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Supplemental Figure 1: Comparing raw pre-merged labels with merged labels. Column left 
shows the raw bounding box labels. Box coordinates were derived from traditional water-
shedding methods unassisted by human intelligence. For each identified class shown, at least two 



out of five expert annotators positively labeled the pathology. Column right shows the merged 
bounding box labels used to train model version one.  
 
  



 
Supplemental Figure 2: Model version one performance and example image predictions. 
Top: Average precisions over the validation set for various IOU thresholds. The AP at IOU=0.90 
is undefined for CAA. Bottom: Example images are pulled from the validation set. Cored 
prediction: red, Cored label: black “*”; CAA prediction: blue, CAA label: black “@”. It is 
important to note that the label data is sparse and does not contain every pathology (Methods).   



 
Supplemental Figure 3: Examples of different IOU values for overlaps. IOU values are 
shown for any overlaps between predicted bounding box (blue for CAA, red for Cored) and label 
bounding box (black). CAA labels are denoted by the “@” symbol, while Cored labels are 
denoted by the “*” symbol.  



Supplemental Figure 4: Average precision by stain. We compute average precision on the 



prospective validation set stratified by stain. At certain IOU thresholds, there are no true positive 
cases and correspondingly no precision scores.   



 
Supplemental Figure 5: Schematic of training and prospective validation datasets. We used 
a total of 29 WSIs from three institutions for training all models from Wong et al1. We used a 
separate new dataset of 55 WSIs from three institutions for prospective validation. To calculate 
comparison versus CERAD-like scores (Figure 4), we used a third dataset of 62 WSIs from Tang 
et al2. 
  



 

Architecture x86_64 

CPU op-mode(s)  32-bit, 64-bit 

Byte Order Little Endian 

CPUs  64 

Thread(s) per core  2 

Core(s) per socket 16 

Socket(s)  2 

NUMA node(s) 2 

Vendor ID GenuineIntel 

CPU family  6 

Model                  79 

Model name Intel(R) Xeon(R) CPU E5-2697A v4 @ 
2.60GHz 

Stepping 1 

CPU MHz 1200.024 

CPU max MHz           3600.0000 

CPU min MHz 1200.0000 

BogoMIPS             5200.02 

Virtualization VT-x 

L1d cache           32K 
Supplemental Table 1. CPU specifications. 
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