Supplementary Data

Convergent behavior of extended stalk regions from staphylococcal surface proteins with widely divergent sequence patterns

Alexander E. Yarawsky^{1#}, Andrea L. Ori^{1,2†}, Lance R. English^{3‡}, Steven T. Whitten³, and Andrew B. Herr^{1,4,5}

Affiliations:

¹ Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA

² Medical Sciences Baccalaureate Program, University of Cincinnati, Cincinnati, OH 45267, USA

³ Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA

⁴ Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA

⁵ Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA

[#] Current affiliation: BioAnalysis, LLC, Philadelphia, PA 19134, USA

[†] Current affiliation: Graduate Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA

[‡] Current affiliation: Department of Physical Sciences, Temple College, Temple, TX 76502, USA

Correspondence to Andrew B. Herr: Division of Immunobiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA. <u>andrew.herr@cchmc.org</u>

Supplementary data files present in this document include:

1. Supplementary Tables S1—S3

Supplementary Tables

Table S1. Sequence-based parameters of IDP dataset. The dataset is reproduced from Tomasso, et al. [1]. Parameters listed here were calculated using a program provided by Steven Whitten, based on Tomasso, et al. [1]. Shaded IDPs are from the current study. IDPs are sorted by descending f_{PPII} .

		Net	Rh	Rh	Rh	R_{h}^{a}	
IDP	Ν	charge	(coil)	(PPII)	(PPII charge)	(experimental)	<i>f</i> _{PPII}
Aap-PGR	135	-7	25.64	38.50	37.84	37.06	0.5350
p53(1-93)	93	-15	21.24	29.51	30.56	32.4	0.4890
SasG-PGR	69	+7	18.27	24.56	24.43	24.8	0.4761
p53(1-93) ALA-	93	-15	21.24	28.66	29.70	30.4	0.4581
p53 TAD	73	-14	18.80	24.79	25.84	23.8	0.4500
Aap-Arpts	189	-29	30.38	41.26	44.06	40.8	0.4190
Securin	202	-1	31.41	42.57	40.45	39.7	0.4130
PDE-γ	87	+4	20.54	26.51	25.70	24.8	0.4122
Cad136	136	+9	25.73	33.77	33.45	28.1	0.4025
HIF1-α-403	202	-29	31.41	42.13	44.86	44.3	0.4024
Tau-K45	198	+19	31.10	41.52	42.53	45	0.3988
HIF1-α-530	170	-10	28.80	37.81	37.44	38.3	0.3899
Fos-AD	168	-16	28.62	37.17	37.84	35	0.3783
ShB-C	146	-4	26.67	34.32	33.06	32.9	0.3764
α-synuclein	140	-9	26.11	33.47	33.12	28.2	0.3744
Mlph(147-403)	260	-28	35.68	47.00	49.24	49	0.3703
CFTR-R-region	189	-5	30.38	39.18	37.82	32	0.3644
p57-ID	73	-6	18.80	23.14	22.80	24	0.3636
prothymosin-α	110	-43	23.12	29.02	34.77	33.7	0.3633
LJIDP1	94	+4	21.36	26.46	25.59	24.52	0.3565
Mlph(147-240)	97	-15	21.70	26.85	27.86	28	0.3528
SNAP25	206	-14	31.73	40.60	40.70	39.7	0.3513
Hdm2-ABD	97	-29	21.70	26.47	29.91	25.7	0.3345
SdrC-SD	62	-16	17.31	20.64	22.15	21.1	0.3294
Vmw65	89	-19	20.78	25.13	26.90	28	0.3278
p53(1-93) PRO-	93	-15	21.24	24.93	25.97	27.4	0.2832
SD-30mer	30	-15	12.01	13.45	15.16	ND ^b	0.2700

^a Reported in Å. Values in gray cells were as determined in this manuscript or [2]; values in white cells are reproduced from [1].

^b ND, not determined.

Table S2. The sequence of IDPs used in PPII and R_h predictions. IDP sequences (other than those from the current study - shaded) are from Tomasso, et al. supplementary material [1].

IDP	Sequence
p53(1-93)	MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLS PDDIEQWFTEDPGPDEAPRMPEAAPPVAPAPAAPTPAAPAPAPSW PL
p53(1-93) ALA-	MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQGMDDLMLS PDDIEQWFTEDPGPDEGPRMPEGGPPVGPGPGGPTPGGPGPGPS WPL
p53(1-93) PRO-	MEEGQSDGSVEGGLSQETFSDLWKLLGENNVLSGLGSQAMDDLML SGDDIEQWFTEDGGGDEAGRMGEAAGGVAGAGAAGTGAAGAGAG SWGL
p53 TAD	MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLS PDDIEQWFTEDPGPDEAPRMPEAAPRV
Vmw65	GSAGHTRRLSTAPPTDVSLGDELHLDGEDVAMAHADALDDFDLDML GDGDSPGPGFTPHDSAPYGALDMADFEFEQMFTDALGIDEYGG
Hdm2-ABD	ERSSSSESTGTPSNPDLDAGVSEHSGDWLDQDSVSDQFSVEFEVE SLDSEDYSLSEEGQELSDEDDEVYQVTVYQAGESDTDSFEEDPEIS LADYWK
prothymosin-α	MSDAAVDTSSEITTKDLKEKKEVVEEAENGRDAPANGNANEENGEQ EADNEVDEEEEEGGEEEEEEEGDGEEEDGDEDEEAESATGKRAA EDDEDDDVDTKKQKTDEDD
HIF1-α-403	PAAGDTIISLDFGSNDTETDDQQLEEVPLYNDVMLPSPNEKLQNINLA MSPLPTAETPKPLRSSADPALNQEVALKLEPNPESLELSFTMPQIQD QTPSPSDGSTRQSSPEPNSPSEYCFYVDSDMVNEFKLELVEKLFAE DTEAKNPFSTQDTDLDLEMLAPYIPMDDDFQLRSFDQLSPLESSSAS PESASPQSTVTVFQ
Fos-AD	GSHMSVASLDLTGGLPEVATPESEEAFTLPLLNDPEPKPSVEPVKSI SSMELKTEPFDDFLFPASSRPSGSETARSVPDMDLSGSFYAADWEP LHSGSLGMGPMATELEPLCTPVVTCTPSCTAYTSSFVFTYPEADSFP SCAAAHRKGSSSNEPSSDSLSSPTLLAL
Mlph(147-240)	RLQGGGGSEPSLEEGNGDSEQTDEDGDLDTEARDQPLNSKKKKRL LSFRDVDFEEDSDHLVQPCSQTLGLSSVPESAHSLQSLSGEPYSED TTSLEP
Tau-K45	MSSPGSPGTPGSRSRTPSLPTPPTREPKKVAVVRTPPKSPSSAKSR LQTAPVPMPDLKNVKSKIGSTENLKHQPGGGKVQIINKKLDLSNVQS KCGSKDNIKHVPGGGSVQIVYKPVDLSKVTSKCGSLGNIHHKPGGG QVEVKSEKLDFKDRVQSKIGSLDNITHVPGGGNKKIETHKLTFRENA KAKTDHGAEIVY
Mlph(147-403)	RLQGGGGSEPSLEEGNGDSEQTDEDGDLDTEARDQPLNSKKKKRL LSFRDVDFEEDSDHLVQPCSQTLGLSSVPESAHSLQSLSGEPYSED TTSLEPEGLEETGARALGCRPSPEVQPCSPLPSGEDAHAELDSPAA SCKSAFGTTAMPGTDDVRGKHLPSQYLADVDTSDEDSIQGPRAASQ HSKRRARTVPETQILELNKRMSAVEHLLVHLENTVLPPSAQEPTVET HPSADTEEETLRRRLEELTSNISGSSTSSE
p57-ID	VRTSACRSLFGPVDHEELSRELQARLAELNAEDQNRWDYDFQQDM PLRGPGRLQWTEVDSDSVPAFYRETVQV
PDE-γ	MNLEPPKAEIRSATRVMGGPVTPRKGPPKFKQRQTRQFKSKPPKK GVQGFGDDIPGMEGLGTDITVICPWEAFNHLELHELAQYGII

LJIDP1	MARSFTNIKAISALVAEEFSNSLARRGYAATAQSAGRVGASMSGKM GSTKSGEEKAAAREKVSWVPDPVTGYYKPENIKEIDVAELRSAVLGK
	N
Cad136	RLEQYTSAVVGNKAAKPAKPAASDLPVPAEGVRNIKSMWEKGNVFS
	SPGGTGTPNKETAGLKVGVSSRINEWLTKTPEGNKSPAPKPSDLRP
	GDVSGKRNLWEKQSVEKPAASSSKVTATGKKSETNGLRQFEKEP
α-synuclein	MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTK
	EGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAA
	TGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDY
	EPEA
CFTR-R-region	GAMESAERRNSILTETLHRFSLEGDAPVSWTETKKQSFKQTGEFGE
	KRKNSILNPINSIRKFSIVQKTPLQMNGIEEDSDEPLERRLSLVPDSEQ
	GEAILPRISVISTGPTLQARRRQSVLNLMTHSVNQGQNIHRKTTASTR
	KVSLAPQANLTELDIYSRRLSQETGLEISEEINEEDLKECLFDDME
SNAP25	MAEDADMRNELEEMORRADQLADESLESTRRMLQLVEESKDAGIR
	TLVMLDEQGEQLERIEEGMDQINKDMKEAEKNLTDLGKFCGLCVCP
	CNKI KSSDAYKKAWGNNQDGVVASQPARVVDEREQMAISGGEIRR
	KADSNKTRIDEANORATKMLGSG
ShB-C	MTLGQHMKKSSLSESSSDMMDLDDGVESTPGLTETHPGRSAVAPF
	LGAQQQQQQPVASSLSMSIDKQLQHPLQQLTQTQLYQQQQQQQQ
	HNNALAVSIETDV
HIF1-α-530	NEFKLELVEKLFAEDTEAKNPFSTQDTDLDLEMLAPYIPMDDDFQLR
	SFDQLSPLESSSASPESASPQSTVTVFQQTQIQEPTANATTTTATTD
	ELKTVTKDRMEDIKILIASPSPTHIHKETTSATSSPYRDTQSRTASPNR
	AGKGVIEQTEKSHPRSPNVLSVALSQR
Securin	MATLIYVDKENGEPGTRVVAKDGLKLGSGPSIKALDGRSQVSTPRF
	GKTFDAPPALPKATRKALGTVNRATEKSVKTKGPLKQKQPSFSAKK
	MTEKTVKAKSSVPASDDAYPEIEKFFPFNPLDFESFDLPEEHQIAHLP
	LSGVPLMILDEERELEKLFQLGPPSPVKMPSPPWESNLLQSPSSILS
	TLDVELPPVCCDIDI
Aap-PGR	AEPGKPAEPGKPAEPGKPAEPGTPAEPGKPAEPGTPAEPGKPAEP
	GKPAEPGKPAEPGKPAEPGTPAEPGKPAEPGKPAEPGKP
	AEPGTPAEPGKPAESGKPVEPGTPAQSGAPEQPNRSMHSTDNKNQ
SasG-PGR	PKDPKGPENPEKPSRPTHPSGPVNPNNPGLSKDRAKPNGPVHSMD
	KNDKVKKSKIAKESVANQEKKRAE
Aap-Arpts	NNEAPQMSSTLQAEEGSNAEAPQSEPTKAEEGGNAEAAQSEPTKA
	EEGGNAEAPQSEPTKAEEGGNAEAAQSEPTKTEEGSNVKAAQSEP
	TKAEEGSNAEAPQSEPTKTEEGSNAKAAQSEPTKAEEGGNAEAAQ
	SEPTKTEEGSNAEAPQSEPTKAEEGGNAEAPQSEPTKTEEGGNAE
	APNVPTIKA
SdrC-SD	SD
	PAKPMSTVKDQHKTAKA
SD-30mer	SDSDSDSDSDSDSDSDSDSDSDSDSDSDSD

Table S3: The sequence of low-complexity regions from Staphylococcal CWA proteins from Table 5. Sequences start at the beginning of the consensus LCR region identified by the PlaToLoCo server [3] and extend through the sequence immediately upstream of the LPXTG sortase motif. See Materials and Methods for further details.

Protein	Sequence
SD-rich L	_CRs
SdrC	TSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSD
	SD
	DS
	NDSDSDSDSDSDAGKHTPAKPMSTVKDQHKTAKA
SdrD	TSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSD
	SD
	DS
	HNKAKA
SdrE	TSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSD
	SD
	DS
	AGKHTPVKPMSTTKDHHNKAKA
SdrF	TSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSD
(S. epi)	SD
(I ²)	DS
	NDSDSDSDSDSDAGKHTPAKPMSTVKDQHKTAKA
SdrG	TSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSD
(S. epi)	SD
(DS
	ΤΑΚΑ
Pls	DSDADSDSDADSDSDADSDSDADSDSDSDSDSDSDSDSD
	SDSDADSDSDADSDSDADSDSDSDSDSDSDSDSDSDSDS
	DS
	SDSDADSDSDADSDSDSDSDSDSDSDSDSDSDSDSDSDS
	SDSDSDSDSDSDSDSDSDSDSDSDSDSDSDADRDHNDKTDKPNNKE
ClfA	VPEQPDEPGEIEPIPEDSDSDPGSDSGSDSNSDSGSDSGSDSTSDSGSDSASDS
0	
	SD
	SESGSNNNV/PPNSPKNGTNASNKNFAKDSKEP
ClfB	VDPEPSPDPEPEPTPDPEPSPDPEPEPSPDPDPDSDSDSDSDSGSDSDSGSDSDSF
•=	SDSDSDSDSDSDSDSDSSDSDSSDSDSDSDSDSDSDSDSD
	DSDSDSESDSDSESDSESDSDSDSDSDSDSDSDSDSDSD
	SESDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDS
	NPKGEVNHSNKVSKQHKTDA
SesJ	FEDSESDSSSESESDSESHSDSESHSDSESTSESDSESHSDSESTSESDSESHS
(S. eni)	DSESDSDSESTSESDSESHSDSESDSDSESTSESDSESHSDSESHSDSFSTSFS
(0),	DSESHSDSESDSDSESTSESDSESHSDSESHSDSESTSESDSESHSDSESDSDS
	ESTSESDSESHSDSESDSDSESTSESDSESHSDSESDSDSESTSESGSESHSNS
	F
1	

Pro-rich LCRs		
Aap ^a	PTKAEPGKPAEPGKPAEPGKPAEPGTPAEPGKPAEPGTPAEPGKPAEPGKPAEP	
(S. epi)	GKPAEPGKPAEPGTPAEPGTPAEPGKPAEPGTPAEPGKPAEPGTPAEPGKPAES	
	GKPVEPGTPAQSGAPEQPNRSMHSTDNKNQ	
SasG	PKDPKGPENPEKPSRPTHPSGPVNPNNPGLSKDRAKPNGPVHSMDKNDKVKKS	
	KIAKESVANQEKKRAE	
CNA	PEKPNKPIYPEKPKDKTPPNKPDHSNKVRPTPPDEPSKVDKVDQPKDNKTKPENP	
	LKE	
FnbpA	PPIVPPTPPTPEVPSEPETPTPPTPEVPSEPETPTPPTPEVPSEPETPTPPTPEVPA	
	EPGKPVPPAKEEPKKPSKPVEQGKVVTPVIEINEKVKAVAPTKKPQSKKSE	
FnbpB	PPIVPPTPPTPEVPSEPETPTPPTPEVPSEPETPTPPTPEVPTEPGKPIPPAKEEPK	
	KPSKPVEQGKVVTPVIEINEKVKAVVPTKKAQSKKSE	
Other LCRs		
SraP	MSGSQSISDSTSTSMSGSTSTSESNSMHPSDSMSMHHTHSTSTSRLSSEATTST	
(SasA)	SESQSTLSATSEVTKHNGTPAQSEKR	
FmtB	NNKATQNDGANASPATVSNGSNSANQDMLNVTNTDDHQAKTKSAQQGKVNKAK	
(SasB)	QQAKT	
SasC	DTAIGQIDQDRSNAQVDKTASLNLQTIHDLDVHPIKKPDAEKTINDDLARVTALVQN	
	YRKVSDRNKADALKAITALKLQMDEELKTARTNADVDAVLKRFNVALSDIEAVITEK	
	ENSLLRIDNIAQQTYAKFKAIATPEQLAKVKVLIDQYVADGNRMIDEDATLNDIKQH	
	TQFIVDEILAIKLPAEATKVSPKEIQPAPKVCTPIKKEETHESRKVEKE	

^a The Aap sequence listed here is based on the consensus identification of the LCR region by the PlaToLoCo server [3], as for all other sequences in Table 5. This sequence differs slightly from the Aap construct used for experimental approaches (compare to Figure 1).

References

- Tomasso ME, Tarver MJ, Devarajan D, Whitten ST. Hydrodynamic Radii of Intrinsically Disordered Proteins Determined from Experimental Polyproline II Propensities. PLoS computational biology. 2016;12(1):e1004686. Epub 2016/01/05. doi: 10.1371/journal.pcbi.1004686. PubMed PMID: 26727467
- Yarawsky AE, English LR, Whitten ST, Herr AB. The Proline/Glycine-Rich Region of the Biofilm Adhesion Protein Aap Forms an Extended Stalk that Resists Compaction. Journal of molecular biology. 2017;429(2):261-79. Epub 2016/11/29. doi: 10.1016/j.jmb.2016.11.017. PubMed PMID: 27890783
- 3. Jarnot P, Ziemska-Legiecka J, Dobson L, Merski M, Mier P, Andrade-Navarro MA, et al. PlaToLoCo: the first web meta-server for visualization and annotation of low complexity regions in proteins. Nucleic Acids Research. 2020;48(W1):W77-W84. doi: 10.1093/nar/gkaa339