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Age-Stratified Model to Assess Health 
Outcomes of COVID-19 Vaccination 

Strategies, Ghana 
Appendix 1 

Methods 

Model equations 

The total population of Ghana, N, is assumed to be a constant and equals the sum of the 

compartments representing individuals with different disease statuses (including COVID-19-

specific deaths) at any time during the simulation and that births and deaths from natural (non-

COVID-19) causes do not affect the infection dynamics in the population: 

𝑁𝑁 = 𝑆𝑆 + 𝐸𝐸 + 𝑃𝑃 + 𝐼𝐼 + 𝐴𝐴 + 𝑅𝑅 + 𝑉𝑉 + 𝐷𝐷 (Eq. 1) 

Following the assumption of a frequency-dependent model, we define the force of infection, λ, as 

a combination of infection terms with symptomatic, asymptomatic, and pre-symptomatic 

individuals, each contributing to the transmission process as follows: 

𝜆𝜆 = 𝛽𝛽(𝐼𝐼+𝑢𝑢𝑢𝑢+𝑟𝑟𝑟𝑟)
𝑁𝑁

 (Eq. 2), 

where the contributions of asymptomatic and presymptomatic individuals are fractions u and r of 

that of the symptomatic individuals. 

The set of ordinary differential equations (ODE) that defines the progression of susceptible 

individuals through different disease statuses upon infection and a vaccinated and immune status 

upon vaccination and their re-entry into the susceptible state due to waning immunity is 

described below: 

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 =  (−𝜆𝜆𝜆𝜆) +  𝑤𝑤𝑤𝑤 −  (𝑣𝑣𝑣𝑣𝑣𝑣) + 𝜒𝜒𝜒𝜒 (Eq. 3) 

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 =  𝜆𝜆𝜆𝜆 −  𝑘𝑘𝑘𝑘 (Eq. 4) 

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 =  𝛿𝛿𝛿𝛿𝛿𝛿 − 𝑐𝑐𝑐𝑐 (Eq. 5) 
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𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 =  𝑐𝑐𝑐𝑐 −  (1 − 𝑧𝑧)𝑓𝑓𝑓𝑓 − 𝑧𝑧𝑧𝑧𝑧𝑧 (Eq. 6) 

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 =  (1 − 𝛿𝛿)𝑘𝑘𝑘𝑘 − 𝑞𝑞𝑞𝑞 (Eq. 7) 

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = (1 − 𝑧𝑧)𝑓𝑓𝑓𝑓 + 𝑞𝑞𝑞𝑞 − 𝑤𝑤𝑤𝑤 (Eq. 8) 

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 =  𝑧𝑧𝑧𝑧𝑧𝑧 (Eq. 9) 

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 =  𝑣𝑣𝑣𝑣𝑣𝑣 − 𝜒𝜒𝜒𝜒 (Eq. 10) 

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 =  𝑘𝑘𝑘𝑘 (Eq. 11) 

In the SEPIARD-V model, the population is initially susceptible until an infectious individual is 

introduced. After contact with an infectious person, susceptible individuals are infected at a rate 

of λ (force of infection). While in the latent period (E), they do not transmit the virus. Individuals 

leave the latent period at a rate of k and can either become asymptomatically (A) or pre-

symptomatically infectious (P). Asymptomatic individuals will recover (move to the R 

compartment) at a rate of q without showing any symptoms (1,2). Pre-symptomatic infectious 

individuals become symptomatic (I) at a rate of c. The mean duration of the symptomatic period 

is defined as 1/f. A fraction z of symptomatic individuals will die from COVID-19 (move to the 

D compartment) while the other fraction (1-z) will recover (move to the R compartment). 

Susceptible individuals become fully vaccinated (move to the V compartment) at a rate of v per 

day, while the vaccine is assumed to have an efficacy (or effectiveness) of σ. 

Model parameters 

In our model, after susceptible individuals are exposed, the latent period, which is the period 

from exposure to infectiousness, is 1/k and is assumed to have a mean of 1.85 days (3,4). Once 

exposed, a third (δ) of individuals become pre-symptomatically infected, and the rest (1-δ) 

become asymptomatic (5,6). The mean pre-symptomatic period, 1/c, is assumed to be 2.9 days 

(7). The mean duration of infectiousness for symptomatic individuals (1/f) is 15.7 days, and that 

of asymptomatic individuals (1/q) is 7.25 days (8–11). The transmission rate, β, is estimated 

from the reproduction number (R) using the formula (1 − 𝛿𝛿) �𝑢𝑢𝑢𝑢
𝑞𝑞
� + 𝛿𝛿(𝑟𝑟𝑟𝑟

𝑐𝑐
+ 𝛽𝛽

𝑓𝑓
) (12), assuming a 

value of 3.13 for the initial strain as assessed by Armachie and colleagues (unpub. data, 

https://doi.org/10.20944/preprints202104.0125.v1). This value would be updated in our scenario 

analysis of the delta variant. As we assumed some individuals were recovered and temporarily 

immune at the beginning of the simulation (see ‘Model initialization’ below), the transmission 
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rate was derived from an effective reproductive number of 3.13 for the initial strain and 5.35 for 

the Delta variant respectively. According to the CDC COVID-19 pandemic planning scenarios, 

the relative transmissibility of asymptomatic and pre-symptomatic individuals, u and r, are 

assumed to be 0.75, respectively (13). Two doses of the AstraZeneca COVID-19 vaccine were 

reported to have an efficacy (σ) of 0.745 (14). This value would also be updated in our scenario 

analysis of the delta variant. Immunity is acquired from either natural infection or vaccination. 

Vaccination-induced immunity offers protection from infection for six months (180 days) and 

wanes at a rate of χ, while that from natural infection, w, is about one year (365 days) (15). The 

rate of vaccination, v, is varied depending on the scenario. Once immunity wanes, individuals 

move back to the susceptible compartment. Details of model parameters are found in Appendix 1 

Table 1. 

Age-stratification 

The aforementioned SEPIARD-V model was further developed into an age-stratified model. 

The idea of the age-stratified model was adapted from a modeling study by Keeling and White 

on vaccination strategies with an optimal number of cases and severity effects during Britain's 

2009 H1N1 influenza pandemic (16). Our analysis would answer research questions similar to 

the Keeling and White study and include modifications to address issues pertinent to the 

COVID-19 pandemic in Ghana. With vaccine supplies available, policymakers would be 

interested in which epidemiological goal the vaccine would most impact. 

A recent retrospective cohort study in Ghana by Ashninyo et al. reported that COVID-19 

disproportionately affected the younger population with a mean age of 37.9 years, with the 

majority (56.64%) between 31 and 64 years (17). According to Ghana's demographics, 56.08% 

of the population is below 25 years, and 4.44% are 65 years or above (18). Therefore, the 

population was stratified into three groups: <25 years, 25-64 years, and 65+ years. 

Age-stratified model formulation 

An age-stratified compartmental model assumes that population mixing is not homogeneous and 

the numbers of contact between members of age groups follow a specified contact matrix. The 

number of secondary cases caused by an infectious individual in a totally susceptible population 

is commonly known as the basic reproduction number. In the context of a heterogeneous-mixing 

model, the basic reproduction number is also known as a basic reproductive ratio and is the 
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largest eigenvalue of the next generation matrix (NGM) (19). Following the work of Towers and 

Feng (20), the reproduction number of an age-stratified model is equal to the product of the 

transmission coefficient β, the mean duration of infectiousness, and the largest eigenvalue of a 

matrix M that is defined by its elements 𝑀𝑀𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖 �
𝑁𝑁𝑖𝑖
𝑁𝑁𝑗𝑗
�, where Cij is the contact matrix, and Ni 

and Nj are the numbers of individuals in age groups i and j respectively (21). 

Contact matrices used 

Due to the strong evidence of assortative mixing between age groups in the general population of 

Uganda (22) and Kenya (23), the contact matrix of the population was considered in the 

modeling of vaccination allocation strategies in Ghana. As reported by Waroux and colleagues, 

the contact patterns of Uganda were adopted in this study because their matrix corresponds to the 

population groups used in this study (below 25 years, 25-64 years, and 65 years or above). There 

is also a similarity in the proportion of age structure between Uganda and Ghana. Waroux and 

colleagues used the survey method to study the contact patterns of residents in rural Uganda in 

2014 and found that, on average, the within-group contact rate among individuals below 25 years 

is 23.58 per day; for those between 25-64 years, it was 15.05 per day and 0.54 per day for those 

above 64 years (22). 

Therefore, the 3 by 3 contact matrix is: 

 Below 25 y 25–64 y 65 y and above 

Below 25 y 23.58 9.31 0.87 
25–64 y 13.01 15.05 1.53 
65 y and above 2.29 2.44 0.54 

This contact matrix was corrected for reciprocity using methods described by Melegaro et al. in 

their study in Zimbabwe (24). 

The second matrix was adapted from a study in Ethiopia by Trentini et al., who also used survey-

type interviews to estimate age-specific patterns (25). The contact matrix was used due to the 

similar population structure to Ghana. Furthermore, the data on contact patterns were collected in 

2019, prior to the COVID-19 pandemic, and may reflect recent contact rates. On average, the 

within-group contact rate among individuals below 25 years is 8.2 per day; for those between 25-

64 years, it was 7.8 per day, and 1.6 per day for those above 64 years (22). The 3 by 3 contact 

matrix is: 
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 Below 25 y 25–64 y 65 y and above 

Below 25 y 8.2 5 1 
25–64 y 2 7.8 2.8 
65 y and above 0.1 2.2 1.6 

This contact matrix was then corrected for reciprocity using methods described by Melegaro in 

their study in Zimbabwe (26). 

Case-fatality ratio in the age-stratified model 

The age-specific fatality ratios were calculated using data from Odikro and colleagues’ study on 

the epidemiology of COVID-19 outbreak in Ghana (27). Using the total number of cases 

reported in their study (n=17,763) and the percentage of cases reported in each 10-year age group 

as of June 30, 2020, we calculated the percentage of cases in each age group as 23.85% for 

persons below 25 years, 70.65% for those between 25-64 years and 5.5% for 65+ years. For the 

cases reported among persons 20-29 years, we assumed that half of them occurred in persons 

between 20-24 years, and the other half occurred in those between 25-29 years. Next we 

calculated the expected number of cases for <25 years (n=4,236), 25-64 years (n=12,550) and 

elderly (n=977). The expected number of deaths was estimated for each age group assuming that 

9% of the total deaths (n=117) deaths occurred among <25 years, 51% for 25-64 years and, 40% 

among the elderly (65+) (27,28). Finally, we calculated the age-specific case fatality ratios as the 

ratio between the number of deaths in each age group by the number of cases in each age group. 

Hence, the estimates were 0.002 for <25 years, 0.005 for 25-64 years and 0.048 for 65+ years. 

All other variables except the vaccination rate remained the same as described in Appendix 1 

Table 1. 

Model initialization 

The model’s system of ODE was solved following the Runge-Kutta 4 method in the deSolve 

package in R version 4.1.1 (R Core Team; https://www.r-project.org/). To keep it simple, the 

population size of Ghana, N, was set to 30,800,000. We also assumed that for the base case 

scenario, at the beginning of the simulation, I =1, A=0, P=0, D=0, and V=0. We accounted for 

the age-specific seroprevalence of SARS-CoV-2 using estimates from Quarshie and colleagues 

in August 2020 (29). We, therefore, assumed that 17.5% of persons below 25 years, 43.6% of 

those between 25-64 years, and 18% of 65+ persons had been infected at the beginning of the 

simulation. These individuals were in the recovery compartment at the beginning of the 
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simulation. The model was run for 500 days to allow enough time for the first wave of the 

epidemic to die out and observe when the second wave began to emerge. 

Outcomes 

The cumulative number of infections and deaths averted in the general population was estimated 

and compared for each scenario. Furthermore, the percent of the population who were 

symptomatic at the peak, ever infected (cumulative infections), and cumulative deaths were 

assessed. The percentage of cumulative infection could exceed 100% because as immunity 

waned, individuals would become susceptible again to repeated infections. 

R code 

The R code used for simulation in this study is provided in Appendix 2. 

Appendix 1 Table 1: Daily vaccination rates for vaccinating 1 million people in 3 months and 6 months using an age-stratified 
model 

Scenario 
Fraction of total 

population 
Number in each 

subgroup 

1 million people can 
be vaccinated, % of 
the subpopulation 

vaccinated 

The daily 
vaccination rate 

for a campaign of 
3 m 

The daily 
vaccination rate 

for a campaign of 
6 m 

Only ≥65 y 0.0444 1,367,520 73.1% 0.00812 0.00406 

25–64 y 0.3948 12,159,840 8.2% 0.00091 0.00046 

<25 y 0.5608 17,272,640 5.8% 0.00064 0.00032 

<65 y 0.9556 29,432,480 3.4% 0.00038 0.00019 

Same vaccination 
rate 

1 30,800,000 3.2% 0.00036 0.00018 

 
 
 
 
Appendix 1 Table 2: Daily vaccination rates for vaccinating 500,000 people in 3 months and 6 months using an age-stratified model 

Scenario 
Fraction of total 

population 
Number in each 

subgroup 

500,000 people can be 
vaccinated, % of the 

subpopulation 
vaccinated 

The daily 
vaccination rate 

for a campaign of 
3 m 

The daily vaccination 
rate for a campaign 

of 6 m 
Only ≥65 y 0.0444 1,367,520 36.6% 0.00406 0.00203 
25–64 y 0.3948 12,159,840 4.1% 0.00046 0.00023 

<25 y 0.5608 17,272,640 2.9% 0.00032 0.00016 

<65 y 0.9556 29,432,480 1.7% 0.00019 0.00009 
Same 
vaccination rate 

1 30,800,000 1.6% 0.00018 0.00009 
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Appendix 1 Table 3: Daily vaccination rates for vaccinating two million people in three months and six months using an age-
stratified model 

Scenario 

Fraction of 
total 

population 

Number in 
each 

subgroup 

2 million people can be 
vaccinated, % of the 

subpopulation vaccinated 

The daily 
vaccination rate for 
a campaign of 3 m 

The daily 
vaccination rate for 
a campaign of 6 m 

Only ≥65 y 0.0444 1,367,520 146.3% 0.01625 0.00812 

25–64 y 0.3948 12,159,840 16.4% 0.00183 0.00091 

<25 y 0.5608 17,272,640 11.6% 0.00129 0.00064 

<65 y 0.9556 29,432,480 6.8% 0.00075 0.00038 

Same 
vaccination 
rate 

1 30,800,000 6.5% 0.00072 0.00036 

 
 
 
 
Appendix 1 Table 4: Sensitivity analysis of outcomes in the total population under various vaccination scenarios using the main 
matrix for the delta variant*  

Vaccine 
prioritization, y 

500,000 people 
were 

vaccinated in 
3 m, % 

500,000 people 
were 

vaccinated in 6 
m, % 

1 million 
people were 

vaccinated in 3 
m, % 

1 million 
people were 

vaccinated in 6 
m, % 

2 million 
people were 

vaccinated in 3 
m, % 

2 million 
people were 

vaccinated in 6 
m, % 

 Symptomatic infections at peak 
Only ≥65 10.25 10.27 10.22 10.25 10.18 10.22 

25–64 10.18 10.24 10.08 10.18 9.89 10.08 
<25 10.14 10.21 9.99 10.14 9.69 9.99 
<65 10.15 10.23 10.02 10.15 9.77 10.02 
Same vaccination 
rate 

10.16 10.22 10.03 10.16 9.78 10.03 

 Cumulative infections 
Only ≥65 229.50 230.26 228.43 229.50 227.20 228.43 
25–64 229.07 230.15 227.00 229.07 222.89 227.00 
<25 228.77 230.00 226.32 228.77 221.41 226.32 
<65 228.87 230.11 226.50 228.87 221.90 226.50 
Same vaccination 
rate 

228.89 230.07 226.55 228.89 221.89 226.55 

 Deaths 
Only ≥65 0.26 0.27 0.25 0.26 0.23 0.25 
25–64 0.28 0.28 0.27 0.28 0.27 0.27 
<25 0.28 0.28 0.28 0.28 0.27 0.28 
<65 0.28 0.28 0.27 0.28 0.27 0.27 
Same vaccination 
rate 

0.28 0.28 0.27 0.28 0.27 0.27 

*If there were no vaccination, 10.29% of the population would be symptomatic at the epidemic peak, there would be a total of 231.24% cumulative 
incidence, and 0.28% of the population would die of COVID-19. 
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Appendix 1 Table 5: Sensitivity analysis of outcomes in the total population under various vaccination scenarios using the second 
matrix for the Delta variant* 

Vaccine 
prioritization, y 

500,000 
people were 

vaccinated in 
3 m, % 

500,000 people 
were 

vaccinated in 6 
m, % 

1 million 
people were 

vaccinated in 3 
m, % 

1 million 
people were 

vaccinated in 6 
m, % 

2 million 
people were 

vaccinated in 3 
m, % 

2 million 
people were 

vaccinated in 6 
m, % 

 Symptomatic infections at peak 
Only ≥65 10.04 10.09 9.96 10.04 9.85 9.96 

25–64 10.01 10.08 9.89 10.01 9.66 9.89 
<25 10.01 10.08 9.89 10.01 9.66 9.89 
<65 10.01 10.08 9.89 10.01 9.64 9.89 
Same vaccination rate 10.01 10.08 9.89 10.01 9.64 9.89 
 Cumulative infections 
Only ≥65 235.15 236.74 232.82 235.15 230.15 232.81 
25–64 236.48 237.60 234.30 236.48 229.96 234.30 
<25 236.57 237.65 234.44 236.57 230.18 234.44 
<65 236.51 237.67 234.29 236.51 229.99 234.29 
Same vaccination rate 236.43 237.58 234.13 236.43 229.52 234.13 
 Deaths 
Only ≥65 0.28 0.30 0.26 0.28 0.24 0.26 
25–64 0.31 0.31 0.31 0.31 0.30 0.31 
<25 0.31 0.31 0.31 0.31 0.31 0.31 
<65 0.31 0.31 0.31 0.31 0.30 0.31 
Same vaccination rate 0.31 0.31 0.31 0.31 0.30 0.31 
*If there were no vaccination, 10.14% of the population would be symptomatic at the epidemic peak, there would be a total of 238.73% cumulative 
incidence, and 0.31% of the population would die of COVID-19. 

References 

1. Liu R, Leung RK, Chen T, Zhang X, Chen F, Chen S, et al. The Effectiveness of Age-Specific 

Isolation Policies on Epidemics of Influenza A (H1N1) in a Large City in Central South China. 

PLoS One. 2015;10:e0132588. PubMed https://doi.org/10.1371/journal.pone.0132588 

2. Zhao Z-Y, Zhu Y-Z, Xu J-W, Hu S-X, Hu Q-Q, Lei Z, et al. A five-compartment model of age-specific 

transmissibility of SARS-CoV-2. Infectious Diseases of Poverty. 2020;9(1):117. 

3. Abbasi Z, Zamani I, Mehra AHA, Shafieirad M, Ibeas A. Optimal Control Design of Impulsive 

SQEIAR Epidemic Models with Application to COVID-19. Chaos, Solitons & Fractals. 

2020;139:110054. 

4. Liu Z, Magal P, Seydi O, Webb G. A COVID-19 epidemic model with latency period. Infect Dis 

Model. 2020;5:323–37. PubMed https://doi.org/10.1016/j.idm.2020.03.003 

5. Chen M, Li M, Hao Y, Liu Z, Hu L, Wang L. The introduction of population migration to SEIAR for 

COVID-19 epidemic modeling with an efficient intervention strategy. Inf Fusion. 2020;64:252–8. 

PubMed https://doi.org/10.1016/j.inffus.2020.08.002 

6. Buitrago-Garcia D, Egli-Gany D, Counotte MJ, Hossmann S, Imeri H, Ipekci AM, et al. Occurrence 

and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A 

living systematic review and meta-analysis. PLoS Med. 2020;17:e1003346. PubMed 

https://doi.org/10.1371/journal.pmed.1003346 

https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26161740&dopt=Abstract
https://doi.org/10.1371/journal.pone.0132588
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32346664&dopt=Abstract
https://doi.org/10.1016/j.idm.2020.03.003
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32834796&dopt=Abstract
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32834796&dopt=Abstract
https://doi.org/10.1016/j.inffus.2020.08.002
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32960881&dopt=Abstract
https://doi.org/10.1371/journal.pmed.1003346


 

Page 9 of 11 

7. Tindale LC, Stockdale JE, Coombe M, Garlock E, Lau WYV, Saraswat M, et al. Evidence for 

transmission of COVID-19 prior to symptom onset. eLife. 9:e57149 

https://doi.org/10.7554/eLife.57149    

8. Cai Q, Huang D, Ou P, Yu H, Zhu Z, Xia Z, et al. COVID-19 in a designated infectious diseases 

hospital outside Hubei Province, China. Allergy. 2020;75:1742–52. PubMed 

https://doi.org/10.1111/all.14309 

9. Byrne AW, McEvoy D, Collins AB, Hunt K, Casey M, Barber A, et al. Inferred duration of infectious 

period of SARS-CoV-2: rapid scoping review and analysis of available evidence for 

asymptomatic and symptomatic COVID-19 cases. BMJ Open. 2020;10:e039856. PubMed 

https://doi.org/10.1136/bmjopen-2020-039856 

10. Thiruvengadam G, Ramanujam R, Marappa L. Modeling the recovery time of patients with 

coronavirus disease 2019 using an accelerated failure time model. J Int Med Res. 

2021;49:3000605211040263. PubMed https://doi.org/10.1177/03000605211040263 

11. Xing Y-H, Ni W, Wu Q, Li W-J, Li G-J, Wang W-D, et al. Prolonged viral shedding in feces of 

pediatric patients with coronavirus disease 2019. J Microbiol Immunol Infect. 2020;53:473–80. 

PubMed https://doi.org/10.1016/j.jmii.2020.03.021 

12. University of British Columbia Department of Zoology. COVID-19 Models Lecture. 2020 [cited 

November 15, 2020]; Available from: 

https://www.zoology.ubc.ca/~bio301/Bio301/Lectures/Lecture1/COVID_Models.pdf 

13. Centers for Disease Control and Prevention. Pandemic Planning Scenarios. 2020 [cited November 12, 

2020]; Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html 

14. Knoll MD, Wonodi C. Oxford-AstraZeneca COVID-19 vaccine efficacy. Lancet. 2021;397:72–4. 

PubMed https://doi.org/10.1016/S0140-6736(20)32623-4 

15. Good MF, Hawkes MT. The Interaction of Natural and Vaccine-Induced Immunity with Social 

Distancing Predicts the Evolution of the COVID-19 Pandemic. MBio. 2020;11:e02617-20. 

PubMed https://doi.org/10.1128/mBio.02617-20 

16. Keeling MJ, White PJ. Targeting vaccination against novel infections: risk, age and spatial structure 

for pandemic influenza in Great Britain. J R Soc Interface. 2011;8:661–70. PubMed 

https://doi.org/10.1098/rsif.2010.0474 

  

https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32239761&dopt=Abstract
https://doi.org/10.1111/all.14309
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32759252&dopt=Abstract
https://doi.org/10.1136/bmjopen-2020-039856
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34463563&dopt=Abstract
https://doi.org/10.1177/03000605211040263
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32276848&dopt=Abstract
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32276848&dopt=Abstract
https://doi.org/10.1016/j.jmii.2020.03.021
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33306990&dopt=Abstract
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33306990&dopt=Abstract
https://doi.org/10.1016/S0140-6736(20)32623-4
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33097654&dopt=Abstract
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33097654&dopt=Abstract
https://doi.org/10.1128/mBio.02617-20
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20943682&dopt=Abstract
https://doi.org/10.1098/rsif.2010.0474


 

Page 10 of 11 

17. Ashinyo ME, Duti V, Dubik SD, Amegah KE, Kutsoati S, Oduro-Mensah E, et al.. Clinical 

characteristics, treatment regimen and duration of hospitalization among COVID-19 patients in 

Ghana: a retrospective cohort study. Pan Afr Med J. 2020;37(Suppl 1):9. PubMed  

https://doi.org/10.11604/pamj.supp.2020.37.1.25718 

18. Central Intelligence Agency. The world factbook. 2022 [cited December 4, 2022]. 

https://www.cia.gov/the-world-factbook/  

19. Anderson RM, May RM. Infectious diseases of humans: dynamics and control: Oxford university 

press; 1992. 

20. Towers S, Feng Z. Social contact patterns and control strategies for influenza in the elderly. Math 

Biosci. 2012;240:241–9. PubMed https://doi.org/10.1016/j.mbs.2012.07.007 

21. Towers S. SIR infectious disease model with age classes. 2012 [cited September 15, 2021]. 

http://sherrytowers.com/2012/12/11/sir-model-with-age-classes/ 

22. le Polain de Waroux O, Cohuet S, Ndazima D, Kucharski AJ, Juan-Giner A, Flasche S, et al. 

Characteristics of human encounters and social mixing patterns relevant to infectious diseases 

spread by close contact: a survey in Southwest Uganda. BMC Infect Dis. 2018;18(1):172. 

23. Kiti MC, Kinyanjui TM, Koech DC, Munywoki PK, Medley GF, Nokes DJ. Quantifying age-related 

rates of social contact using diaries in a rural coastal population of Kenya. PLoS One. 

2014;9:e104786. PubMed https://doi.org/10.1371/journal.pone.0104786 

24. Melegaro A, Jit M, Gay N, Zagheni E, Edmunds WJ. What types of contacts are important for the 

spread of infections?: using contact survey data to explore European mixing patterns. Epidemics. 

2011;3:143–51. PubMed https://doi.org/10.1016/j.epidem.2011.04.001 

25. Trentini F, Guzzetta G, Galli M, Zardini A, Manenti F, Putoto G, et al. Modeling the interplay 

between demography, social contact patterns, and SARS-CoV-2 transmission in the South West 

Shewa Zone of Oromia Region, Ethiopia. BMC Med. 2021;19:89. PubMed 

https://doi.org/10.1186/s12916-021-01967-w 

26. Melegaro A, Del Fava E, Poletti P, Merler S, Nyamukapa C, Williams J, et al. Social contact 

structures and time use patterns in the Manicaland Province of Zimbabwe. PLoS One. 

2017;12:e0170459. PubMed https://doi.org/10.1371/journal.pone.0170459 

27. Kenu E, Odikro MA, Malm KL, Asiedu-Bekoe F, Noora CL, Frimpong JA, et al. Epidemiology of 

COVID-19 outbreak in Ghana, 2020. Ghana Med J. 2020;54(Suppl):5–15. PubMed 

https://doi.org/10.4314/gmj.v54i4s.3 

https://pubmed.ncbi.nlm.nih.gov/33294110/
https://www.cia.gov/the-world-factbook/
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22877728&dopt=Abstract
https://doi.org/10.1016/j.mbs.2012.07.007
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25127257&dopt=Abstract
https://doi.org/10.1371/journal.pone.0104786
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22094337&dopt=Abstract
https://doi.org/10.1016/j.epidem.2011.04.001
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33832497&dopt=Abstract
https://doi.org/10.1186/s12916-021-01967-w
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28099479&dopt=Abstract
https://doi.org/10.1371/journal.pone.0170459
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33976436&dopt=Abstract
https://doi.org/10.4314/gmj.v54i4s.3


 

Page 11 of 11 

28. Lawal Y. Africa’s low COVID-19 mortality rate: A paradox? Int J Infect Dis. 2021;102:118–22. 

PubMed https://doi.org/10.1016/j.ijid.2020.10.038 

29. Quashie PK, Mutungi JK, Dzabeng F, Oduro-Mensah D, Opurum PC, Tapela K, et al. Trends of 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody prevalence in selected 

regions across Ghana. Wellcome Open Res. 2021; 6:173. 

https://doi.org/10.12688/wellcomeopenres.16890.1  

 

 

Appendix 1 Figure: The Susceptible-Exposed-Presymptomatic-Symptomatic-Asymptomatic-Recovered-

Dead-Vaccinated (SEPIARD-V) model represents SARS-CoV-2 transmission and COVID-19 disease 

progress and the vaccination against COVID-19. Note: Age-stratification is not represented in this flow 

diagram. 
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