Supporting Information

Green and efficient one-pot three-component synthesis of novel drug-like furo[2,3-*d*]pyrimidines as potential active site inhibitors and putative allosteric hotspots modulators of both SARS-CoV-2 M^{Pro} and PL^{Pro}

Hossein Mousavi^{a,*}, Behzad Zeynizadeh^a, Mehdi Rimaz^b

^a Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran ^b Department of Chemistry, Payame Noor University, PO Box 19395-3697, Tehran, Iran Corresponding authors Email: <u>1hossein.mousavi@gmail.com</u>

Figure S1. Characterized ¹H NMR (A) and ${}^{13}C{}^{1}H$ NMR (B) spectra of 4a, respectively.

Figure S2. Views of the metal-free (**A**) and Zn^{II}-containing (**B**) SARS-CoV-2 M^{Pro} active site, respectively.

Figure S3. General perspective of the predicted position of **4g** in the metal-free active site of the SARS-CoV-2 M^{Pro} (PDB ID: 7AEH).

Figure S4. General perspective of the predicted position of **4g** in the Zn^{II}-containing active site of the SARS-CoV-2 M^{Pro} (PDB ID: 7MHK).

Figure S5. General perspective of the predicted position of **4g** in the allosteric site I (dimerization site) of the SARS-CoV-2 M^{Pro} (PDB ID: 7VLP).

Figure S6. General perspective of the predicted position of **4g** in the allosteric site II (cryptic site) of the SARS-CoV-2 M^{Pro} (PDB ID: 7MHK).

Figure S7. General perspective of the predicted position of **4g** in the active site of the SARS-CoV-2 PL^{Pro} (PDB ID: 6WX4).

Figure S8. General perspective of the predicted position of **4g** in the allosteric site of the SARS-CoV-2 PL^{Pro} (PDB ID: 6WX4).

Entry	Compound	ng energy (-Kcal/mol)	Interaction	
		Bindi	(number / distance)	Other interactions
1	4a	-7.4	Thr25 (1 / 2.884 Å) His41 (1 / 3.079 Å) Ser46 (1 / 3.494 Å) Gly143 (1 / 2.017 Å) His164 (1 / 2.758 Å)	His41 (Carbon hydrogen bond; π–π Stacked; π–Alkyl) Cys44 (Carbon hydrogen bond; Alkyl) Met49 (Alkyl; π–Sulfur) Asn142 (Carbon hydrogen bond) Cys145 (π–Alkyl) Met165 (Alkyl)
2	4b	-7.7	Thr25 (1 / 2.906 Å) His41 (1 / 3.108 Å) Ser46 (1 / 3.483 Å) Gly143 (1 / 1.956 Å) His164 (1 / 2.786 Å)	His41 (π - π Stacked) Cys44 (Carbon hydrogen bond; Alkyl) Met49 (Alkyl; π -Sulfur) Asn142 (Carbon hydrogen bond) Cys145 (π -Alkyl) Met165 (Alkyl)
3	4c	-7.7	Thr25 (1 / 2.912 Å) His41 (1 / 3.104 Å) Gly143 (1 / 1.949 Å) His164 (1 / 2.782 Å)	His41 (π–π Stacked) Cys44 (Carbon hydrogen bond; Alkyl) Met49 (Alkyl; π–Sulfur) Asn142 (Carbon hydrogen bond) Cys145 (π–Alkyl) Met165 (Alkyl)
4	4d	-7.7	Thr25 (1 / 2.902 Å) His41 (1 / 2.966 Å) Ser46 (1 / 3.493 Å) Gly143 (1 / 1.929 Å) His164 (1 / 2.817 Å)	His41 (π - π Stacked) Cys44 (Carbon hydrogen bond; Alkyl) Met49 (Alkyl; π -Sulfur) Cys145 (π -Alkyl) Met165 (Alkyl)
5	4e	-7.4	His41 (1 / 3.160 Å) Gly143 (2 / 2.123 Å and 2.713 Å) Cys145 (1 / 3.309 Å) His164 (1 /2.654 Å)	His41 (π–π Stacked) Cys44 (Carbon hydrogen bond) Met49 (Alkyl) Asn142 (Carbon hydrogen bond) Cys145 (π–Sulfur) Met165 (Alkyl)
6	4f	-7.9	Gly143 (1 / 2.156 Å) Ser144 (4 / 2.297 Å, 2.437 Å, 2.478 Å, and 2.689 Å) Cys145 (1 / 2.341 Å) His163 (1 / 2.144 Å) Gln189 (1 / 3.020 Å)	His41 (π–Alkyl) Met49 (Alkyl) Cys145 (π–Alkyl) His163 (π–Alkyl) Met165 (Carbon hydrogen bond) Gln166 (Carbon hydrogen bond) His172 (π–Alkyl)
7	4g	-8.5	Ser144 (1 / 2.625 Å) His163 (1 / 2.415 Å)	His41 (π -Alkyl) Met49 (Alkyl) Cys145 (Alkyl; π -Alkyl) His163 (π -Alkyl) His164 (Carbon hydrogen bond) Pro168 (π -Alkyl) Gln189 (Carbon hydrogen bond; π - σ) Thr190 (Carbon hydrogen bond)
8	4h	-6.9	Gly143 (1 / 2.286 A) Cys145 (1 / 3.259 Å) Gln189 (1 / 2.952 Å)	His41 (Carbon hydrogen bond; π–Alkyl) Met49 (Alkyl) Asn142 (Carbon hydrogen bond) Cys145 (π–Alkyl) Met165 (Alkyl)

Table S1. Molecular	docking results	related to	between	4a–n ai	nd SARS-	-CoV-2 M ^{Pr}	^o metal-free	active	site
(PDB ID: 7AEH).									

Table S1. Continued.

Entry	punoduc	ergy (-Kcal/mol)	In	teraction
C		Binding en	Conventional hydrogen bond (number / distance)	Other interactions
9	4i	-7.2	Ser144 (1 / 2.504 Å) His163 (1 / 2.340 Å)	Met49 (Alkyl) Cys145 (Alkyl) His163 (π–Alkyl) His164 (Carbon hydrogen bond) Pro168 (Alkyl)
10	4j	-7.2	Ser144 (1 / 2.490 Å) His163 (1 / 2.377 Å)	Met49 (Alkyl) Cys145 (Alkyl) His163 (π–Alkyl) His164 (Carbon hydrogen bond) Pro168 (Alkyl)
11	4k	-7.2	Gly143 (1 / 2.193 Å) Ser144 (1 / 3.251 Å) His163 (1 / 2.221 Å) Gln189 (1 / 3.045 Å)	His41 (Carbon hydrogen bond; π–Alkyl) Met49 (Alkyl) Leu141 (Amide–π stacked) Asn142 (Carbon hydrogen bond) Cys145 (Alkyl; π–Alkyl) His163 (Halogen {F}) Met165 (Alkyl) Glu166 (Halogen {F})
12	41	-7.2	Ser144 (1 / 2.342 Å) His163 (1 / 2.293 Å) Glu166 (1 / 3.044 Å)	Met49 (Alkyl) Cys145 (Alkyl) His163 (π–Alkyl) His164 (Carbon hydrogen bond) Glu166 (Carbon hydrogen bond; π–Donor hydrogen bond) Pro168 (Alkyl; π–Alkyl)
13	4m	-7.3	Gly143 (1 / 2.730 Å) Ser144 (2 / 2.889 Å and 3.371 Å) His163 (2 / 2.349 Å and 3.027 Å) Glu166 (1 / 2.146 Å) Gln189 (1 / 2.779 Å)	His41 (Carbon hydrogen bond; π – σ) Met49 (Alkyl) Asn142 (Carbon hydrogen bond) Cys145 (Alkyl; π –Alkyl) His163 (π –Alkyl) His164 (Carbon hydrogen bond) Met165 (Alkyl)
14	4n	-7.5	Ser144 (1 / 2.547 Å) His163 (1 / 2.329 Å)	Met49 (Alkyl) Cys145 (Alkyl) His163 (π -Alkyl) His164 (Carbon hydrogen bond) Gln189 (π - σ) Thr190 (Carbon hydrogen bond)

	11111	x).				
Entry Compound		cenergy (-Kcal/mol)	Int	teraction		
		Binding	Conventional hydrogen bond (number / distance)	Other interactions		
1	4a	-7.2	His41 (1 / 3.369 Å) Gln189 (1 / 2.192 Å)	Thr26 (Carbon hydrogen bond) Ser46 (Carbon hydrogen bond) Met49 (π–Alkyl) Cys145 (π–Alkyl; π–Sulfur) Met165 (Carbon hydrogen bond) Zn503 (Metal–acceptor)		
2	4b	-7.2	His41 (1 / 3.433 Å) Gly143 (1 / 2.709 Å) Cys145 (2 / 2.401 Å and 3.239 Å) Glu166 (3 / 2.757 Å, 2.880 Å, and 3.253 Å)	Leu27 (Alkyl) His41 (Carbon hydrogen bond; π -Alkyl) Met49 (Alkyl) Leu141 (Amide- π stacked; Alkyl) Asn142 (Carbon hydrogen bond) Cys145 (Alkyl; π -Alkyl) Met165 (Carbon hydrogen bond) Glu166 (π -Anion) Zn503 (π -Cation)		
3	4c	-7.2	Gly143 (1 / 2.659 Å) Cys145 (2 / 2.404 Å, 3.150 Å, and 3.186 Å) His163 (1 / 3.309 Å) Glu166 (3 / 2.794 Å, 2.904 Å, and 3.327 Å) Gln189 (1 / 3.332 Å)	Thr26 (Carbon hydrogen bond) Leu27 (Alkyl) His41 (Carbon hydrogen bond; π -Alkyl) Met49 (Alkyl) Leu141 (Amide– π stacked) Asn142 (Carbon hydrogen bond) Cys145 (Alkyl; π -Alkyl) Met165 (Carbon hydrogen bond) Glu166 (π -Anion) Zn503 (π -Cation)		
4	4d	-7.1	His41 (1 / 2.821 Å) Ser144 (1 / 3.409 Å) Cys145 (1 / 3.372 Å) Gln189 (1 / 2.355 Å)	Thr26 (Carbon hydrogen bond) Leu27 (Alkyl) His41 (π -Alkyl) Ser46 (Carbon hydrogen bond) Met49 (π -Alkyl) Phe140 (Halogen {F}) Leu141 (Halogen {F}) Cys145 (π -Alkyl; π -Sulfur) Met165 (Carbon hydrogen bond) Zn503 (Metal-acceptor)		
5	4e	-7.6	His41 (1 / 3.353 A) Cys145 (1 / 3.458 Å)	Thr26 (Carbon hydrogen bond) Leu27 (Alkyl) Ser46 (Carbon hydrogen bond) Met49 (Alkyl; π–Alkyl) Glu166 (π–Donor hydrogen bond) Zn503 (Metal–acceptor)		
6	4f	-7.4	Leu141 (1 / 3.063 Å) Gly143 (2 / 2.332 Å and 3.122 Å) Ser144 (4 / 2.491 Å, 2.645 Å, 2.780 Å, and 3.305 Å) Cys145 (3 / 2.470 Å, 2.830 Å, and 3.128 Å) His163 (1 / 2.479 Å)	Met49 (Alkyl) Phe140 (Carbon hydrogen bond) Cys145 (π -Sulfur) His163 (π -Alkyl) Glu166 (Carbon hydrogen bond) Zn503 (Metal-acceptor)		
7	4g	-7.7	His41 (1 / 3.165 Å) Cys145 (1 / 3.099 Å) Glu166 (1 / 2.809 Å) Gln189 (2 / 2.532 Å and 2.890 Å)	Met49 (Alkyl; π -Alkyl) Phe140 (Carbon hydrogen bond) Leu141 (Carbon hydrogen bond) Cys145 (π -Alkyl) His163 (π -Alkyl) Met165 (Carbon hydrogen bond) Zn503 (π -Cation)		

Table S2. Molecular docking results between **4a**–**n** and SARS-CoV-2 M^{Pro} Zn^{II}-containing active site (PDB ID: 7MHK).

Table S2. Continued.

Entry	punodu	ergy (-Kcal/mol)	In	teraction	
	Ŭ	Binding en	Conventional hydrogen bond (number / distance)	Other interactions	
8	4h	-6.5	Cys145 (1 / 3.044 Å)	Thr26 (Carbon hydrogen bond) Ser46 (Carbon hydrogen bond) Met49 (π–Alkyl) Asn142 (Carbon hydrogen bond) Cys145 (Alkyl; π–Alkyl)	
9	4i	-6.6	Thr24 (1 / 2.113 Å) Thr25 (1 / 3.115 Å) Thr26 (1 / 2.023 Å) Gly143 (1 / 3.007 Å)	Thr26 (Carbon hydrogen bond) His41 (π -Alkyl) Thr45 (Carbon hydrogen bond) Met49 (Alkyl) Asn142 (Amide– π stacked) Gly143 (Carbon hydrogen bond) Cys145 (Alkyl)	
10	4j	-6.6	Thr24 (1 / 2.056 Å) Thr25 (1 / 3.124 Å) Thr26 (1 / 1.986 Å) Gly143 (1 / 3.061 Å)	Thr25 (Carbon hydrogen bond) Thr26 (Carbon hydrogen bond) His41 (π -Alkyl) Thr45 (Carbon hydrogen bond) Met49 (Alkyl) Asn142 (Amide– π stacked) Gly143 (Carbon hydrogen bond) Cys145 (Alkyl)	
11	4k	-6.8	Cys145 (1 / 3.064 Å) His164 (1 / 3.389 Å)	Thr26 (Carbon hydrogen bond) Ser46 (Carbon hydrogen bond) Met49 (π–Alkyl) Asn142 (Carbon hydrogen bond) Cys145 (Alkyl; π–Alkyl)	
12	41	-6.7	His41 (1 / 3.194 Å) Gly143 (1 / 3.479 Å) Cys145 (1 / 2.810 Å) Glu166 (1 / 3.097 Å) Gln189 (2 / 2.180 Å and 3.210 Å)	Leu27 (Alkyl) His41 (π -Alkyl) Met49 (π -Alkyl) Phe140 (Carbon hydrogen bond) Leu141 (Carbon hydrogen bond) Cys145 (Alkyl; π -Alkyl; π -Sulfur) His163 (π -Alkyl) Met165 (Carbon hydrogen bond) Zn503 (π -Cation; Metal-acceptor)	
13	4m	-7.2	Phe140 (1 / 2.267 Å) Leu141 (1 / 2.965 Å) Asn142 (3 / 2.303 Å, 3.205 Å, and 3.390 Å) Ser144 (1 / 2.764 Å) His163 (1 / 2.470 Å)	Leu27 (Alkyl) His41 (π–Alkyl) Ser46 (Carbon hydrogen bond) Asn142 (π–Donor hydrogen bond) Cys145 (π–Alkyl)	
14	4n	-7.4	Thr25 (1 / 2.687 Å) His41 (1 / 2.363 Å) Ser46 (1 / 2.952 Å) Cys145 (2 / 3.079 Å and 3.391 Å)	His41 (π–Alkyl) Thr45 (Carbon hydrogen bond; Amide–π stacked) Ser46 (van der Waals) Met49 (π–Alkyl) Leu141 (Carbon hydrogen bond) Cys145 (Alkyl; π–Alkyl)	

Tabl	le S3	Mole	cular docking results bet	ween 4a–n and	SARS-CoV-2 M ^F	ro allosteric site I	(PDB ID: 7VLP).

Entry	punodu	Binding energy (-Kcal/mol)	Inte	raction
	Co		Conventional hydrogen bond (number / distance)	Other interactions
1	4a	-6.1	Gly302A (2 / 2.095 Å and 2.912 Å) Asn142B (1 / 2.392 Å)	Gly302A (Carbon hydrogen bond) Asn142B (π -Donor hydrogen bond; π - σ)
2	4b	-6	Gly302A (2 / 2.113 Å and 2.957 Å) Asn142B (2 / 2.629 Å and 2.848 Å)	Gly302A (Carbon hydrogen bond) Asn142B (π – σ)
3	4c	-6.1	Gly302A (2 / 2.112 Å and 2.939 Å) Asn142B (2 / 2.615 Å and 2.705 Å)	Gly302A (Carbon hydrogen bond) Asn142B (π - σ)
4	4d	-6.1	Gly302A (2 / 2.102 Å and 2.941 Å) Asn142B (2 / 2.552 Å and 2.614 Å)	Gly302A (Carbon hydrogen bond) Asn142B (π – σ)
5	4e	-6	Gly302A (2 / 2.098 Å and 2.912 Å) Asn142B (2 / 2.412 Å, 3.225 Å, and 3.442 Å)	Gly302A (Carbon hydrogen bond) Asn141B (Alkyl; π -Alkyl) Asn142B (π - σ)
6	4f	-6.3	Gly302A (2 / 2.193 Å and 2.893 Å) Asn142B (2 / 2.294 Å, 2.336 Å, 2.763 Å, and 3.319 Å)	Gly302A (Carbon hydrogen bond) Asn141B (Alkyl) Asn142B (π-σ)
7	4g	-6.4	Gly302A (2 / 2.065 Å and 2.922 Å) Asn142B (2 / 2.179 Å, 2.398 Å, and 3.379 Å)	Gly302A (Carbon hydrogen bond) Asn142B (π - σ)
8	4h	-5.3	Tyr154A (2 / 2.032 Å and 3.112 Å)	Val297A (Alkyl) Arg298A (π–Alkyl) Val303A (π–σ; π–Alkyl)
9	4i	-5.8	Gly302A (2 / 2.022 Å and 3.166 Å) Val303A (1 / 2.994 Å) Thr304A (2 / 2.198 Å and 2.820 Å) Ser121B (1 / 3.252 Å)	Val303A (Alkyl) Tyr118B (π–Alkyl) Leu141B (Alkyl)
10	4j	-5.8	Gly302A (2 / 2.042 Å and 3.141 Å) Val303A (1 / 3.055 Å) Thr304A (2 / 2.252 Å and 2.730 Å) Ser121B (1 / 3.269 Å)	Val303A (Alkyl) Thr304A (Carbon hydrogen bond) Tyr118B (π–Alkyl) Leu141B (Alkyl)
11	4k	-5.6	Tyr154A (2 / 2.108 Å and 3.127 Å)	Val297A (Alkyl) Arg298A (π -Alkyl) Val303A (π - σ ; π -Alkyl)
12	41	-5.6	Tyr154A (2 / 1.993 Å and 3.087 Å)	Val297A (Alkyl) Arg298A (π -Alkyl) Val303A (Alkyl; π - σ ; π -Alkyl)
13	4m	-5.5	Tyr154A (2 / 2.022 Å and 3.116 Å)	Asp153A (Carbon hydrogen bond) Val297A (Alkyl) Arg298A (π -Alkyl) Gly302A (Carbon hydrogen bond) Val303A (Alkyl; π - σ ; π -Alkyl)
14	4n	-5.9	Tyr154A (2 / 1.974 Å and 3.080 Å)	Ile152A (Carbon hydrogen bond) Val297A (Alkyl) Arg298A (π -Alkyl) Gly302A (Carbon hydrogen bond) Val303A (Alkyl; π - σ ; π -Alkyl)

Entry	punoduc	ergy (-Kcal/mol)	Interaction		
	Ŭ	Binding en	Conventional hydrogen bond (number / distance)	Other interactions	
1	4a	-7.8	Gly109 (1 / 2.425 Å) Gln110 (1 / 2.918 Å) His246 (2 / 2.956 Å and 3.197 Å)	Ile200 (Alkyl) Val202 (Alkyl; π–Alkyl) Asn203 (Carbon hydrogen bond) His246 (π–π T-Shaped; π–Alkyl) Ile249 (Alkyl; π–Alkyl) Pro293 (Alkyl)	
2	4b	-7.5	His246 (3 / 3.253 Å, 3.280 Å, and 3.349 Å)	Pro108 (Alkyl; π–Alkyl) Ile200 (Alkyl) Val202 (Alkyl) Pro293 (Alkyl) Phe294 (π–Alkyl)	
3	4c	-7.5	Gln107 (1 / 3.066 Å) Gln110 (1 / 3.450 Å) His246 (3 / 3.223 Å, 3.266 Å, and 3.329 Å)	Pro108 (Alkyl; π–Alkyl) Ile200 (Alkyl) Val202 (Alkyl) Pro293 (Alkyl)	
4	4d	-7.8	Gly109 (1 / 2.570 Å) His246 (2 / 3.021 Å and 3.130 Å)	Ile200 (Alkyl) Val202 (Alkyl; π -Alkyl) Asn203 (Carbon hydrogen bond) His246 (π - π T-Shaped; π -Alkyl) Ile249 (Alkyl; π -Alkyl) Pro293 (Alkyl)	
5	4e	-7.7	His246 (2 / 2.487 Å and 3.389 Å)	Pro108 (Alkyl; π -Alkyl) Pro132 (Alkyl) Ile200 (Alkyl) Val202 (Alkyl; π -Alkyl) His246 (π - π T-Shaped) Ile249 (Alkyl; π -Alkyl) Pro293 (Alkyl) Phe294 (π -Alkyl)	
6	4f	-7.9	Gln110 (2 / 2.598 Å and 3.292 Å) Tyr111 (1 / 2.018 Å) Asn151 (1 / 2.792 Å) Arg298 (2 / 2.640 Å and 2.719 Å)	Val104 (Alkyl) Ile106 (Alkyl) Gln110 (π–Donor hydrogen bond) Ile152 (Carbon hydrogen bond) Asp153 (Carbon hydrogen bond) Arg298 (π–Donor hydrogen bond; π–Cation; Alkyl; π–Alkyl) Val303 (Alkyl) Phe305 (π–Alkyl)	
7	4g	-8.1	Lys102 (2 / 2.317 Å and 3.117 Å) Gln110 (3 / 2.380 Å, 3.343 Å, and 3.460 Å) Asn151 (4 / 2.397 Å, 2.623 Å, 3.382 Å, and 3.445 Å) Ser158 (1 / 2.895 Å) Arg298 (2/ 2.157 Å and 2.486 Å)	Lys102 (Alkyl) Val104 (Alkyl; π–Alkyl) Gln110 (Carbon hydrogen bond) Ser158 (Carbon hydrogen bond)	
8	4h	-7	Gln110 (1 / 3.222 Å) His246 (3 / 2.530 Å, 3.170 Å, and 3.292 Å)	Gly109 (Carbon hydrogen bond) Val202 (π–Alkyl) His246 (π–Donor hydrogen bond; π–π T-Shaped; π–Alkyl) Ile249 (π–Alkyl) Pro293 (π–Alkyl)	
9	4i	-7	Asn151 (1 / 3.490 Å) Asp153 (1 / 2.722 Å) Arg298 (3 / 1.868 Å, 2.321 Å, and 2.692 Å)	Phe294 (π – π T-Shaped; π –Alkyl) Val303 (Alkyl)	
10	4j	-7.3	Gln110 (3 / 2.792 Å, 2.860 Å, and 3.108 Å) Asn151 (1 / 2.320 Å) Ile152 (1 / 3.091 Å) Arg298 (2 / 3.285 Å and 3.409 Å)	Val104 (Alkyl; π–Alkyl) Ile106 (Alkyl) Gln110 (π–Donor hydrogen bond) Asp153 (Carbon hydrogen bond) Phe294 (π–Alkyl)	

Table S4. Continued.

Entry	punodu	ergy (-Kcal/mol)	Ir	iteraction
	Co Binding En		Conventional hydrogen bond (number / distance)	Other interactions
11	4k	-7.5	Gln110 (1 / 2.811 Å) Asn151 (1 / 2.358 Å) Ile152 (1 / 3.191 Å) Arg298 (2 / 3.297 Å and 3.389 Å)	Val104 (Alkyl; π–Alkyl) Ile106 (Alkyl) Gln110 (π–Donor hydrogen bond) Asp153 (Carbon hydrogen bond) Ser158 (Carbon hydrogen bond) Arg298 (π–Cation)
12	41	-6.7	Gln110 (3 / 2.561 Å, 2.711 Å, and 2.770 Å) Asn151 (4 / 2.141 Å, 2.879 Å, 3.322 Å, and 3.478 Å) Arg298 (1 / 3.363 Å)	Lys102 (Alkyl) Val104 (Alkyl; π–Alkyl) Asp153 (Carbon hydrogen bond) Ser158 (Carbon hydrogen bond) Arg298 (π–Cation) Val303 (Alkyl)
13	4m	-6.6	Gln110 (1 / 2.171 Å) Thr111 (4 / 2.262 Å, 2.902 Å, 3.322 Å, and 3.421 Å) Asn151 (1 / 3.222 Å) Arg298 (3 / 2.311 Å, 2.538 Å, and 2.871 Å)	Asp153 (Carbon hydrogen bond) Phe294 (π–Alkyl) Arg298 (π–Donor hydrogen bond; Alkyl; π–Alkyl) Val303 (Alkyl)
14	4n	-7.1	Gln110 (1 / 2.317 Å) Thr111 (1 / 3.177 Å) Asn151 (1 / 3.466 Å) Asp153 (1 / 2.528 Å) Arg298 (5 / 2.459 Å, 2.791 Å, 3.325 Å, 3.350 Å, and 3.379 Å)	Thr111 (Carbon hydrogen bond) Asp153 (π–Anion)

Entry	punoduc	ergy (-Kcal/mol)	Interaction	
	C	Binding en	Conventional hydrogen bond (number / distance)	Other interactions
1	4a	-7.5	Asp164 (1 / 3.384 Å) Tyr273 (1 / 2.651 Å)	Leu162 (Alkyl; π - σ) Gly163 (Carbon hydrogen bond) Pro248 (Alkyl) Tyr264 (π - π T-Shaped; π -Alkyl) Tyr268 (π -Alkyl)
2	4b	-7.5	Tyr268 (1 / 2.592 Å) Tyr273 (1 / 3.311 Å)	Leu162 (Carbon hydrogen bond; Alkyl) Glu167 (Carbon hydrogen bond; π -Anion) Pro248 (Alkyl) Tyr264 (π - π Stacked; π -Alkyl) Tyr273 (π -Alkyl)
3	4c	-7.8	Tyr268 (1 / 2.447 Å) Tyr273 (1 / 3.240 Å)	Leu162 (Alkyl) Glu167 (Carbon hydrogen bond; π -Anion) Pro248 (Alkyl) Tyr264 (π - π Stacked; π -Alkyl) Tyr273 (π -Alkyl)
4	4d	-8.1	Tyr268 (1 / 2.442 Å) Tyr273 (1 / 3.425 Å)	Leu162 (Alkyl) Asp164 (<i>π</i> -Anion) Pro248 (Carbon hydrogen bond) Tyr264 (<i>π</i> - <i>π</i> Stacked; <i>π</i> -Alkyl)
5	4e	-7.9	Gly163 (1 / 3.227 Å) Asp164 (1 / 3.379 Å) Tyr273 (1 / 2.078 Å)	Cys111 (Alkyl) Leu162 (Alkyl) Gly163 (Carbon hydrogen bond) Asp164 (π -Anion) Pro248 (Carbon hydrogen bond; Alkyl) Tyr264 (π - π Stacked; π - σ) Tyr273 (π -Alkyl) Thr301 (Carbon hydrogen bond)
6	4f	-7.8	Asp164 (1 / 3.158 Å) Gly271 (3 / 1.784 Å, 1.894 Å, and 3.043 Å) Tyr273 (1 / 1.826 Å)	Cys111 (Alkyl) Tyr112 (π -Alkyl) Leu162 (Alkyl; π -Alkyl) Gly163 (Carbon hydrogen bond) Asp164 (Carbon hydrogen bond; π -Anion) Pro248 (Alkyl) Tyr264 (π -Alkyl) Tyr273 (π -Alkyl) Thr301 (Carbon hydrogen bond)
7	4g	-8.4	Arg166 (1 / 3.027 Å) Tyr273 (1 / 2.977 Å) Thr301 (1 / 3.376 Å)	Leu162 (Alkyl) Asp164 (π -Anion) Arg166 (Carbon hydrogen bond; π -Alkyl) Met208 ((π -Sulfur) Ala246 (Amide– π stacked) Pro247 (van der Waals) Tyr264 (π -Alkyl) Tyr268 (Carbon hydrogen bond; π - π T-Shaped; π -Alkyl) Asp302 (Carbon hydrogen bond)
8	4h	-7.4	Asp164 (1 / 3.124 Å) Tyr273 (1 / 1.904 Å)	Leu162 (π -Alkyl) Gly163 (Carbon hydrogen bond) Asp164 (π -Anion) Pro248 (Carbon hydrogen bond; Alkyl) Tyr264 (π - σ) Tyr273 (π -Alkyl) Thr301 (Carbon hydrogen bond)

Table S5. Continued.

Entry	Compound	Binding Energy (-Kcal/mol)	Compound ig Energy (-Kcal/mol)	In Conventional hydrogen bond	other interactions
			(number / distance)	Other interactions	
9	4i	-7	Lys157 (1 / 2.847 Å) Tyr264 (1 / 2.769 Å) Tyr268 (1 / 2.270 Å) Thr301 (1 / 3.435 Å)	Leu 162 (Alkyl) Asp 164 (π -Anion) Pro248 (Alkyl) Tyr264 (π - σ) Tyr273 (π -Alkyl) Thr301 (Carbon hydrogen bond)	
10	4j	-7	Lys157 (1 / 2.682 Å) Tyr264 (1 / 2.902 Å) Tyr268 (1 / 2.200 Å) Thr301 (1 / 3.474 Å)	Leu162 (Alkyl) Asp164 (π -Anion) Pro248 (Alkyl) Tyr264 (π - σ) Tyr273 (π -Alkyl)	
11	4k	-7.7	Asp164 (1 / 3.170 Å) Gly271 (1 / 2.263 Å) Tyr273 (1 / 1.949 Å)	Leu 162 (π -Alkyl) Gly 163 (Carbon hydrogen bond) Asp 164 (π -Anion) Pro 248 (Carbon hydrogen bond; Alkyl) Tyr 264 (π - π T-Shaped; π - σ) Gln 269 (Halogen {F}) Cys 270 (Carbon hydrogen bond; Halogen {F}) Gly 271 (Halogen {F}) Tyr 273 (π -Alkyl) Thr 301 (Carbon hydrogen bond)	
12	41	-7.5	Gly163 (1 / 3.299 Å) Asp164 (1 / 3.218 Å) Tyr273 (1 / 1.857 Å)	Cys111 (Alkyl) Leu162 (Alkyl; π -Alkyl) Gly163 (Carbon hydrogen bond) Asp164 (π -Anion) Pro248 (Carbon hydrogen bond; Alkyl) Tyr264 (π - π T-Shaped; π - σ ; π -Alkyl) Tyr273 (π -Alkyl) Thr301 (Carbon hydrogen bond)	
13	4m	-7.6	Asp164 (1 / 3.108 Å) Tyr264 (1 / 3.399 Å) Cys270 (1 / 2.456 Å) Gly271 (2 / 2.023 Å and 2.596 Å) Tyr273 (1 / 1.823 Å)	Cys111 (Alkyl) Leu162 (Alkyl; π -Alkyl) Gly163 (Carbon hydrogen bond) Asp164 (Carbon hydrogen bond; π -Anion) Pro248 (Alkyl) Tyr264 (π - π T-Shaped; π -Alkyl) Tyr273 (π -Alkyl) Thr301 (Carbon hydrogen bond)	
14	4n	-7.5	Lys157 (2 / 2.355 Å and 2.981 Å) Tyr264 (1 / 2.855 Å) Gln269 (1 / 3.043 Å)	Leu162 (Alkyl) Asp164 (π -Anion) Pro248 (Alkyl) Tyr264 (π - σ) Tyr273 (π -Alkyl)	

Table S6. Molecular docking results between **4a**–**n** and SARS-CoV-2 PL^{Pro} allosteric site (PDB ID: 6WX4).

Entry	punoduc	(ergy (-Kcal/mol)		Interaction
	ŭ	Binding en	Conventional hydrogen bond (number / distance)	Other interactions
1	4a	-6.5		 Pro59 (Alkyl) Arg65 (Carbon hydrogen bond; π–Alkyl) Ala68 (Alkyl) Phe69 (π–σ) Thr74 (Carbon hydrogen bond) Pro77 (Carbon hydrogen bond; Alkyl)
2	4b	-7.3	Arg65 (2 / 2.376 Å and 3.368 Å)	Pro59 (Alkyl) Arg65 (Alkyl; π–Alkyl) Val66 (Alkyl; π–Alkyl) Phe69 (π–Alkyl)
3	4c	-7.2		Pro59 (Alkyl) Asp62 (π–Anion) Arg65 (Carbon hydrogen bond; Alkyl; π–Alkyl) Val66 (Carbon hydrogen bond) Ala68 (Alkyl) Phe69 (π–π Stacked; π–Alkyl)
4	4d	-7.2	Arg65 (1 / 2.373 Å) Val66 (1 / 3.353 Å)	Asp62 (π -Anion) Arg65 (π -Alkyl) Val66 (Alkyl) Phe69 (π - σ)
5	4e	-7.4	Arg65 (1 / 3.473 Å)	Pro59 (Alkyl) Asp62 (π -Anion) Arg65 (Carbon hydrogen bond; Alkyl; π -Alkyl) Val66 (Carbon hydrogen bond) Ala68 (Alkyl) Phe69 (π - π Stacked; π -Alkyl)
6	4f	-6.8	Pro59 (1 / 2.815 Å) Arg65 (1 / 2.691 Å)	Pro59 (Alkyl) Asp62 (π -Anion) Arg65 (Carbon hydrogen bond; π -Alkyl) Ala68 (Alkyl) Phe69 (π - σ) Thr74 (Carbon hydrogen bond) Thr75 (Carbon hydrogen bond) Pro77 (Carbon hydrogen bond)
7	4g	-7.8	Arg65 (1 / 2.355 Å) Val66 (1 / 3.164 Å)	Pro59 (π -Alkyl) Asp62 (π -Anion) Arg65 (π -Alkyl) Val66 (Alkyl) Ala68 (π -Alkyl) Phe69 (π - σ)
8	4h	-5.9	Arg65 (3 / 2.646 Å, 3.067 Å, and 3.144 Å) Phe69 (1 / 3.179 Å)	Pro59 (Alkyl; π –Alkyl) Arg65 (Alkyl; π –Alkyl; Unfavorable acceptor-acceptor) Ala68 (Alkyl) Thr74 (Carbon hydrogen bond) Pro77 (Carbon hydrogen bond; π –Alkyl)
9	4i	-5.8	Arg65 (1 / 3.289 Å)	Pro59 (Alkyl) Arg65 (Carbon hydrogen bond; Alkyl; π–Alkyl) Val66 (Alkyl) Ala68 (Alkyl) Pro77 (Alkyl)
10	4j	-6.3	Arg65 (1 / 2.569 Å) Thr75 (2 / 2.255 Å and 3.235 Å)	Pro59 (Alkyl; π–Alkyl) Arg65 (Carbon hydrogen bond; π–Alkyl) Ala68 (Alkyl; π–Alkyl)

Table S6. Continued.

Entry	punoduo	ergy (-Kcal/mol)	In	iteraction
	Co	Binding en	Conventional hydrogen bond (number / distance)	Other interactions
11	4k	-6.6	Arg65 (1 / 2.522 Å) Thr75 (2 / 2.316 Å and 3.289 Å)	Pro59 (π–Alkyl) Arg65 (Carbon hydrogen bond; π–Alkyl) Ala68 (π–Alkyl) Thr74 (Halogen {F}) Pro77 (Alkyl)
12	41	-6	Arg65 (3 / 2.621 Å, 3.145 Å, and 3.163 Å) Thr75 (1 / 3.405 Å)	Pro59 (Alkyl; π -Alkyl) Arg65 (Alkyl; π -Alkyl; Unfavorable acceptor-acceptor) Ala68 (Alkyl) Thr74 (Carbon hydrogen bond) Pro77 (Carbon hydrogen bond; Alkyl; π -Alkyl)
13	4m	-6.5	Arg65 (3 / 2.132 Å, 2.208 Å, and 3.191 Å) Phe69 (1 / 3.273 Å) Thr74 (1 / 3.408 Å) Thr75 (3 / 2.135 Å, 3.304 Å, and 3.314 Å)	Pro59 (π–Alkyl) Arg65 (Carbon hydrogen bond; Alkyl; π–Alkyl) Thr75 (Unfavorable donor–donor) Pro77 (Alkyl; π–Alkyl)
14	4n	-6.7	Arg65 (3 / 2.107 Å, 2.325 Å, and 2.907 Å) Thr75 (1 / 2.433 Å)	Pro59 (π–Alkyl)Asn60 (Carbon hydrogen bond)Arg65 (Carbon hydrogen bond; π–σ; π–Alkyl)Ala68 (π–Alkyl)Pro77 (Carbon hydrogen bond; Alkyl; π–Alkyl)

Entry	Compound	Chemical formula	Molecular weight (MW) (g/mol)	Number of heavy atoms	Number of aromatic heavy atoms	Fraction Csp3	Number of rotatable bonds	Number of hydrogen bond acceptors	Number of hydrogen bond donors	Molar refractivity (MR)	Topological polar surface area (TPSA) (${\rm \AA}^2)$	$\mathrm{Log}P_{\mathrm{o/w}}(\mathrm{iLOGP})$	$\mathrm{Log}P_{\mathrm{o/w}}(\mathrm{XLOGP3})$	$\mathrm{Log}P_{\mathrm{o/w}}(\mathrm{WLOGP})$	$\mathrm{Log}P_{\mathrm{o/w}}(\mathrm{MLOGP})$	Log P _{o/w} (SILICOS-IT)	Consensus Log P_{ww}
1	4a	$C_{21}H_{23}N_3O_4$	381.43	28	15	0.38	4	4	1	108.36	86.24	3.37	4.23	2.62	2.38	2.79	3.08
2	1h										0101	0	1 00	2 20	2.07	2 17	
	40	$C_{21}H_{22}BrN_3O_4$	460.32	29	15	0.38	4	4	1	116.06	86.24	3.65	4.92	3.38	2.97	3.47	3.68
3	40 4c	$\frac{C_{21}H_{22}BrN_{3}O_{4}}{C_{21}H_{22}ClN_{3}O_{4}}$	460.32 415.87	29 29	15 15	0.38 0.38	4	4 4	1	116.06 113.37	86.24 86.24	3.65 3.54	4.92 4.86	3.38 3.27	2.97	3.47	3.68 3.59
3	40 4c 4d	$\frac{C_{21}H_{22}BrN_{3}O_{4}}{C_{21}H_{22}ClN_{3}O_{4}}$ $\frac{C_{21}H_{22}FN_{3}O_{4}}{C_{21}H_{22}FN_{3}O_{4}}$	460.32 415.87 399.42	29 29 29	15 15 15	0.38 0.38 0.38	4 4 4	4 4 5	1 1 1	116.06 113.37 108.32	86.24 86.24 86.24	3.65 3.54 3.41	4.92 4.86 4.33	3.38 3.27 3.17	2.97 2.86 2.76	3.47 3.43 3.21	3.68 3.59 3.38
3 4 5	40 4c 4d 4e	$\frac{C_{21}H_{22}BrN_{3}O_{4}}{C_{21}H_{22}ClN_{3}O_{4}}$ $\frac{C_{21}H_{22}FN_{3}O_{4}}{C_{21}H_{22}BrN_{3}O_{4}}$	460.32 415.87 399.42 460.32	29 29 29 29	15 15 15 15	0.38 0.38 0.38 0.38	4 4 4 4	4 4 5 4	1 1 1 1	116.06 113.37 108.32 116.06	86.24 86.24 86.24 86.24	3.65 3.54 3.41 3.46	4.92 4.86 4.33 4.92	3.38 3.27 3.17 3.38	2.97 2.86 2.76 2.97	3.47 3.43 3.21 3.47	3.68 3.59 3.38 3.64
3 4 5 6	40 4c 4d 4e 4f	$\frac{C_{21}H_{22}BrN_{3}O_{4}}{C_{21}H_{22}ClN_{3}O_{4}}$ $\frac{C_{21}H_{22}FN_{3}O_{4}}{C_{21}H_{22}BrN_{3}O_{4}}$ $\frac{C_{22}H_{22}BrN_{3}O_{4}}{C_{22}H_{25}N_{3}O_{6}}$	460.32 415.87 399.42 460.32 427.45	29 29 29 29 31	15 15 15 15 15	0.38 0.38 0.38 0.38 0.41	4 4 4 5	4 4 5 4 6	1 1 1 2	116.06 113.37 108.32 116.06 116.87	86.24 86.24 86.24 86.24 115.70	3.65 3.54 3.41 3.46 3.34	4.92 4.86 4.33 4.92 3.85	3.38 3.27 3.17 3.38 2.33	2.97 2.86 2.76 2.97 1.70	3.47 3.43 3.21 3.47 2.38	3.68 3.59 3.38 3.64 2.72
3 4 5 6 7	40 4c 4d 4e 4f 4g	$\begin{array}{c} C_{21}H_{22}BrN_{3}O_{4} \\ C_{21}H_{22}ClN_{3}O_{4} \\ C_{21}H_{22}FN_{3}O_{4} \\ C_{21}H_{22}BrN_{3}O_{4} \\ C_{22}H_{25}N_{3}O_{6} \\ C_{22}H_{23}N_{3}O_{6} \\ \end{array}$	460.32 415.87 399.42 460.32 427.45 425.43	29 29 29 29 31 31	15 15 15 15 15 15	0.38 0.38 0.38 0.38 0.41 0.41	4 4 4 5 4	4 4 5 4 6 6	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ $	116.06 113.37 108.32 116.06 116.87 114.42	86.24 86.24 86.24 86.24 115.70 104.70	3.65 3.54 3.41 3.46 3.34 3.47	4.92 4.86 4.33 4.92 3.85 4.04	3.38 3.27 3.17 3.38 2.33 2.34	2.97 2.86 2.76 2.97 1.70 1.97	3.47 3.43 3.21 3.47 2.38 2.64	3.68 3.59 3.38 3.64 2.72 2.89 2.61
3 4 5 6 7 8	40 4c 4d 4e 4f 4g 4h	C ₂₁ H ₂₂ BrN ₃ O ₄ C ₂₁ H ₂₂ ClN ₃ O ₄ C ₂₁ H ₂₂ FN ₃ O ₄ C ₂₁ H ₂₂ BrN ₃ O ₄ C ₂₂ H ₂₃ N ₃ O ₆ C ₂₂ H ₂₃ N ₃ O ₆ C ₁₉ H ₂₁ N ₃ O ₄	460.32 415.87 399.42 460.32 427.45 425.43 355.39	29 29 29 31 31 26	15 15 15 15 15 15 15	0.38 0.38 0.38 0.38 0.41 0.41 0.32	4 4 4 5 4 4	4 4 5 4 6 6 4	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ $	116.06 113.37 108.32 116.06 116.87 114.42 100.90	86.24 86.24 86.24 115.70 104.70 86.24	3.65 3.54 3.41 3.46 3.34 3.47 3.17	4.92 4.86 4.33 4.92 3.85 4.04 3.40	3.38 3.27 3.17 3.38 2.33 2.34 2.08 2.84	2.97 2.86 2.76 2.97 1.70 1.97 1.93	3.47 3.43 3.21 3.47 2.38 2.64 2.46	3.68 3.59 3.38 3.64 2.72 2.89 2.61
3 4 5 6 7 8 9	40 4c 4d 4e 4f 4g 4h 4i 4i	C ₂₁ H ₂₂ BrN ₃ O ₄ C ₂₁ H ₂₂ ClN ₃ O ₄ C ₂₁ H ₂₂ FN ₃ O ₄ C ₂₁ H ₂₂ BrN ₃ O ₄ C ₂₂ H ₂₅ N ₃ O ₆ C ₂₂ H ₂₃ N ₃ O ₆ C ₁₉ H ₂₁ N ₃ O ₄ C ₁₉ H ₂₀ BrN ₃ O ₄	460.32 415.87 399.42 460.32 427.45 425.43 355.39 434.28 290.82	29 29 29 31 31 26 27 27	15 15 15 15 15 15 15 15 15	0.38 0.38 0.38 0.38 0.41 0.41 0.32 0.32	4 4 4 5 4 4 4 4 4	4 4 5 4 6 6 4 4 4	1 1 1 2 1 1 1 1	116.06 113.37 108.32 116.06 116.87 114.42 100.90 108.60	86.24 86.24 86.24 115.70 104.70 86.24 86.24 86.24	3.65 3.54 3.41 3.46 3.34 3.47 3.17 3.58 2.50	4.92 4.86 4.33 4.92 3.85 4.04 3.40 4.10	3.38 3.27 3.17 3.38 2.33 2.34 2.08 2.84 2.73	2.97 2.86 2.76 2.97 1.70 1.97 1.93 2.53 2.42	3.47 3.43 3.21 3.47 2.38 2.64 2.46 3.15 2.11	3.68 3.59 3.38 3.64 2.72 2.89 2.61 3.24 2.16
3 4 5 6 7 8 9 10	40 4c 4d 4e 4f 4g 4h 4i 4j 4k	C ₂₁ H ₂₂ BrN ₃ O ₄ C ₂₁ H ₂₂ ClN ₃ O ₄ C ₂₁ H ₂₂ FN ₃ O ₄ C ₂₁ H ₂₂ BrN ₃ O ₄ C ₂₂ H ₂₅ N ₃ O ₆ C ₂₂ H ₂₅ N ₃ O ₆ C ₁₉ H ₂₁ N ₃ O ₄ C ₁₉ H ₂₀ BrN ₃ O ₄ C ₁₉ H ₂₀ ClN ₃ O ₄	460.32 415.87 399.42 460.32 427.45 425.43 355.39 434.28 389.83 373.38	29 29 29 31 31 26 27 27 27	15 15	0.38 0.38 0.38 0.41 0.41 0.32 0.32 0.32 0.32	4 4 4 5 4 4 4 4 4 4	4 4 5 4 6 6 4 4 4 4 5	1 1 1 2 1 1 1 1 1	116.06 113.37 108.32 116.06 116.87 114.42 100.90 108.60 105.91 100.86	86.24 86.24 86.24 115.70 104.70 86.24 86.24 86.24 86.24	3.65 3.54 3.41 3.46 3.34 3.47 3.17 3.58 3.50 3.20	4.92 4.86 4.33 4.92 3.85 4.04 3.40 4.10 4.03 3.50	3.38 3.27 3.17 3.38 2.33 2.34 2.08 2.84 2.73 2.64	2.97 2.86 2.76 2.97 1.70 1.97 1.93 2.53 2.42 2.31	3.47 3.43 3.21 3.47 2.38 2.64 2.46 3.15 3.11 2.90	3.68 3.59 3.38 3.64 2.72 2.89 2.61 3.24 3.16 2.93
3 4 5 6 7 8 9 10 11 11	40 4c 4d 4e 4f 4g 4h 4i 4j 4k 4l	C ₂₁ H ₂₂ BrN ₃ O ₄ C ₂₁ H ₂₂ ClN ₃ O ₄ C ₂₁ H ₂₂ FN ₃ O ₄ C ₂₁ H ₂₂ BrN ₃ O ₄ C ₂₂ H ₂₅ N ₃ O ₆ C ₂₂ H ₂₃ N ₃ O ₆ C ₁₉ H ₂₁ N ₃ O ₄ C ₁₉ H ₂₀ BrN ₃ O ₄ C ₁₉ H ₂₀ ClN ₃ O ₄ C ₁₉ H ₂₀ FN ₃ O ₄ C ₁₉ H ₂₀ FN ₃ O ₄	460.32 415.87 399.42 460.32 427.45 425.43 355.39 434.28 389.83 373.38 434.28	29 29 29 31 31 26 27 27 27 27 27	15 15 15 15 15 15 15 15 15 15 15	0.38 0.38 0.38 0.38 0.41 0.41 0.32 0.32 0.32 0.32 0.32	4 4 4 5 4 4 4 4 4 4 4 4	4 4 5 4 6 6 4 4 4 5 4 4	1 1 1 2 1 1 1 1 1 1 1	116.06 113.37 108.32 116.06 116.87 114.42 100.90 108.60 105.91 100.86 108.60	86.24 86.24 86.24 115.70 104.70 86.24 86.24 86.24 86.24 86.24 86.24	3.65 3.54 3.41 3.46 3.34 3.47 3.17 3.58 3.50 3.30 3.30	4.92 4.86 4.33 4.92 3.85 4.04 3.40 4.10 4.03 3.50 4.10	3.38 3.27 3.17 3.38 2.33 2.34 2.08 2.84 2.73 2.64 2.84	2.97 2.86 2.76 2.97 1.70 1.97 1.93 2.53 2.42 2.31 2.53	3.47 3.43 3.21 3.47 2.38 2.64 2.46 3.15 3.11 2.90 3.15	3.68 3.59 3.38 3.64 2.72 2.89 2.61 3.24 3.16 2.93 3.20
3 4 5 6 7 8 9 10 11 12 13	40 4c 4d 4e 4f 4g 4h 4i 4j 4k 4l 4m	C ₂₁ H ₂₂ BrN ₃ O ₄ C ₂₁ H ₂₂ ClN ₃ O ₄ C ₂₁ H ₂₂ FN ₃ O ₄ C ₂₁ H ₂₂ BrN ₃ O ₄ C ₂₂ H ₂₃ N ₃ O ₆ C ₂₂ H ₂₃ N ₃ O ₆ C ₁₉ H ₂₁ N ₃ O ₄ C ₁₉ H ₂₀ BrN ₃ O ₄	460.32 415.87 399.42 460.32 427.45 425.43 355.39 434.28 389.83 373.38 434.28 434.28	29 29 29 31 31 26 27 27 27 27 27 29	15 15 15 15 15 15 15 15 15 15 15 15	0.38 0.38 0.38 0.38 0.41 0.41 0.32 0.32 0.32 0.32 0.32 0.32 0.32	4 4 4 5 4 4 4 4 4 4 4 4 5	4 4 5 4 6 6 4 4 4 5 4 6	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ \end{array} $	116.06 113.37 108.32 116.06 116.87 114.42 100.90 108.60 105.91 100.86 108.60 109.41	86.24 86.24 86.24 115.70 104.70 86.24 86.24 86.24 86.24 86.24 86.24 115.70	3.65 3.54 3.41 3.46 3.34 3.47 3.17 3.58 3.50 3.30 3.30 3.38 3.17	4.92 4.86 4.33 4.92 3.85 4.04 3.40 4.10 4.03 3.50 4.10 3.02	3.38 3.27 3.17 3.38 2.33 2.34 2.08 2.84 2.73 2.64 2.84 1.79	2.97 2.86 2.76 2.97 1.70 1.97 1.93 2.53 2.42 2.31 2.53 1.26	3.47 3.43 3.21 3.47 2.38 2.64 2.46 3.15 3.11 2.90 3.15 2.08	3.68 3.59 3.38 3.64 2.72 2.89 2.61 3.24 3.16 2.93 3.20 2.27

Table S8. Water solubility of 4a–n.

Entry	Compound	Log S (ESOL) / Solubility (mg/ml) / Class	Log S (Ali) / Solubility (mg/ml) / Class	g S (SILICOS-IT) / Solubility (mg/ml) / Class				
1	4a	-5.00 / 3.80e-03 / Moderately soluble	-5.75 / 6.76e-04 / Moderately soluble	-5.37 / 1.62e-03 / Moderately soluble				
2	4b	-5.91 / 5.63e-04 / Moderately soluble	-6.47 / 1.57e-04 / Poorly soluble	-6.15 / 3.25e-04 / Poorly soluble				
3	4c	-5.60 / 1.05e-04 / Moderately soluble	-6.41 / 1.63e-04 / Poorly soluble	-5.96 / 4.58e-04 / Moderately soluble				
4	4d	-5.16/2.74e-03/Moderately soluble	-5.86 / 5.57e-04 / Moderately soluble	-5.64 / 9.23e-04 / Moderately soluble				
5	4e	-5.91 / 5.63e-04 / Moderately soluble	-6.47/1.57/e-04/Poorly soluble	-6.15 / 3.25e-04 / Poorly soluble				
6	41	-4.94 / 4.8/e-03 / Moderately soluble	-5.98 / 4.52e-04 / Moderately soluble	-4.88/5.5/e-03/Moderately soluble				
/	4g	-5.12/3.25e-03/Moderately soluble	-5.94/4.86e-04 / Moderately soluble	-5.09/3.49e-03/Moderately soluble				
ð	4n 4i	$-4.53 / 1.59e^{-02} / Moderately soluble$	-4.69/4.5/e-05/Moderately soluble -5.62/1.05a-03/Moderately soluble	-5.1772.43e-037 Woderately soluble				
9	41	$-3.2072.37e^{-0.37}$ Moderately soluble	$-5.02/1.03e^{-0.5}$ / Moderately soluble	-5.75/6.85a-04 / Moderately soluble				
10	4J 4k	$-4.54 / 4.43e^{-0.5} / Moderately soluble$	-4.99/3.78e-03/Moderately soluble	-5.43 / 1.38e-03 / Moderately soluble				
12	41	-5.26/2.37e-03/Moderately soluble	-5.62 / 1.05e - 03 / Moderately soluble	-5.95/4.86e-04/Moderately soluble				
12	4m	-4.28/2.09e-02 / Moderately soluble	-5.11/3.08e-03/Moderately soluble	-4.68 / 8.35e-03 / Moderately soluble				
15		1.20, 2.0) 02, moderatery soluble	Sill, Stobe 05, moderatery soluble	1.00, 0.550 05, moderatery soluble				
14	4n	-4.46 / 1.37e=02 / Moderately soluble	-5.09 / 3.24e-03 / Moderately soluble	-4.88 / 5.22e-03 / Moderately soluble				

Solubility class: Log *S* Class = Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 < Very < 0 < Highly.

Table S9. Pharmacokinetics of 4a–n.

Entry	Compound	Gastrointestinal (GI) absorption	BBB permeant	P-glycoprotein (P-gp) substrate	Cytochrome P450 1A2 (CYP1A2) inhibitor	Cytochrome P450 2C19 (CYP2C19) inhibitor	Cytochrome P450 C9 (CYP2C9) inhibitor	Cytochrome P450 2D6 (CYP2D6) inhibitor	Cytochrome P450 3A4 (CYP3A4) inhibitor	Log $K_{\rm p}$ (skin permeation) (cm/s)
1	4a	High	No	No	No	Yes	Yes	No	Yes	-5.62
2	4b	High	No	No	No	Yes	Yes	No	Yes	-5.61
3	4c	High	No	No	No	Yes	Yes	No	Yes	-5.39
4	4d	High	No	No	No	Yes	Yes	No	No	-5.66
5	4e	High	No	No	No	Yes	Yes	No	Yes	-5.61
6	4f	High	No	No	No	No	Yes	No	No	-6.17
7	4g	High	No	No	No	Yes	Yes	No	Yes	-6.03
8	4h	High	No	No	No	No	Yes	No	No	-6.05
9	4i	High	No	No	No	Yes	Yes	No	Yes	-6.04
10	4j	High	No	No	No	Yes	Yes	No	Yes	-5.82
11	4k	High	No	No	No	No	Yes	No	No	-6.09
12	41	High	No	No	No	Yes	Yes	No	Yes	-6.04
13	4m	High	No	No	No	No	Yes	No	No	-6.60
14	4n	High	No	No	No	Yes	Yes	No	Yes	-6.45

Table S10. Drug-likeness and medicinal chemistry of 4a–n.

Entry	Compound	Lipinski (Pfizer) filter	Ghose (Amgen) filter	Veber (GSK) filter	Egan (Pharmacia) filter	Muegge (Bayer) filter	Abbot bioavailability score	Pan assay interference structures (PAINS) alert	Brenk alert	Lead-likeness	Synthetic accessibility score
1	4a	Yes (violation = 0)	Yes	Yes	Yes	Yes	0.55	0	0	No (violation = 2) ^A	3.79
2	4b	Yes (violation $= 0$)	Yes	Yes	Yes	Yes	0.55	0	0	No (violation = 2) ^A	3.79
3	4c	Yes (violation $= 0$)	Yes	Yes	Yes	Yes	0.55	0	0	No (violation = 2) ^A	3.79
4	4d	Yes (violation $= 0$)	Yes	Yes	Yes	Yes	0.55	0	0	No (violation = 2) ^A	3.79
5	4e	Yes (violation $= 0$)	Yes	Yes	Yes	Yes	0.55	0	0	No (violation = 2) ^A	3.82
6	4f	Yes (violation $= 0$)	Yes	Yes	Yes	Yes	0.55	0	0	No (violation = 2) ^A	3.94
7	4g	Yes (violation $= 0$)	Yes	Yes	Yes	Yes	0.55	0	0	No (violation = 2) ^A	3.92
8	4h	Yes (violation $= 0$)	Yes	Yes	Yes	Yes	0.55	0	0	No (violation = 1) ^B	3.64
9	4i	Yes (violation $= 0$)	Yes	Yes	Yes	Yes	0.55	0	0	No (violation = 2) ^A	3.64
10	4j	Yes (violation $= 0$)	Yes	Yes	Yes	Yes	0.55	0	0	No (violation = 2) ^A	3.62
11	4k	Yes (violation $= 0$)	Yes	Yes	Yes	Yes	0.55	0	0	No (violation = 1) ^B	3.62
12	41	Yes (violation = 0)	Yes	Yes	Yes	Yes	0.55	0	0	No (violation = 2) ^A	3.68
13	4m	Yes (violation = 0)	Yes	Yes	Yes	Yes	0.55	0	0	No (violation = 1) ^B	3.78
14	4n	Yes (violation = 0)	Yes	Yes	Yes	Yes	0.55	0	0	No (violation = 1) ^B	3.77

Lipinski (Pfizer) filter: MW \leq 500; MLOGP \leq 4.15; Number of nitrogen (N) or oxygen (O) \leq 10; Number of NH or OH \leq 5.

Ghose filter: $160 \le MW \le 480$; $-0.4 \le WLOGP \le 5.6$; $40 \le MR \le 130$; $20 \le Atoms \le 70$.

Veber (GSK) filter: Number of rotatable bonds ≤ 10 ; TPSA ≤ 140 Å².

Egan (Pharmacia) filter: WLOGP ≤ 5.88 ; TPSA ≤ 131.6 Å².

Muegge (Bayer) filter: $200 \le MW \le 600$; $-2 \le XLOGP \le 4.15$; TPSA ≤ 150 Å²; Number of rings ≤ 7 ; Number of carbon atoms > 4; Number of heteroatoms > 1; Number of rotatable bonds ≤ 15 ; Number of H-bond acceptors ≤ 10 ; Number of H-bond donors ≤ 5 .

Lead-likeness: $250 \le MW \le 350$; XLOGP ≤ 3.5 ; Number of rotatable bonds ≤ 7 .

Synthetic accessibility score: From 1 (very easy) to 10 (very difficult).

A: Violations related to MW > 350 and XLOGP3 > 3.5.

B: Violation related to MW > 350.

Entry	Compound	Ames toxicity	Maximum tolerated dose (human) (log mg/kg/day)	Human Ether-à-go-go-Related Gene I (hERG I) inhibitor	Human Ether-à-go-go-Related Gene II (hERG II) inhibitor	Oral rat acute toxicity (LD ₅₀) (mol/kg)	Oral rat chronic toxicity (LOAEL) (log mg/kg body weight /day)	Hepatotoxicity	Skin sensitization	Tetrahymena pyriformis toxicity (log µg/L)	Minnow toxicity (log mM)
1	4a	No	-0.264	No	No	2.489	1.408	Yes	No	0.528	2.606
2	4b	No	-0.177	No	No	2.602	1.573	Yes	No	0.512	1.968
3	4c	No	-0.173	No	No	2.595	1.6	Yes	No	0.514	2.114
4	4d	No	-0.04	No	No	2.622	1.303	Yes	No	0.426	2.597
5	4e	No	-0.261	No	No	2.621	1.572	Yes	No	0.502	1.895
6	41	No	-0.468	No N-	No N-	2.673	1.148	Yes	No No	0.343	2.557
/	4g	No No	-0.099	INO No	INO No	2.193	1.306	Yes	No No	0.313	2.628
0	4n 4i	INO No	+0.241	No	No	2.57	1.427	I es	INO No	0.750	1.3/1
9 10	41	1NO	+0.209	INU	INU	2.323	1.338	res	110	0.739	0.731
11	4i	No	± 0.293	No	No	2 513	1 360	Ves	No	0.762	0.897
	4j 4k	No No	+0.293	No No	No Yes	2.513	1.369	Yes	No No	0.762	0.897
12	4j 4k 41	No No	+0.293 +0.408 +0.222	No No	No Yes No	2.513 2.531 2.532	1.369 1.256 1.354	Yes Yes	No No	0.762 0.602 0.746	0.897 1.003 0.68
11 12 13	4j 4k 41 4m	No No No	+0.293 +0.408 +0.222 -0.092	No No No	No Yes No Yes	2.513 2.531 2.532 2.47	1.369 1.256 1.354 1.251	Yes Yes Yes	No No No	0.762 0.602 0.746 0.405	0.897 1.003 0.68 1.787

Table S11. Toxicity of 4a–n.

FT-IR Spectrum of 5-benzoyl-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4a)

¹H NMR Spectrum of 5-benzoyl-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4a)

¹³C{¹H} NMR Spectrum of 5-benzoyl-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4a)

FT-IR Spectrum of 5-(4-bromobenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4b)

¹H NMR Spectrum of 5-(4-bromobenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4b)

¹³C{¹H} NMR Spectrum of 5-(4-bromobenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4b)

¹H NMR Spectrum of 5-(4-chlorobenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4c)

¹³C{¹H} NMR Spectrum of 5-(4-chlorobenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4c)

¹H NMR Spectrum of 5-(4-fluorobenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4d)

FT-IR Spectrum of 5-(3-bromobenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4e)

¹H NMR Spectrum of 5-(3-bromobenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4e)

¹³C{¹H} NMR Spectrum of 5-(3-bromobenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4e)

FT-IR Spectrum of 5-(4-hydroxy-3-methoxybenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4f)

¹H NMR Spectrum of 5-(4-hydroxy-3-methoxybenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4f)

¹³C{¹H} NMR Spectrum of 5-(4-hydroxy-3-methoxybenzoyl)-6-(cyclohexylamino)-1,3dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4f)

FT-IR Spectrum of 5-(3,4-methylendioxybenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4g)

¹H NMR Spectrum of 5-(3,4-methylendioxybenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4g)

¹³C{¹H} NMR Spectrum of 5-(3,4-methylendioxybenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4g)

FT-IR Spectrum of 5-benzoyl-6-(*tert*-butylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4h)

¹H NMR Spectrum of 5-benzoyl-6-(*tert*-butylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1*H*,3*H*)-dione (4h)

¹³C{¹H} NMR Spectrum of 5-benzoyl-6-(*tert*-butylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4h)

FT-IR Spectrum of 5-(4-bromobenzoyl)-6-(*tert*-butylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1*H*,3*H*)-dione (4i)

¹H NMR Spectrum of 5-(4-bromobenzoyl)-6-(*tert*-butylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1*H*,3*H*)-dione (4i)

¹³C{¹H} NMR Spectrum of 5-(4-bromobenzoyl)-6-(*tert*-butylamino)-1,3-dimethylfuro[2,3*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4i)

FT-IR Spectrum of 5-(4-chlorobenzoyl)-6-(*tert*-butylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4j)

¹H NMR Spectrum of 5-(4-chlorobenzoyl)-6-(*tert*-butylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1*H*,3*H*)-dione (4j)

¹³C{¹H} NMR Spectrum of 5-(4-chlorobenzoyl)-6-(*tert*-butylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1*H*,3*H*)-dione (4j)

FT-IR Spectrum of 5-(4-fluorobenzoyl)-6-(*tert*-butylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4k)

¹H NMR Spectrum of 5-(4-fluorobenzoyl)-6-(*tert*-butylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4k)

¹³C{¹H} NMR Spectrum of 5-(4-fluorobenzoyl)-6-(*tert*-butylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1*H*,3*H*)-dione (4k)

FT-IR Spectrum of 5-(3-bromobenzoyl)-6-(*tert*-butylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4l)

¹H NMR Spectrum of 5-(3-bromobenzoyl)-6-(*tert*-butylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1*H*,3*H*)-dione (4l)

¹³C{¹H} NMR Spectrum of 5-(3-bromobenzoyl)-6-(*tert*-butylamino)-1,3-dimethylfuro[2,3*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4l)

FT-IR Spectrum of 5-(4-hydroxy-3-methoxybenzoyl)-6-(*tert*-butylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4m)

¹H NMR Spectrum of 5-(4-hydroxy-3-methoxybenzoyl)-6-(*tert*-butylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4m)

¹³C{¹H} NMR Spectrum of 5-(4-hydroxy-3-methoxybenzoyl)-6-(*tert*-butylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4m)

FT-IR Spectrum of 5-(3,4-methylendioxybenzoyl)-6-(*tert*-butylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4n)

¹H NMR Spectrum of 5-(3,4-methylendioxybenzoyl)-6-(*tert*-butylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4n)

¹³C{¹H} NMR Spectrum of 5-(3,4-methylendioxybenzoyl)-6-(*tert*-butylamino)-1,3-dimethylfuro[2,3-*d*]pyrimidine-2,4(1*H*,3*H*)-dione (4n)