, the integration of different multi-omic studies is essential for reaching the statistical

power needed to derive insightful biological conclusions from complex multi-omic datasets.

Data Description

Here we describe the dataset generated by the MESOMICS project that collected more than one
hundred MPM tumors with extensive clinical, epidemiological, and morphological annotations,
and profiled their genome, transcriptome, and epigenome. Notably, MESOMICS prioritized the
sequencing of whole MPM genomes rather than exomes, resulting in the largest set of MPM
genome sequences available to date. In total, we sequenced 120 MPM tumors, among which a vast
majority (105) have the three omic’ data available, and the remaining 15 samples have one or two
omic’ data types (Supplementary Table S2). This dataset has been deposited at the EMBL-EBI
European Genome-phenome Archive (EGA accession No. EGAS00001004812), and has been used
to propose a new morpho-molecular classification of MPM [10]. Here, we provide a
comprehensive description of data quality control, and links to all bioinformatic pipelines used
in the project, including state-of-the-art methodology for mutational calling in tumor-only
specimens. Finally, in order to maximize the reuse potential of our MESOMICS data, we integrate
our cohort with the previous multi-omic studies from Bueno et al. [2] and Hmeljak et al. [3] to
generate the first multi-cohort molecular phenotypic map for MPM based on the multi-task

Pareto optimum theory [11]. This interactive map provides a user-friendly way to explore the
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molecular data and to generate new hypotheses through custom statistical tests, based on the
UCSC TumorMap portal [12]. The integrated and harmonized dataset resulting from these studies
is available on GitHub [13].

Primary tumor specimens were collected from surgically resected MPM. As described in
Mangiante et al. 2021 [10], among them 13 had two tumor specimens collected to study
intratumoral heterogeneity; we report quality controls for all samples including these 13
additional samples, but only the piece with the highest tumor content as estimated by
pathological review was selected for subsequent analyses, except for analyses that specifically
focused on intra-tumor heterogeneity. The samples used in this study belong to the French
MESOBANK. Our pathologist (FGS) classified all tumors following the latest WHO guidance and

DNA, and RNA extraction methods are described in the methods section of our recent study [10].

We provide basic clinical data (age, sex, survival) as well as exposure (asbestos, smoking),
and treatment data (usage and type of chemotherapy, surgery, radiotherapy, and precision
treatment) (see detailed data dictionary in Supplementary Table S2). Comorbidity data were
not available, however we provide where available symptoms reported at diagnosis that are
informative on the state of the patient at diagnosis (pain, pleural effusion, dyspnea,
pneumothorax, coughing). Note that because of the retrospective nature of the samples from the
French MESOBANK, patients were diagnosed (year of diagnosis [1998-2017], median of 2011)
and treated (year of death or end of follow-up [2000-2020], median of 2013) before the results
of recent promising clinical trials (MAPS [14] and Checkmate 743 [15]), and before the
authorization of nivolumab and ipilimumab by the European Medicines Agency in 2022 (note that
despite the MAPS trial, bevacizumab is not a standard first line treatment in France); future
studies will thus probably include more patients who underwent precision treatments and

hopefully report longer survivals [15].

Quality control of omic data

Whole-Genome sequencing (WGS)

Whole-genome sequencing was performed by the Centre National de Recherche en Génomique
Humaine (CNRGH, Institut de Biologie Francois Jacob, CEA, Evry, France) on 130 fresh frozen
MPMs, plus 54 matched-normal tissue or blood samples (matched non-neoplastic tissue was not
available for the other specimens). The [llumina TruSeq DNA PCR-Free Library Preparation Kit
was used for library preparation and the HiSeqX5 platform from Illumina for the sequencing as
described in [10]. The raw WGS reads were scanned by the FastQC software (v.0.11.5;
RRID:SCR_014583; using our nextflow [16] pipeline IARCbioinfo/fastqc-nf [17]) to determine the
reads base quality, adapter content and duplication levels. The software MultiQC (v0.9;
RRID:SCR_014982) was then used to aggregate all the FastQC reports across samples.
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The target read output for matched-normal tissue or blood (hereinafter called “matched-
normal”) and for tumor tissues without matched-normal sample (hereinafter called “tumor-
only”) was 900M reads (~30X genome coverage, Figure 1A). 1800M (~60X genome coverage,
Figure 1A) were expected for tumor tissues with matched-normal samples (two sequencing
lanes, hereinafter called “tumor-matched”). Overall, the median number of reads obtained
approached or exceeded the target read output, with median and standard deviation by sample
type equal to: matched-normal 889450, matched-tumor 1786+163, and tumor-only 853+51
million reads (Figure 1A).

All samples displayed the expected mean quality score (30Q > 85% of bases) across all
base positions of the read (Figure 1B). One exception is the MESO_050_N (a matched-normal
sample) that on average had a good sequence quality score (Figure 1B) but displayed alow mean
quality score for the first nucleotide of the read (24.08 Phred), which FastQC reported as a
warning in the mean quality score module (Figure 1B). In fact, the FastQC report for this sample
indicated that 25.17% of bases were not called at the first nucleotide of the read, suggesting that
the base-calling process struggled in interpreting the DNA bases at this position and put an N
instead. However, the reverse pair-end file of this sample had the expected sequence quality score
over all the read positions (Figure 1B) and we decided then to include this sample in the
subsequent analyses. The adapter content was lower than 1% for all sequenced samples
(maximum 0.87% of total reads). The relative level of duplication found for every sequence per
sample was on average 10.3% (min: 0% and max: 18.2%), this low level of duplication indicates
that the prepared genomic libraries were diverse and likely covered a high proportion of the
human genome.

Paired-end read mapping was performed with our nextflow pipeline
IARCbioinfo/alignment-nf v1.0 [18]. This pipeline includes the software qualimap (v2.2.2b;
RRID:SCR_001209) and MultiQC to generate comprehensive QC statistics reports from the WGS
alignment files. The mean percentage of aligned reads was 98.93+0.81% (Figure 1C). The
matched-normal and tumor-only samples displayed a mean genome coverage higher than 30X
(Figure 1D). The matched-tumor displayed a mean genome coverage of 60X (Figure 1D). Finally,
90% of the reference genome was covered by at least 22, 20, and 43 reads for matched-normal,

tumor-only, and matched-tumor samples, respectively (Figure 1D).

RNA Sequencing data

RNA sequencing was performed on 126 fresh frozen MPM in the Cologne Center for Genomics.
Libraries were prepared using the [llumina® TruSeq® RNA sample preparation Kit, the [llumina
TruSeq PE Cluster Kit v3, and an Illumina TruSeq SBS Kit v3-HS subsequent sequencing was

carried out in an [llumina HiSeq 2000 sequencer, as described in [10].
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The resulting raw reads files were processed using our nextflow RNA-seq processing
pipeline IARCbioinfo/RNAseq-nf v2.3 [19], as described previously [10,20], that performs reads
trimming (Trim Galore v0.6.5; RRID:SCR_011847), and mapping to reference genome GRCh38
(gencode version 33) with STAR (v2.7.3a; RRID:SCR_004463) [21]. We also improve the
alignments as described previously by performing assembly based realignment (nextflow
pipeline IARCbioinfo/abra-nf v3.0 [22]), using software ABRAZ2 [23] (RRID:SCR_003277) and
base quality score recalibration (nextflow pipeline IARCbioinfo/BQSR-nf v1.1 [24]), using GATK
v4.1.7.0 [25] (RRID:SCR_001876). Gene-level quantification was performed using software
StringTie (v2.1.2; RRID:SCR_016323) (nextflow pipeline IARCbioinfo/RNAseq-transcript-nf v2.2
[26]). Quality control of the samples was performed using FastQC (v0.11.9; RRID:SCR_014583) to
determine the quality of the raw reads, followed by RSeQC (v3.0.1; RRID:SCR_005275) [27] that
was used to determine the alignment quality and distribution of reads over the reference genome
(number of mapped reads, proportion of uniquely mapped reads). Finally, the software MultiQC
(v0.9; RRID:SCR_014982) [28] was used to aggregate all QC results across samples.

A total of 126 samples were sequenced using 2x75bp or 2x100bp pair-end reads (Figure
2A). On average, a total of 64+7.4 paired-end million reads were generated with a per sequence
mean quality score higher than 35 (Figure 2A). Given the high coverage and the lower length
expected for a human transcriptome, the percentage of duplicated reads was high, reaching
69+5.5%, but the proportion of overrepresented sequences was low (<2%) indicating that all
RNA sequenced libraries were diverse. The report of STAR alignments showed that on average
96.8+1.2% of the reads mapped to the reference genome with 91+2.3% mapping to unique loci
(Figure 2B). The 3.15%£1.26% of unmapped reads correspond mainly to reads with a short-
alignment length (3.05%£1.24%) that might result from the trimming process (trim of adaptor or
low-quality bases, Figure 2B). Finally, as expected most of the MESOMICS reads mapped to mRNA
structures including CDS and UTR regions (86.2+3.1%, Figure 2C).

DNA methylation data

DNA methylation analyses were performed in-house for 135 MPM samples from 122 patients,
and an additional two technical replicates and three adjacent normal tissues, with Infinium EPIC
DNA methylation beadchip platform ([llumina) which interrogates over 850,000 CpG sites, as
described in [10]. Resulting raw IDAT files were processed using our in-house workflow [29]
(commit SHA bcfe876) in the R statistical programing environment using R packages minfi
(v1.34.0; RRID:SCR_012830) and ENmix (v1.25.1), and consisted of the following four steps: pre-
processing quality control, functional normalization, probe filtering, and finally beta and M-value

computation.
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During quality control checks on the raw data, one poor quality sample was identified
when comparing per sample log2 methylated and unmethylated chip-wise median signal
intensity (function getQC, minfi, Figure 3A) which was subsequently removed, and all samples
displayed an overall p-detection value < 0.01 (function detectionP, minfi). Functional
normalization, probe filtering, and beta and M-value computation were performed as described

n [10]. The resulting dataset consisted of beta and M-values for 139 samples across 781,245
probes, with the M-value table containing nine -co values which were replaced by the next-lowest
M-value for statistical analysis. The effect of normalization and probe-removal on DNA
methylation profile is shown as beta density plots (pre-normalization in Figure 3B and post-
normalization and probe removal in Figure 3C). Principal components analysis (PCA) was
performed to detect batch effects, and to examine the effect of normalization, this was performed
on a reduced number of samples (n=122, one tumor per patient, excluding technical replicates
and normal tissues). Two datasets were used: (i) pre-normalized, unfiltered M-values (obtained
from the GenomicRatioSet, function getM, minfi), and (ii) normalized and filtered M-values.
Dataset (i) contained 2,478 CpGs with at least one NA value which were omitted before PCA, and
21,969 -oo values were replaced with the next lowest M-value in the dataset, leaving an M-value
matrix of 863,381 probes.

R package ade4 (v1.7-15) was used to calculate the first 10 principal components
(function dudi.pca) across each dataset individually. We checked the association of the first 10
PCs with technical (chip, position on the chip, batch, sample well, sample provider,
macrodissection), clinical (sex, age class, and smoking status), morphological (histopathological
type, subtype, tumor percentage, necrosis and vessel level), and epidemiological variables
(asbestos exposure, exposure probability, exposure frequency, and exposure intensity) using PC
regression analysis, fitting separate linear models to each principal component with each of the
18 covariables of interest and adjusted the p-values for multiple testing (Figures 3D and 3E). The
first ten principal components in the normalized, filtered methylation data were significantly
associated with type (PCs 1, 2, and 5), and sentrix chip position (PC 5, PC 8). The contribution of
variance in the data from technical features before normalization was more pronounced, with
sentrix chip and plate also being significant (PC 7), indicating functional normalization reduced
technical batch effects on DNA methylation profile while retaining biological effects such as
histological type. Before normalization, sex was significantly associated with PCs 2, 3, and 5, but
not associated with any PCs in the normalized, filtered dataset. As probes on the sex
chromosomes were removed after normalization, it was expected that this would reduce the

effect of sex on variance in the dataset.

WGS variant calling in tumor-only samples
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Copy number variants

Somatic Copy Number Alterations (SCNA) were called using our nextflow workflow
IARCbioinfo/purple-nf v1.0 [30] that implements the PURPLE [31,32] (RRID:SCR_022999)
software for matched and tumor-only WGS samples. To assess the quality of tumor-only PURPLE
calls, atotal of 57 matched-pairs were used as an evaluation set. Briefly, we ran PURPLE twice
for each matched sample (Figure 4A): first using as input the matched-pairs, and second using
only the tumor WGS as input. Subsequently we performed a direct comparison of the PURPLE
tumor-only calls with their corresponding matched-pair calls for the following features: tumor
purity, ploidy, number of segments, percentage of diploid, amplified, and deleted genome regions,
as well as major and minor copy number states at the gene-level (Figure 4).

This benchmarking revealed a high concordance across all the evaluated metrics between
tumor-only and matched PURPLE calls. Indeed, the agreement for purity (Figure 4B, R = 0.988),
ploidy (Figure 4C, R=1), number of copy number segments per tumor (Figure 4D, R = 0.981),
and percentage of genome changed (diploid, amplified, and deleted) exceeded a 0.98 correlation
(Figure 4 E-F). Moreover, a high concordance was also observed at the gene level with major and
minor copy number alleles reaching R > 0.94 (Figure 4 G-H). Finally, the only detected issue of
tumor-only calls was observed near telomeric and centromeric regions, where artefactual focal
peaks were detected (Supplementary Figure 1). These problematic regions were manually
curated and the copy number segments overlapping such regions were removed from the tumor-
only calls (see list of excluded segments in Table S1). In addition, because PURPLE does not round
copy number values to 0, but rather penalizes negative values in the model fit, for all samples
(both matched and tumor-only), following similar discussions with the PURPLE developers on
the handling of negative values [33], we rounded slightly negative copy number estimates (in ]-
0.5,0[) to 0 and excluded largely negative copy number estimates (<-0.5) from subsequent
analyses, because they suggest high noise in the read depth and are thus unreliable calls. Note
that in total (including segments with largely negative values), we excluded only 0.26% of the

total segment length.

Calling somatic point mutations and structural variants.

Unlike copy number variants whereby the software (PURPLE) directly generated highly accurate
results in tumor-only mode without any post-processing, for point mutations and structural
variants (SVs) direct outputs from calling pipelines and typical filters (i.e. removing variants
matching germline databases) did not remove at high accuracy the germline variants present in
tumor-only MPM WGS. Therefore, we trained and evaluated the performance of a supervised
machine learning model based on a random forest (RF [34]) for distinguishing germline from

somatic variants in tumor-only WGS (Figure 5A, Supplementary Note 1).
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Point mutations were called using Mutect2 (RRID:SCR_000559) using our nextflow
pipeline IARCbioinfo/mutect-nf v2.2b [35]. The matched samples were used as input for training
and evaluating the performance of the random forest (RF) model (Figure 5A) for classifying
germline and somatic mutations. The random forest model for point mutations includes a total of
20 features divided into three main classes, namely: associated with external databases (gnomAD
r3.0[36] RRID:SCR_014964 and COSMIC v90 [36] RRID:SCR_002260), genomic
location/impact/signatures [37], and features obtained directly from the point mutation variant
caller - Mutect2 (Figure 5B, Supplementary Note 1). The matching of variants against reference
databases was performed using bcftools (v1.10.2, annotate function RRID:SCR_005227)[38]. For
training the RF model a total of 46 tumors with matched normal MPM whole-genome sequences
called with both the tumor-only and matched modes of Mutect2 [23] (RRID:SCR_000559) were
used (Figure 5A). The matched somatic calls (ground-truth) were used to annotate the variants
of the tumor-only WGS into germline and somatic classes.

The training and evaluation of models were performed using 75% and the remaining 25%
of the dataset, respectively. A grid search revealed that the optimum parameters were mtry==8,
ntree=1000, and nodesize=5, reaching a model accuracy of 0.9276 in the testing set. A random
forest model for SNVs (rfvs01) was trained with the optimum parameters using a total of 326,388
(80%) variants (1:1 ratio). Analysis of the feature importance revealed that the allele frequency
(AF) is the most discriminative feature included in the model (Figure 5B). For indels, a random
forest model (rfvi01) was built with the same optimal parameters using a total of 337,442
variants (1:1 ratio, including 305,988 SNVs and 31,454 indels) and removing the SNVs feature.
The performance of the optimal RF-models for SNVs and indels reached an accuracy of 0.926 and
0.924, respectively (Figure 5C). The trained RF models (rfvs01 and rfvi01) were used to classify
a total of 1,454,942 variants (SNVs=1,317,200 and indels=137,742) of which 217,436 variants
(including SNVs and indels) were classified as somatic.

Large genomic rearrangements were detected using a consensus variant calling approach
including SvABA (v1.1.0) [39] (RRID:SCR_022998), Manta (v1.6.0) [40] (RRID:SCR_022997), and
Delly (v0.8.3, RRID:SCR_004603) [41] followed by subsequent integration with SURVIVOR
(v1.0.7) [42] (RRID:SCR_022995). Our nextflow pipeline implementing the consensus variant
calling approach for matched WGS is available in our IARCbioinfo/sv_somatic_cns Github
repository [43].

Like for point mutations, we implemented custom random forest models to distinguish at
high accuracy somatic from germline SVs in tumor-only MPM samples (Figure 5A,
Supplementary Note 1). The RF models were composed of a total of 19 features based on
external databases (gnomAD [36] RRID:SCR_014964 and PCAWG [44]), a custom panel of
normal, genomic regions (Cosmic v90 RRID:SCR_002260, Gencode v33 RRID:SCR_014966 and
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PhastCons[45] RRID:SCR_003204), and SV features obtained directly from each SV caller (Figure
5D). The training (75%) and evaluation (25%) of the random forest model for each SV caller were
performed using a total of 12,454, 16,720, and 12,264 SVs at 1:1 somatic: germline proportions
for Delly [39] (RRID:SCR_004603), Manta [40], and SVABA [41], respectively. All three SV random
forest models were trained using the default random forest parameters (mtry=4, ntree=400 and
nodesize=1). The precision, recall, and accuracy achieved by each model were 0.905+0.009,
0.87+0.016, and 0.889+0.010, respectively (Figure 5E). The most important features of the
models were the number of PON SVs around both breakpoints, SV alternative allele frequency, SV
read depth, and SV length (Figure 5D). We performed additional comparisons by SV type, SV
length, and number of SVs as a function of the purity of samples, WGS type (matched tumor-
normal, tumor-only) and MPM subtype and did not observe any significant difference between
SVs called in the tumor-only or matched WGS MESOMICS series (Figure 5F and 5G). The SV calls
for the MESOMICS tumor-only samples include a total of n=8,229 SVs, which combined with the
SVs called in the matched series gave a total of n=12,914 (Figure 5H).

Our results demonstrate that our methodology is highly accurate and robust to call point
mutations and structural variants in tumor-only WGS datasets for which a series of matched
tumor-normal samples are available. The source code and the random forest models
implemented for MPM are available in our Github repositories IARCbioinfo/RF-mut-f [46] and

IARCbioinfo/ssvht [47] for point mutations and structural variants, respectively.

Data Validation

Muti-omic sample matching

The software NGSCheckMate [48] (RRID:SCR_022994) was used to check the match between
sequencing modalities of a given MESOMICS patient. NGSCheckMate was run using our nextflow
implementation IARCbioinfo/NGSCheckMate-nf v1.1a [49]. NGSCheckMate, using WGS and RNA-
seq, confirmed that the majority of MESOMICS samples were correctly paired (Figure 64, black
segments). However, NGSCheckMate discovered that the WGS of MESO_094_T and MESO_096_T
matched (Figure 6A, red segments). Further examination of these samples confirmed that both
WGS come from the same patient but were annotated differently during sample collection. In
addition, the RNA-seq replicate named MESO_054_TR1 matched with the group of samples
coming from patient MESO_051. After sequencing a second RNA-seq aliquot from MESO_054_T,
named MESO_054_TR2, and re-performing the NGSCheckMate analysis, we confirmed a miss-
annotation of these RNA-seq samples and proceeded to rename them as MESO_051_TR1 and
MESO_051_TR2, respectively. After the aforementioned corrections, all the sequencing modalities

at the sample and patient level were correctly paired for the complete MESOMICS cohort.

Sex validation
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We registered the sex (M for male or F for female) data for all the 124 patients of the MESOMICS
cohort. We validated the sex annotation based on the concordance of whole-genome,
transcriptome, and methylome data (Figure 6B-D). First, the concordance between sex reported
in the clinical data and WGS data was assessed by computing the total coverage on X and Y
chromosomes (Figure 6B). Interestingly, some tumors from male individuals displayed an
intermediate coverage on chromosome Y between other male and female cases, compatible with
the large copy losses identified in our study like for example the tumor from MESO_071. Second,
the concordance between sex reported in the clinical data and sex chromosome gene expression
patterns (transcriptome) was performed by comparing the sum of variance-stabilized read
counts (vst function from R package DESeq2, v.1.14.1 RRID:SCR_015687) of each sample on the
X and Y chromosomes (Figure 6C). Third, the concordance between the sex reported in the
clinical data and the methylation data was assessed using a predictor based on the median total
intensity on sex-chromosomes, with a cut-off of -2 log2 estimated copy number (function getSex
from minfi, v.1.34.0 RRID:SCR_012830, Figure 6D). The only sex discordance was observed in
MESO_071 tumor sample due to somatic copy number losses in the Y chromosome, but the whole
genome sequencing from matched blood confirmed that this patient was male (Figure 6B). In
summary, the sex data of the MESOMICS cohort was validated using a multi-omic approach that

confirmed the sex of all the MESOMICS samples.
Purity

Tumor purity has been estimated from three independent data sources: from genomic data using
PURPLE, from transcriptomic data using quanTIseq [50] (RRID:SCR_022993), and through
pathological review. We performed pairwise comparisons between these three estimates and
found significant correlations between pathological and each molecular estimate (g-value =
8.40x103 and 2.49x10* with transcriptomic and genomic purity, respectively). The
transcriptomic and genomic estimates are significantly correlated as well (g-value = 4.05x10-4,
Supplementary Figure 2). Of note, four samples (MESO_050_T, MESO_058_T2, MESO_059_T1,
and MESO_076_T) have been excluded from the analyses of genomic estimates of purity because
no somatic CNVs were identified and thus purity could not be estimated by PURPLE. The four
samples all had low pathological estimates ([0.1-0.4]) and moderate transcriptomic estimates of

purity ([0.53-0.69]).
An integrative and interactive MPM phenotypic map

Task specialization analysis using Pareto
In order to integrate the MESOMICS multi-omic data and investigate the association between the

detected genomic events in this new large genomic cohort and the observed MPM phenotypes,
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we firstly performed a multi-omic summary of MPM using MOFA [51] (RRID:SCR_022992) and
secondly performed a task specialization analysis to identify MPMs with natural selection for
specific cancer tasks (see [10]). We performed task specialization analyses using the well-
established Pareto optimum theory (ParetoTl method) [11]. The Pareto front model has been
fitted to different sets of samples using the ParetoTI R package v0.1.13 [52] (RRID:SCR_022991)
on MOFA latent factors (LFs), restricted to LF1, LF2, LF3, and LF4 due to their association with
survival and extreme phenotypes (see [10]). In brief, according to the theory a molecular map
would take a particular shape (polyhedra) if a trade-off exists between several cancer tasks
performed by the tumors. Using MOFA axes, we found a triangle (polyhedra with three vertices)
corresponding to k = 3 archetypes in the LF2-LF3 space. According to the Pareto optimum theory,
this pattern results from natural selection for cancer tasks, with specialized tumors close to the
vertices of the triangle (representing archetypes), and generalists in the center. We have also
replicated the same analyses (MOFA and ParetoTI) on the previously published multi-omic
studies from Bueno et al. [2] (n=181 fresh-frozen surgically resected primary tissue) and Hmeljak
et al. [3] (n=73 fresh-frozen surgically-resected or biopsy tissue). R scripts to prepare matrices
for each omic layer, as well as scripts to run MOFA and the Pareto analysis for the three cohorts

are available in the Github repository dedicated for this data note paper [53].

Biological interpretation of the MPM phenotypic map

We inferred each archetype’s phenotype by performing integrative gene set enrichment analysis
on the expression data and identified the following cancer tasks and tumor phenotypes: Cell
division, Tumor-immune-interaction, and Acinar phenotype (see [10]). Tumors specialized in the
Cell division task displayed upregulation of pathways within the “cell division” task as reported
by Hausser et al. [54] in multiple tumor types. This phenotype was enriched for non-epithelioid
tumors and presented higher levels of necrosis, higher grade, high expression of hypoxia
response pathways, and greater percentage of infiltrating neutrophils that are innate immune
response cells. Cell division specialization was supported by the high expression levels of the
proliferation marker MKI67, and increased genomic instability. Tumors specialized in the Tumor-
immune-interaction task carried upregulated immune-related pathways, high expression of
immune checkpoint genes, and high immune infiltration with an enrichment for adaptive-
response cells: lymphocytes B, T-CD8+, and T-reg. The last extreme phenotype was characterized
by samples with Acinar morphology, presenting a very structured tissue organization with
epithelial cells tightly linked into tubular structures, and correlated with the presence of
monocytes and NK cells (innate immune response cells). This phenotype presented the lowest
epithelial-mesenchymal transition (EMT) score [55], with overexpression of epithelial markers

such as cell-adhesion molecules, corroborating the importance of tissue organization in this
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phenotype, and also low levels of MKI67 expression, indicating slow growth. Altogether these data
provide a biological understanding for the molecular and phenotypic heterogeneity characteristic

of MPM tumors.

Reuse potential

The MESOMICS project represents the most comprehensive molecular characterization of MPM
to date, made possible by inclusion of the largest WGS dataset yet reported, and by the depth of
the analyses undertaken. Multi-omics integration and biological interpretation through the lense
of Pareto theory has allowed us to uncover three specialized MPM tumor profiles [10]. In order
to replicate these findings while minimizing batch effects associated with bioinformatics data
processing, we have accessed and reprocessed the raw data from previously published MPM
multi-omics studies [2,3] using the same analytical procedures. A by-product of this laborious
work is the creation of the largest (n=374 samples in total) existing harmonized dataset of MPM
multi-omics data.

In order to maximize the reuse potential of this dataset, we have also harmonized the
available clinical, epidemiological and morphological data from these three cohorts. In addition
to providing the raw data, the full list of genomic variants and the entire matrices of expression
and methylation levels, we provide a curated and harmonized list of molecular features (e.g.
immune cell composition, measures of genomic instability, presence of whole genome
duplication, copy number in recurrently altered regions, driver genes mutational status,
expression level of some relevant genes etc.) across all samples (Supplementary Table S2).

This MPM phenotypic map has been shared on the TumorMap web portal [12], offering
an interactive visualization of this data in the tumor phenotypes space (Cell division, Tumor-
immune-interaction, and Acinar phenotype), including all the harmonized clinical,
morphological, epidemiological, and molecular data attributes mentioned above. The TumorMap
interface provides an interactive way to explore and navigate through the map, where each
sample is represented by a dot localized according to its position in the phenotype space (Figure
7). The attributes can be used to change colors and filter samples, perform statistical tests, and
new attributes can be derived from pre-existing ones using set operations. This flexible and user-
friendly interface will enable new hypotheses to be tested without computational expertise, and

expands the reuse potential of the dataset [56].

Conclusion

We demonstrated that we provide a high-quality multi-omic dataset of malignant pleural
mesothelioma, including the largest whole-genome sequencing dataset of malignant pleural
mesothelioma to date, consisting of both raw and processed data, and important molecular

phenotypes. By homogenizing the clinical, epidemiological, morphological and molecular data of
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our new series with the two previously published MPM multi-omics data series, we have created
an unprecedented dataset for this rare cancer in terms of both size and detail. We provide all the
resources to reproduce our analyses, as well as a user-friendly interactive visualization tool,
which will contribute to advancing biological knowledge of this deadly disease. As most patients
with MPM will survive to 2nd or 3rd line systemic therapy, future studies will be needed to
describe the molecular landscape of MPM at these time points to develop effective precision

medicine strategies.
Availability of source code and requirements

Project name: MESOMICS data and phenotypic map

Project home page: https://github.com/IARCbioinfo/MESOMICS data

Operating system(s): Platform independent
Programming language: R

Other requirements: R packages data.table, openxisx, DESeq2, rtracklayer, tibble,
llluminaHumanMethylationEPICanno.ilm10b4.hg19, walaj/roverlaps, reticulate, MOFAZ, ParetoTI.

License: GPL-3.0 license
Availability of Supporting Data and Materials

The data used in this manuscript are available in the European Genome-phenome Archive (EGA),
which is hosted at the EBI and the Centre for Genomic Regulation (CRG), under the accession
number EGAS00001004812; download requires approval from the data access committee
EGAC00001001811 (email Dr Matthieu Foll at follm@iarc.who.int), and then installing the EGA
download python client and its dependencies (python3 and pip3; see instructions [57] and a
video tutorial [58]). Other data further supporting this work are openly available in the
GigaScience respository, GigaDB [59].
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Figure legends

Figure 1. Quality control of Whole-Genome Sequencing (WGS) data. A) Number of reads per WGS
type. B) Mean sequence quality score as a function of the position in the read in base pairs. Green
lines correspond to files that passed the most stringent QC filters of software FastQC; orange lines
correspond to files that passed a less stringent filter; and red to files that did not pass the filters.
C) Percentage of aligned reads to the reference human genome. D) Cumulative genome fraction

computed directly from the BAM files.

Figure 2. Quality control of RNA Sequencing (RNA-seq) data. A) Distribution of sequence quality
scores in Phred scale for 2x75bp and 2x100bp read pairs. B) STAR alignment scores. C)

Distribution of reads mapped to different genomic regions.

Figure 3. Quality control of EPIC array sequencing data. A) Signal intensity plot. Log2 methylated
and unmethylated median signal intensity plot of 140 samples. One sample (coloured red) fell
below the cut-off of 10.5 and was subsequently removed from analysis. B) Pre-normalisation beta
density plot. Beta density plot of 140 samples across 865,859 probes, coloured by
tumour/normal type, prior to functional normalisation. C) Post-normalisation and filtering beta
density plot. Beta density plot of 139 samples across 781,245 probes, coloured by
tumour/normal type, following functional normalisation and removal of cross-reactive, sex-
chromosome, SNP, and failed (p-detection > 0.01) probes. D) Association of technical and clinical
variables with pre-normalisation principal components. Association of technical and clinical
variables with principal components one to ten, for 122 samples. Principal components
calculated from M-values of 863,381 pre-normalised probes. E) Association of technical and
clinical variables with post-normalisation principal components. Principal components
calculated from M-values of 781,245 probes following functional normalization and probe

removal.

Figure 4. Performance of somatic copy number variant calling from tumor-only samples. A)
Schematic of the benchmarking procedure. Comparison of Tumor/Normal and Tumor-only
calling for B) Purity, C) Ploidy, D) Number of copy number segments, E) Diploid proportion, F)

Percentage of deleted genome, G) Major allele copy number and H) Minor allele copy number.

Figure 5. Performance of somatic point mutation and structural variant calling from tumor-only
samples. A) Schematic of the benchmarking procedure. B) Random forest model features and
their ranking for predicting somatic SNV and Indels. C) Performance metrics (precision, recall,
accuracy) for classifying somatic point mutations with the best performing RF models. D) SVs

Random Forest model features and their ranking for predicting somatic SVs. E) Performance
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metrics for classifying somatic SVs. F) Number of SVs as function of WGS type. Mean comparison
between WGS types was performed using a t-test with no significant (ns) result found. G) Number
of SVs as function of tumor purity. A linear model (number_sv ~Purity*WGS_type*SubType) was
built to predict the number of SVs, no significant coefficients (p.value < 0.05) were found. H) Venn

diagram of the final consensus MESOMIC SVs set.

Figure 6. Applications of data validation using multi-omics data A) Network of matching WGS
and RNA-seq samples, as computed by software NGSCheckmate. Edge transparency corresponds
to the Pearson Correlation r between SNP panel allelic fractions; node color and surrounding
color correspond respectively to the techniques (WGS or RNA-seq) and to the tissue type
(Normal, Matched samples or T-only samples). B-D Sex reclassification and multi-omic validation
of reported clinical sex. B) Total exome reads coverage on the X and Y chromosomes for each
sample. C) Total expression level of each sample on the X and Y chromosomes (in variance-
stabilized read counts). D) Median methylation array total intensity on the X and Y chromosomes.
In panel (B), point colors correspond to the WGS groups: normal samples in light green, tumor
samples with matched normals (Match) in dark green, and tumor samples without matched
normal (T-only) in red. In each panel, filled polygons correspond to the sexes given by the clinical
annotations (blue for male, red for female). In panel D) point colors correspond to the sexes
predicted by the DNA methylation QC. Samples with discordant reported clinical sex and

molecular patterns on sex chromosomes are indicated.

Figure 7. MPM molecular phenotypic map. Screen capture from the TumorMap portal, using the
hexagonal grid view, each point representing a MPM sample in the triangular phenotypic space:
cell division (left vertice), tumor-immune-interaction (top vertice), and acinar phenotype (right
vertice). Point colors correspond to the histological types and can be interactively changed by the

users on the web portal.
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Supplemental files

Supplementary Figure S1. MPM CNV cohort profile aCNViewer plot [60] from Tumor-matched
called as Tumor-Only (top), Tumor-only (middle), and Tumor-only after filtering (bottom). The
circled regions correspond to artifactual peaks when calling CNVs with the Tumor-only mode of
PURPLE. The aforementioned genomic regions were identified, filtered and are provided in

Supplementary Table S1.

Supplementary Figure S2. Correlation between purity estimates from three different omic
purity measurements: the proportion of DNA material from the tumor (genomic estimate of
purity), the complement proportion of infiltrating immune cells (transcriptomic estimate of
purity), and the amount of tumor tissue in the observed slide (pathological estimate of purity).
(A) between transcriptomic and pathological estimates, (B) between genomic and pathological
estimates, and (C) between genomic and transcriptomic estimates. In these three panels, g-values

and coefficient r correspond to Pearson’s correlation tests.

Supplementary Table S1. List of excluded genomic regions identified as artifactual when calling

CNVs using PURPLE Tumor-only mode.

Supplementary Table S2. Harmonized and curated molecular, clinical, epidemiological and
morphological data from our MESOMICS cohort, and the two previously published MPM multi-
omics data [2,3]. This table can be explored interactively on the UCSC TumorMap web portal.

Supplementary Note 1. Additional details of the point mutation and structural variant calling

for tumor-only MPM WGS samples.
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Archive; EMBL-EBI: European Bioinformatics Institute; GATK: Genome Analysis Toolkit; IARC:
International Agency for Research on Cancer; MME: malignant mesothelioma epithelioid; MMB:
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