
SUPPLEMENT366

1 Estimation of the overlap percentage367

PASTE2 requires a user-specified parameter s, the amount of mass to transport, which is interpreted as the368

percentage of overlap between the two slices to align. However, this parameter is not available in general. In369

this section, we introduce a heuristic based on the region aligned by PASTE2 to estimate s, the true overlap370

percentage.371

Because the second term in the PASTE2 objective prefers symmetrical alignment, we found that if we372

overestimate s and visualize the regions in the two slices aligned by PASTE2, the two regions will generally373

be contiguous in each slice, with the true overlap region being a subset of the aligned region. However, if we374

underestimate s, the aligned regions will not be contiguous, where the true overlap region will have random375

spots left out unaligned. In other words, if we overestimate s and visualize the convex hull of the aligned376

region, the convex hull will contain mostly contiguous aligned spots, but if we underestimate s and visualize377

the convex hull of the aligned region, the convex hull will have unaligned spots randomly spread across the378

region. To quantify the contiguity of aligned spots, we define an edge inconsistency score that measures the379

spatial coherence of a graph with nodes colored by two clusters. Specifically, let G = (V,E) be a graph and380

let L = [l(i)] be a labeling of nodes where l(i) 2 {1, 2} is the cluster label of node i. Let E0 be the subset of381

edges where the labelling of the nodes at the two ends are different, i.e. E0 is the cut of the graph. We define382

the edge inconsistency score as H(G,L) = |E0|
|E| , which is the percentage of edges that are in the cut. A high383

inconsistency score means most of the edges are in the cut, indicating the labeling of the nodes has low spatial384

coherence, while a low inconsistency score means the two classes of nodes are mostly contiguous in graph.385

Given two slices (X,D) and (X 0
, D

0), we run PASTE2 with s decreasing from 1 to 0.05 with a step386

size of 0.05. For each s, we calculate the edge inconsistency score of the convex hull of the regions that387

PASTE2 selects for alignment in the two slices, with each spot labeled aligned or unaligned. Ideally, the388

edge inconsistency score should remain low when input s is higher than the true overlap percentage s
⇤,389

and increases when s drops below s
⇤, peaking at exactly s⇤

2 . Therefore, we find s
0
1, s

0
2 which respectively390

achieves the highest edge inconsistency score in the two slices, and estimate the true overlap percentage as391

bs = 2min{s01, s02}.392

2 The gene expression dissimilarity function393

The PASTE2 objective needs an expression cost function c : Rp ⇥ Rp ! R+ that measures the dissimilarity394

level of two gene expression profiles that are potentially on the order of tens of thousands in dimension.395

Instead of using Kullback–Leibler divergence or Euclidean distance between two expression vectors as396

PASTE does, PASTE2 computes a dissimilarity cost between two high-dimensional expression vectors as397

follows. PASTE2 first selects the top 2000 genes with the highest UMI counts across both slices. Then, it398

uses GLM-PCA [44], a generalization of principle component analysis to exponential family likelihoods, to399

reduce the dimension of the expression vector at each spot from 2000 to 50. The dissimilarity between two400

50-dimensional vectors will then be calculated using standard Euclidean distance. GLM-PCA is designed401

to operate on raw UMI counts based on a multinomial generative model for expression vectors, avoiding402

the potential pitfalls of common practices such as normalization and log transformation [44, 21], hence403

particularly suitable for dimensionality reduction in spatial transcriptomics given its nature of sparsity and404

high technical variations across spots.405

3 A conditional gradient algorithm for partial-FGW optimal trasport406

As in the classical conditional gradient procedure, we initialize ⇡
(0) randomly, then for each iteration k,407

PASTE2 maintains a current estimate ⇡
(k) 2 ⇧, and updates ⇡(k) following three steps.408

Step 1409

The first step is to solve the linear program410
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⇡̃
(k) = min

⇡
hrF (⇡(k)),⇡iF

s.t.⇡ � 0

⇡1n0  g

⇡
T1n  g

0

1Tn⇡1n0 = s

where gradient rF (⇡(k)) of F (⇡(k)) is411

rF (⇡(k)) = (1� ↵)C+ 2↵L(D,D
0)⌦ ⇡

(k) (6)

Notice that rF (⇡(k)) is a constant matrix with respect to ⇡, and thus the linear program above is an412

instance of the partial Wasserstein optimal transport problem [9]. We follow [11] to compute the partial413

Wasserstein transport plan. Specifically, we transform the partial problem into a standard, full Wasserstein414

problem by adding a virtual spot to each of g and g
0 and modify the transport cost matrix rF (⇡(k))415

accordingly such that the partial transport plan can be extracted from the extended transport matrix by416

removing the last column and last row. More details can be found in [11]. We solve the extended standard417

Wasserstein problem using the algorithm proposed in [6] as implemented in the Python Optimal Trasnport418

library [18].419

Step 2420

The second step finds the step size to move along the descent direction ⇡̃
(k) found in Step 1. That is, we find421

a �
(k) satisfying422

�
(k) = argmin�2[0,1]F (⇡(k) + �(⇡̃(k) � ⇡

(k))) (7)

Define E
(k) = ⇡̃

(k) � ⇡
(k) and a function � : [0, 1] ! R such that423

�(�) = F (⇡(k) + �(⇡̃(k) � ⇡
(k))) (8)

We want to minimize �(�) on [0, 1]. We can rewrite �(�) as424

�(�) = F (⇡(k) + �(⇡̃(k) � ⇡
(k)))

= F (⇡(k) + �E
(k))

= (1� ↵)hC,⇡
(k) + �E

(k)iF + ↵hL(D,D
0)⌦ (⇡(k) + �E

(k)),⇡(k) + �E
(k)iF

= (1� ↵)(hC,⇡
(k)iF + �hC, E

(k)iF ) + ↵(�2hL(D,D
0)⌦ E

(k)
, E

(k)iF
+ 2�hL(D,D

0)⌦ E
(k)

,⇡
(k)iF + hL(D,D

0)⌦ ⇡
(k)

,⇡
(k)iF )

= (1� ↵)hC,⇡
(k)iF + �(1� ↵)hC, E

(k)iF + �
2
↵hL(D,D

0)⌦ E
(k)

, E
(k)iF

+ �2↵hL(D,D
0)⌦ E

(k)
,⇡

(k)iF + ↵hL(D,D
0)⌦ ⇡

(k)
,⇡

(k)iF
= �

2
↵hL(D,D

0)⌦ E
(k)

, E
(k)iF + �((1� ↵)hC, E

(k)iF + 2↵hL(D,D
0)⌦ E

(k)
,⇡

(k)iF )
+ (1� ↵)hC,⇡

(k)iF + ↵hL(D,D
0)⌦ ⇡

(k)
,⇡

(k)iF
= a�

2 + b� + c
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where a, b, c are constants calculated from known quantities

a = ↵hL(D,D
0)⌦ E

(k)
, E

(k)iF
b = (1� ↵)hC, E

(k)iF + 2↵hL(D,D
0)⌦ E

(k)
,⇡

(k)iF
c = (1� ↵)hC,⇡

(k)iF + ↵hL(D,D
0)⌦ ⇡

(k)
,⇡

(k)iF

Now, minimizing �(�) on [0, 1] is just minimizing a univariate quadratic function on [0, 1], which can be425

done by testing the convexity and finding the axis of symmetry.426

Step 3427

⇡̃
(k) is calculated in step 1. �(k) is calculated in step 2. Now update428

⇡
(k+1) = ⇡

(k) + �
(k)(⇡̃(k) � ⇡

(k)) (9)

In practice, we test convergence by comparing the difference between the objective cost of ⇡(k) and429

⇡
(k+1) to a small constant. Algorithm 1 shows the pseudocode of our conditional gradient algorithm to430

optimize the partial-FGW objective.

Algorithm 1: Conditional gradient algorithm for partial-FGW
Input: Transport cost matrix C; pairwise cost tensor L(D,D

0); feasible region P; balance
parameter ↵; convergence parameter �

1 Initialize initial guess ⇡(0) 2 ⇧;
2 while F (⇡(k+1))� F (⇡(k)) > � do
3 rF (⇡(k)) = (1� ↵)C+ 2↵L(D,D

0)⌦ ⇡
(k) // Gradient computation

4 ⇡̃
(k) = argmin⇡2⇧hrF (⇡(k)),⇡iF // Step 1: Solve partial-W subproblem

5 �
(k) = argmin�2[0,1]F (⇡(k) + �(⇡̃(k) � ⇡

(k))) // Step 2: Line search

6 ⇡
(k+1) = ⇡

(k) + �
(k)(⇡̃(k) � ⇡

(k)) // Step 3: Update

7 return ⇡
(k)

431

4 The histological image dissimilarity matrix432

The H&E image associated with each slice can be represented by a matrix H 2 Nn⇥3, where n is the number433

of spots on the slice and the i-th row hi· is the RGB value of the pixel of spot i in the H&E image. In reality,434

a spot may occupy a circle instead of a pixel in the image, so we take the average value of all pixels in the435

circle as the RGB value for the spot. Given two ST slices (X,D,H) and (X 0
, D

0
, H

0), we integrate the H&E436

image information into the partial-FGW framework by defining a cost matrix Cimage 2 Rn⇥n0 to encode the437

Euclidean distance between the RGB value of each spot of the first slice and the RGB value of each spot of438

the second slice, and spots with similar histology achieve lower costs. That is, [Cimage]ij = khi· � h0
j·k2. If439

PASTE2 aligns spot i to spot j, then both the gene expression profiles and the histology RGB values of spot i440

and j should be similar.441

5 Optimal projection and 3D reconstruction442

Given a series of consecutive slices (X(1)
, Z

(1)), ..., (X(t)
, Z

(t)), where X is the gene expression matrix443

and Z is the 2D location matrix, for k = 1, ..., t � 1, we seek to project the coordinates of slice k + 1444

onto the coordinates of slice k such that the partial alignment ⇡(k) between the two slices is respected. The445

projection is defined by a rotation matrix R 2 R2⇥2 and a translation vector t 2 R2 that is applied to the446

spatial coordinates Z(k+1) of slice k + 1. The derivation here is similar to the 3D reconstruction in PASTE,447

but can handle partial alignment matrices.448
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Given ST slices with spatial coordinates Z 2 R2⇥n and W 2 R2⇥n0 , and a partial alignment ⇡ 2449

P(g, g0, s) between the two slices, we want to find a rotation matrix R 2 R2⇥2 and a translation vector450

t 2 R2 for W that minimizes451

Q(t, R) =
X

i,j

⇡ijkZ·i �RW·j � tk2 (10)

We first show that we can assume no translation is needed (t = 0) by scaling both Z and W . Assume R452

is fixed, we take the derivative of Q with respect to t and compare to 0453

@Q

@t
= �2

X

i,j

⇡ij(Z·i �RW·j � t)

= �2
X

i

Z·i
X

j

⇡ij + 2
X

j

RW·j
X

i

⇡ij + 2t
X

i,j

⇡ij

= �2
X

i

Z·ipi + 2
X

j

RW·jqj + 2ts

= �2
X

i

Z·ipi + 2R
X

j

W·jqj + 2ts

= �2Zp+ 2RWq + 2ts = 0

where p = ⇡1n0 , q = ⇡
T1n, s = 1Tn⇡1n0 . We have t = 1

s (Zp � RWq). Then, substitute t =454
1
s (Zp�RWq) into Q, we get455

Q(t, R) =
X

i,j

⇡ijkZ·i �RW·j � tk2

=
X

i,j

⇡ijkZ·i �RW·j �
1

s
Zp+

1

s
RWqk2

=
X

i,j

⇡ijk(Z·i �
1

s
Zp)�R(W·j �

1

s
Wq)k2

Since 1
sZp and 1

sWq does not depend on R, if we replace Z·i with Z·i � 1
sZp and W·j with W·j � 1

sWq,456

Q is minimized with respect to t and we only need to find the optimal rotation R. Hence we can assume no457

translation is needed by scaling both R and W .458

To find the optimal rotation R, rewrite Q in matrix notation459
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Q(R) =
X

i,j

⇡ijkZ·i �RW·j � tk2

=
X

i,j

⇡ij(Z·i �RW·j � t)T (Z·i �RW·j � t)

=
X

i,j

⇡ij(Z
T
·iZ·i � Z

T
·iRW·j �W

T
·jRZ·i +W

T
·jR

T
RW·j)

= �2
X

i,j

⇡ij(Z
T
·iRW·j) + ↵

= �2Tr(ZT
RW⇡

T ) + ↵

= �2Tr(RW⇡
T
Z

T ) + ↵

where ↵ is a constant independent of R. Let U⌃V T be the SVD decomposition of the matrix W⇡
T
Z

T .460

Then,461

Q(R) = �2Tr(RW⇡
T
Z

T ) + ↵

= �2Tr(RU⌃V T ) + ↵

= �2Tr(⌃V T
RU) + ↵

Since V,R, U are all orthonormal matrices, and ⌃ is a diagonal matrix with positive entries, the maximum462

of Tr(⌃V T
RU), hence the minimum of Q, will be achieved when V

T
RU = I . Therefore, the optimal463

rotation that minimizes Q is R = V U
T .464

By finding the optimal projection for each slice pair, we project each slice onto the same 2D coordinate465

grid and create a common coordinate system for all slices in 3D where the z-axis is determined by the actual466

distance between each slice in the tissue.467

6 Simulation procedure468

The simulated partial slices are based on DLPFC sample 151674, where each spot is labeled with a manual469

cortical layer annotation from [32]. This slice contains 3635 spots and 12381 genes after filtering out all the470

spots and genes with less than 100 transcript counts overall. We generated two partially overlapping subslices471

from this slice in the following way.472

1. Let s be a percentage number between 0 and 100 (or equivalently, fraction number between 0 and 1.)473

We choose two horizontal lines on the slice, line 1 and line 2, with line 1 below line 2, that generates474

two subslices. The upper subslice is the subslice above line 1, and the lower subslice is the subslice475

below line 2. The upper and lower subslice overlap at s percent of their spots. s controls the exact476

locations of line 1 and line 2 that cuts the slice into subslices.477

2. For each spot i in the lower subslice, we resample its gene expression profile as follows. Let vi be the478

original gene expression vector of spot i, and µi =
P

i vi be the total read count. Let � be a small pesu-479

docount. We resample vi according to a multinomial distribution vi ⇠ Multinomial(µi,
vi+(�·0.0002·µi)·1p

µi+(�·0.0002·µi)·p ),480

where p is the number of genes and 1p is an all-one vector of length p.481

That is, for each spot in the bottom slice, we add a small pseudocount to each gene in proportion to482

the total read counts of the spot, and then resample the expression profile under a multinomial distribution483
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defined by the read counts of each gene after the addition of the pseudocount. This way, we have a different484

pseudocount for each spot proportional to the spot’s total read count so that the noises we introduce are485

the same across spots. We choose the ratio as 0.0002 · µi for a spot with read count µi so that the median486

pseudocount added across spots would be � because the median read counts for each spot in this slice is about487

5000.488

7 Label Transfer Adjusted Rand Index (LTARI)489

We evaluate the alignment accuracy for partial slice alignments using what we call the Label Transfer490

Adjusted Rand Index (LTARI). LTARI is a score that measures the ability of the alignment to transfer labels491

of the aligned region from one slice to the other. Intuitively, a good partial alignment would find and align492

spots with the same cell type, hence we define a score that measures the alignment accuracy as the agreement493

of cell type labels of aligned pairs of spots. Note that the ground truth annotation of cell type of each spot494

should be available for calculating LTARI. Specifically, for each spot j in the second slice that is aligned by495

PASTE2, the alignment induces a new cell type label for the spot by assigning it `(j) = `(argmaxi ⇡ij), the496

label of the spot i in the first slice that achieves the highest ⇡ij over all the spots in the first slice. That is, we497

assign each aligned spot in the second slice the label of the spot in the first slice that is mostly likely aligned498

to it according to the computed alignment. This assignment transfers the labels of spots from the first slice499

to the second slice in the aligned region. We then compare this transferred labeling with the ground truth500

labeling of the aligned region of the second slice and compute the ARI of the two clusterings. For PASTE2,501

the Label Transfer ARI is calculated on the region that PASTE2 chooses to align since not all spots receive502

an alignment, while for PASTE the Label Transfer ARI is calculated for the entire slice because PASTE have503

to align every spot to some spot in the other slice. A high LTARI indicates that the (partial) alignment tends504

to align each spot to some spot on the other slice with the same cell type label, hence corresponds to a better505

alignment. Notice that LTARI can be defined in the opposite direction, comparing the transferred labeling506

with the ground truth labeling of the first slice, but in practice we do not observe a significant gap between507

the LTARI of the two directions.508

8 Benchmarking PASTE2 with other methods509

We benchmarked PASTE2 against PASTE, Pamona, and Tangram on the DLPFC dataset. Both PASTE2510

and Pamona are partial alignment methods that can handle partially overlapped datasets, while PASTE and511

Tangram assume the two datasets to align have the same underlying cellular structure. We treated both512

ST slices as scRNA-seq datasets for Pamona by dropping the information about spatial coordinates. Since513

Pamona is a partial alignment algorithm, it takes as input the number of shared cells between the two datasets,514

and we provided the ground-truth number of spots (70% of total spots) in the overlap region of the two slices.515

To run Tangram, we treated the first slice as a scRNA-seq dataset and mapped its spots onto the second ST516

slice. We used the uniform density prior for Tangram such that the mapping returned by Tangram will have517

uniform marginals over each spot as in PASTE. We ran Tangram for 500 iterations instead of the default518

1000 because empirically the loss does not change much after 500 iterations. We ran PASTE2 with the519

ground-truth overlap percentage s as well.520

9 Evaluation of the estimation of overlap percentages521

We evaluated PASTE2’s model selection procedure (Supplement §1) to estimate the overlap percentage s on522

the simulated dataset described in §3.1 and the real ST slices described in §3.2. For the simulated dataset, we523

used PASTE2 to estimate the overlap percentage of simulated pairs of slices which overlap at 90%, 70%,524

50%, and 30% of their areas, and with pseudocount added to the gene expression data � = 0.1, 1.0, 2.0, 3.0.525

For the real slices, we used PASTE2 to estimate the overlap percentage of all pairs of adjacent subslices of all526

individuals analyzed in §3.2, with each pair roughly overlap at 70% of their areas.527

The estimation result on simulated pairs of slices indicates that when the overlap between the two slices528
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is high (> 50%), PASTE2 estimates the overlap percentage accurately, with all estimations within 10% of the529

ground truth even when the noise level � = 3.0 (Fig. S12a). When the overlap is less than 50%, PASTE2 still530

correctly recovers the overlap when � is reasonably small.531

On pairs of DLPFC subslices, both horizontally and vertically overlapping, for 8 out of 18 pairs, the532

PASTE2 estimation of overlap percentage is within 10% of the reference overlap, and the estimations of 16533

out of 18 pairs are within 20% of the reference overlap (Fig. S12b). However, we note that the 70% reference534

overlap simply means that the rectangular boxes used to crop out subslices, as shown in Fig. S8, have about535

70% of their areas overlapping between each pair. Due to factors such as variations in shapes of the tissue and536

different geometries of each layer in different slices, the true overlap percentage may differ from 70%. For537

example, comparing the 3D reconstruction (optimal projection) of pair BC of sample 1 based on an alignment538

with 70% of overlap and the 3D reconstruction of the same pair based on an alignment with 30% of overlap539

(estimated by PASTE2), it is clear that the PASTE2 estimation of 30% leads to a better reconstruction than540

the reference 70% (Fig. S13), and the alignment LTARI increases from 0.07 to 0.18. Additionally, we want541

to mention that the differences in geometries of layers across slices, complicated with technical artifacts such542

as sharp difference in UMI counts across layers, may result in model unindentifiability issues.543

Figure 6: Additional PASTE2 results on simulated data. Label Transfer ARI of the alignment result versus the
added pseudocount (�) for PASTE2 ↵ = 0 (gene expression information only), PASTE2 ↵ = 1 (spatial information
only), PASTE2 ↵ = 0.1 (both), and PASTE (full alignment), for overlap percentages 30% and 90%.
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Figure 7: Effect of the overlap percentage parameter s on PASTE2 results. Label Transfer ARI of the PASTE2
alignment result for varying values of the parameter s on a simulated pair with overlap percentage s = 0.5.
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a

b

Figure 8: Horizontal partial alignment tasks. a, Horizontal (red bounding boxes) subslices cropped out of four slices
from sample 3. Each pair of adjacent subslices overlap at 70% of the areas. b, LTARI of alignments of each pair of
adjacent horizontal subslices for PASTE2, PASTE, Pamona, and Tangram.

Figure 9: Spatial reconstruction of DLPFC slices. a, Optimal projection of vertical subslices of sample 3 slice AB
based on PASTE alignment. b, PASTE2 3D reconstruction of the tissue of sample 3 from four horizontal partial slices.
Note that z-axis is not to scale.
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[16]: plot_slices_overlap([lr_patient1_sliceB_aligned, lr_patient1_sliceC_aligned])

3

[17]: plot_slices_overlap([lr_patient1_sliceC_aligned, lr_patient1_sliceD_aligned])

[ ]:

[ ]: """
Patient2, LR
"""

[18]: lr_patient2_df = pd.read_csv(filepath_or_buffer='/n/fs/ragr-data/users/xinhao/
��DLPFC/sim/stutility/pat-2-all-slices-STutil-coords-default-lr.csv')

lr_patient2_sliceA_df = lr_patient2_df[lr_patient2_df["sample"] == 1]

4

lr_patient2_sliceB_df = lr_patient2_df[lr_patient2_df["sample"] == 2]
lr_patient2_sliceC_df = lr_patient2_df[lr_patient2_df["sample"] == 3]
lr_patient2_sliceD_df = lr_patient2_df[lr_patient2_df["sample"] == 4]

lr_patient2_sliceA_aligned = fill_new_coordinate(151669, lr_patient2_sliceA_df)
lr_patient2_sliceB_aligned = fill_new_coordinate(151670, lr_patient2_sliceB_df)
lr_patient2_sliceC_aligned = fill_new_coordinate(151671, lr_patient2_sliceC_df)
lr_patient2_sliceD_aligned = fill_new_coordinate(151672, lr_patient2_sliceD_df)

[21]: plot_slices_overlap([lr_patient2_sliceA_aligned, lr_patient2_sliceB_aligned])

[22]: plot_slices_overlap([lr_patient2_sliceB_aligned, lr_patient2_sliceC_aligned])

5

[25]: plot_slices_overlap([lr_patient2_sliceC_aligned, lr_patient2_sliceD_aligned])

6

[ ]:

[ ]:

[ ]: """
Patient1, UB
"""

[27]: ub_patient1_df = pd.read_csv(filepath_or_buffer='/n/fs/ragr-data/users/xinhao/
��DLPFC/sim/stutility/pat-1-all-slices-STutil-coords-default-ub.csv')

ub_patient1_sliceA_df = ub_patient1_df[ub_patient1_df["sample"] == 1]
ub_patient1_sliceB_df = ub_patient1_df[ub_patient1_df["sample"] == 2]
ub_patient1_sliceC_df = ub_patient1_df[ub_patient1_df["sample"] == 3]

7

9

[33]: plot_slices_overlap([ub_patient1_sliceB_aligned, ub_patient1_sliceC_aligned])

[34]: plot_slices_overlap([ub_patient1_sliceC_aligned, ub_patient1_sliceD_aligned])

10

11

13

[37]: plot_slices_overlap([ub_patient2_sliceB_aligned, ub_patient2_sliceC_aligned])

14

16Figure 10: Alignment results of STUtility on partial DLPFC slices. Each pair of adjacent vertical and horizontal
partial slices aligned by STUtility. Each pair is plotted according to the aligned coordinates output by STUtility.
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Figure 11: Running time of four methods on DLPFC sample 3. The running time of PASTE2, PASTE, Pamona, and
Tangram on the vertical subslice pairs of DLPFC sample 3. The running time of PASTE2 is broken into two parts: time
spent on the GLM-PCA subroutine by calling another library, and the time spent on the PASTE2 conditional gradient
optimization procedure.
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a

b

Figure 12: PASTE2 estimation of overlap percentages on simulated and real DLPFC slices. a, PASTE2 estimation
of overlap percentages for simulated pairs of slices with four different overlap percentages, each with four gene
expression noise levels. The red dotted line denotes the ground truth. b, PASTE2 estimation of overlap percentages
of horizontal and vertical subslices cropped from real DLPFC slices. The red dotted line denotes the 70% reference
overlap.

Figure 13: PASTE2 3D reconstruction of sample 1 pair BC. a, Reconstruction based on PASTE2 alignment with
input s = 0.7. b, Reconstruction based on PASTE2 alignment with input s = 0.3.
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slice A slice B

subslice A subslice B subslice A subslice B

a b

c d

Figure 14: Effect of histological image information on alignment of horizontal subslices of sample 3. a, Comparing
LTARI of PASTE2 alignments using expression information only with both expression and image information, for
horizontal subslices of DLPFC sample 3. Spatial information is used in both modes. b, Histological images of sample
3 slice A and slice B. The red boxes bound the horizontal subslices cropped for partial alignment. The lower part of
subslice A overlaps with the upper part of slice B. c, Visualization of PASTE2 alignment of the subslice pair when using
gene expression information only. Yellow spots are spots that PASTE2 chooses to align, and blue spots are decided
non-overlapping. The black lines connect pairs of spots aligned by PASTE2 with high weight. d, Visualization of
PASTE2 alignment of the subslice pair when using both gene expression and histological image information.
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Figure 15: Stereo-seq slices of E14-16 Drosophila embryo. Visualization of 16 slices of E14-16 Drosophila embryo.
Coloring of spots is according to cell type annotations in [47].
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Figure 16: Cell type compositions of slice 7 and slice 8 before and after alignment. a, Cell type compositions of
original slice 7 and slice 8. Both carcass and salivary gland cells show large imbalance between the two slices. b, Cell
type compositions of the aligned regions in slice 7 and slice 8.
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Figure 17: PASTE2 alignment of Drosophila embryo slice 14 and slice 15. a, Visualization of the two slices before
alignment. Slice 15 has a stripe of carcass cells (orange color) that is not present in slice 14. b, Visualization of the spots
from the two slices that are chosen to be aligned by PASTE2. The orange spots are left out. c, The PASTE2 alignment.
Yellow spots are spots that PASTE2 chooses to align, and blue spots are decided non-overlapping. The black lines
denote the actual spot-spot alignment. d, Optimal projection of slice 14 onto slice 15 based on the PASTE2 alignment.

Figure 18: PASTE alignment of Drosophila embryo slice 14 and slice 15. The black lines denote the actual spot-spot
alignment. The carcass (orange) spots on slice 15 are mapped arbitrarily.
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Figure 19: Comparison of the results of four methods aligning each pair of adjacent slices of the Drosophila
embryo. LTARI of pairwise alignments computed by PASTE2, PASTE, Pamona, and Tangram for each pair of adjacent
slices.
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