

Supporting Information for

Dual amplification strategy turns TRPM2 channels into supersensitive central heat detectors

Ádám Bartók^{1,2,3} and László Csanády^{1,2,3}

¹HCEMM-SE Molecular Channelopathies Research Group,
²MTA-SE Ion Channel Research Group,
³Department of Biochemistry
Semmelweis University, Tuzolto u. 37-47, Budapest, H-1094, Hungary

Corresponding author: László Csanády Email: csanady.laszlo@med.semmelweis-univ.hu

This PDF file includes:

SI Materials and methods Figures S1 to S5 Table S1 Legend for Movie S1

Other supporting materials for this manuscript include the following:

Movie S1

Supporting Information Text

SI Materials and methods

Measuring temperature dependence of Ca-gluconate K_d, calibration of free [Ca²⁺] at each temperature. Free [Ca²⁺] in the micromolar range was determined as described (12). Ca-Green 5N (Invitrogen) fluorescence (excitation, 505 nm; emission, 535 nm) was measured in a cuvette-based fluorimeter (DeltaRAM, Photon Technology Industries). Apparent binding parameters (K_d, *n*) of the dye at 25, 30, 37 and 40°C and pH 7.1 were first obtained by stepwise titration with CaCl₂ in a solution initially containing 100 mM KCl, 2 mM MgCl₂, 10 mM HEPES and 1 μ M Ca-Green 5N at each test temperature, followed by fitting plots of (F-F_{min})/(F_{max}-F) vs. [Ca²⁺] with the function y=(x/K_d)ⁿ (Fig. S5A-C). Using the determined dye parameters free [Ca²⁺] could be accurately predicted in the range of 2-100 μ M (Fig. S5D). In electrophysiological experiments Ca²⁺ concentrations in the micromolar range were

In electrophysiological experiments Ca²⁺ concentrations in the micromolar range were buffered using 144 mM gluconate. Temperature dependence of K_d of Ca-gluconate was determined as described (1) by stepwise titration, at each temperature, of our standard bath solution (144 mM Na-gluconate, 2 mM Mg-gluconate₂, 10 mM HEPES, pH=7.1) with CaCl₂; plots of free [Ca²⁺] vs. added [Ca²⁺] (Fig. S5F) were fitted to a simple binding equation with K_d and total background [Ca²⁺] as the free parameters. The obtained, temperature-adjusted K_d of Cagluconate (Fig. S5F) and the obtained total background Ca²⁺ (~17 µM) were used to calculate, at each temperature, free [Ca²⁺] following addition of various concentrations of Ca-gluconate₂ to the standard bath solution (summarized in Table S1).

Fig. S1. Basic biophysical properties of TRPM2 channels in HEK-293 cell membranes resemble those reported for TRPM2 in *Xenopus laevis* oocyte membranes. *A-B*, Quasimacroscopic inward currents of WT (*A*) and T5L (*B*) TRPM2 channels in inside-out patches at 25°C, activated by 134 μ M Ca²⁺ (*black bars*) + 32 μ M ADPR (*gray bars*). Membrane potential (V_m) was -20 mV. Inactivation time course in *A* is fitted by a single exponential (*green curve*). *C*, Unitary openings at various voltages (*left*) and unitary current-voltage relationship (*right*) of T5L TRPM2 in symmetrical 140 mM Na⁺ at 25°C; the slope of the linear regression fit (*black line*) is 78±2 pS. *D*, *F*, T5L TRPM2 currents evoked by (*D*) 32 μ M ADPR (*gray bars*) and various concentrations of Ca²⁺ (*black bars*, [Ca²⁺] in μ M), or (*F*) 134 μ M Ca²⁺ (*black bars*) and various concentrations of ADPR (*gray bars*, [ADPR] in μ M). V_m was -20 mV. *E*, *G*, Dose response curves of macroscopic T5L TRPM2 currents for (*E*) Ca²⁺ and (*G*) ADPR, with the other ligand kept saturated. Currents were normalized to the mean of the currents observed during bracketing exposures to 134 μ M Ca²⁺ + 32 μ M ADPR in the same patch. Data in *C*, *E*, *G* represent mean±SEM, n=3 (*C*), 6-7 (*E*), 15-21 (*G*). *Curves* are fits to the Hill equation with fit parameters plotted in the panels. Obtained parameters closely resemble those reported for T5L TRPM2 studied in *Xenopus laevis* oocyte membranes (2).

Fig. S2. Endogenous TRPM4-like channels, but not TRPM2, are blocked by cytosolic AMP. *A*, Exposure to cytosolic Ca²⁺ (134 μ M) activates endogenous cation channels in an inside-out patch from an untransfected HEK-293T cell. The currents are inhibited by cytosolic exposure to AMP, ADP, and ATP (*colored bars*). *B*, Dose response curves of inhibition by AMP (*purple*), ADP (*green*) and ATP (*gold*) of the endogenous current. Currents were normalized to the mean of the currents observed during bracketing exposures to 134 μ M Ca²⁺ alone in the same patch. *Purple curve* is a fit of the AMP data to the Hill equation with fit parameters plotted. *C*, Unitary openings at various voltages (*left*) and unitary current-voltage relationship (*right*) of the endogenous channels in symmetrical 140 mM Na⁺; the slope of the linear regression fit (*black line*) is 25±1 pS. *D*, (*Left*) Large macroscopic T5L TRPM2 current in inside-out patch from a transfected HEK-293T cell, evoked by exposure to 134 μ M Ca²⁺ + 32 μ M ADPR with or without 200 μ M AMP (*purple bar*). (*Right*) Fractional effect of 200 μ M cytosolic AMP on TRPM2 currents (*striped bar*). In *A*, *D*, V_m=-20 mV. Temperature is 25°C. Data in *B*, *C*, *D* represent mean±SEM, n=4-8 (*B*, AMP), 3-5 (*B*, ADP), 4-5 (*B*, ATP), 3 (*C*), 7 (*D*).

Fig. S3. Fractional stimulation of WT TRPM2 by agonist spiking is invariant to current rundown. *A-B*, Transient activation of macroscopic inside-out patch currents of WT TRPM2 channels at 37°C (*A*) and 40°C (*B*) by cytosolic superfusion with 0.1 μ M Ca²⁺ + 2 μ M ADPR, with ~1 mM free Ca²⁺ present in the extracellular (pipette) solution. Cytosolic agonist concentrations were repeatedly briefly (for ~1-2 s) raised to saturating levels (concentrations indicated above bars; in μ M). V_m was -80 mV. *Cyan insets* illustrate relaxation time courses during agonist spiking, with time constants comparable to that of solution exchange. *Yellow insets* illustrate gating patterns of last surviving channels. *C*, Fractional current responses to brief agonist "spiking" at 37°C (*orange circles*) and 40°C (*red triangles*) plotted as a function of the time lag between initial channel activation (by exposure to 0.1 μ M Ca²⁺ + 2 μ M ADPR) and the subsequent high-agonist "spike".

Fig. S4. Excessive cytosolic Ca²⁺ buffering blunts stimulation of WT TRPM2 channels by Ca²⁺ influx. *A*, Transient activation of macroscopic inside-out patch current of WT TRPM2 channels at 40°C by cytosolic superfusion with 0.1 μ M Ca²⁺ + 2 μ M ADPR, with ~1 mM free Ca²⁺ present in the extracellular (pipette) solution. Cytosolic [Ca²⁺] was buffered using 10 mM BAPTA. Cytosolic agonist concentrations were briefly (for ~1.5 s) raised to saturating levels (concentrations indicated above bars; in μ M). V_m was -80 mV. *B*, Comparison of estimated P_o (mean±SEM) of TRPM2 channels at 40°C under the following three conditions: (*Left*) 2 μ M extracellular Ca²⁺, cytosolic 4 nM Ca²⁺ (1 mM EGTA) + 32 μ M ADPR (T5L, replotted from Fig. 1C); (*Center*) 1 mM extracellular Ca²⁺, cytosolic 100 nM Ca²⁺ (1 mM EGTA) + 2 μ M ADPR (WT, replotted from Fig. 5E); (*Right*) 1 mM extracellular Ca²⁺, cytosolic 100 nM Ca²⁺ (10 mM BAPTA) + 2 μ M ADPR (WT, from panel *A*, n=11). For the latter condition estimated (using Eq. 1) free [Ca²⁺] around the activating sites is 1.2 μ M.

Fig. S5. Temperature dependence of the dissociation constant of Ca-gluconate. A. Calibration curve of the dye Ca-green-5N obtained by incremental addition of CaCl₂ to a 140 mM KCI-based solution at 30°C (black symbols) and a fit of the plot to $y=(x/K_d)^n$ (Materials and methods; black curve) to obtain the plotted dye parameters K_d and n. B, C, Temperature dependence of dye parameters (B) K_d and (C) n (black symbols), and linear regression fits (black lines). Solid symbols represent mean±SEM, n=2-4. Open symbols represent extrapolated dye parameters at 40°C. D, Control [Ca2+] prediction at 30°C, obtained by incremental addition of CaCl₂ to a 140 mM KCl-based solution. *Black symbols* plot predicted free Ca²⁺ (mean±SEM, n=4) using the dye parameters from A, B; black line is a fit of the function $y=x+[Ca^{2+}]_{bas}$. E, Gluconate titration with Ca²⁺ at 30°C, obtained by incremental addition of CaCl₂ to a 140 mM Na-gluconate based solution. Black symbols plot predicted free Ca²⁺ using the dye parameters from A, B; black curve is a fit of a simple binding equation (Materials and methods) yielding the plotted K_d of Cagluconate. F, Temperature dependence of the K_d of Ca-gluconate (black symbols) and linear regression fit (black line). Solid symbols represent mean±SEM, n=2-4. Open symbol represents extrapolated K_d at 14°C. For all titrand solutions pH was adjucted to 7.1 at all studied temperatures.

T(°C)	[Ca ²⁺] _{added} (µM)	[Ca ²⁺] _{free} (µM)
14	0	2.47
	32	7.31
	100	17.6
	320	50.8
	1000	153
	3200	477
	10000	1422
25	0	2.16
	32	6.42
	100	15.4
	320	44.6
	1000	134
	3200	418
37	1000	113
40	0	1.73
	10	2.79
	32	5.13
	100	12.4
	1000	107

Table S1. Calculated free $[Ca^{2+}]$ in our Na-gluconate based bath solution with various amounts of added Ca-gluconate₂, at the temperatures employed in this study.

Movie S1 (separate file). Morphs created (USCF Chimera) by linear interpolation between the structures of (*Top left*) apo (6BPQ) vs. WS-12+PIP2-bound (6NR2) TRPM8 from *Ficedula albicollis*, (*Bottom left*) apo (6O6A) vs. Ca²⁺-bound (6O77) TRPM8 from *Parus major*, (*Top right*) apo (6PUO) vs. Ca²⁺+ADPR-bound (6PUS) human TRPM2, and (*Bottom right*) apo (6DRK) vs. Ca²⁺+ADPR-bound (6DRJ) TRPM2 from *Danio rerio*. Conserved TRPM domains are in *light pink*, the NUDT9H domains of the TRPM2 orthologs are in *pale cyan*. *Yellow lines* indicate approximate membrane boundaries.

SI References

- 1. L. Csanády, B. Torocsik, Four Ca2+ ions activate TRPM2 channels by binding in deep crevices near the pore but intracellularly of the gate. *J. Gen. Physiol* 133, 189-203 (2009).
- 2. B. Tóth, L. Csanády, Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents. *Proc. Natl. Acad. Sci. U. S. A* 109, 13440-13445 (2012).