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Estimation and implications of the genetic architecture of 

fasting and non-fasting blood glucose 



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

Qiao et al., report a very interesting study leveraging UKB data where mostly random glucose levels 

were collected to improve the current knowledge about the genetic basis of glucose levels, an 

important trait for glucose homeostasis. The authors provided an interesting analytical strategy 

making use of 5 fasting time ranges to astutely estimate genetic correlations between FG and RG from 

these ranges. The high genetic correlations observed, except for the first post-prandial period, 

encouraged performing a meta-analysis with the most recent meta-analysis dataset of FG. This 

analysis provided a significant increase estimated of 16% in the number of association signals 

detected. The global analytical work is very solid and used sound methods, although the annotation 

part is very superficial. The prediction of T2D is limited as well and I have few comments about these 

aspects in particular. Overall, I find the study very well written and the authors provide an interesting 

and substantial addition to the field of the genetics of fasting glucose. 

1. Please comment on the rs1881415 heterogeneity association. What is the association level in the 

Saxena et al meta-analysis for 2h glucose post glucose challenge or any work related to post-prandial 

glucose levels, if any? Confirm if the direction of effect is consistent with higher risk of T2D of the 

allele associated with higher 3h post meal? 

2. Did the authors performed prediction of T2D using the 156 COJO SNPs by considering the 

association with T2D? Given that many FG and RG determinants are demonstrated not to be T2D 

determinants, how informative one would expect this predictive value to be? Please comment on the 

extremely low predictive power of glucose SNPs for T2D in general. 

3. Only if the data is reasonably accessible in the cohorts analyzed here, could the authors test the 

predictive power of glucose determinants on cardiac related events or diseases? 

4. I would be curious to see if using a PGS with only those SNPs that provide consistent direction of 

effects on T2D risk (increasing glucose levels allele increase risk for T2D, without considering 

significance of course), would have an improved predictive power. 

5. The authors are invited to explicit how they came with the estimation about the likelihood that a 

third of the future FG-associated SNPs to be discovered within 1Mb of the currently described loci 

obtained from this meta-analysis. 

6. Could the authors confirm there are no existing eQTL datasets for a more relevant tissue to glucose 

homeostasis other than blood? (e.g pancreatic islets, muscle, adipose tissue, where one putative gene 

(CREB3L4) seem to be mentioned as likely to regulate adipogenesis). The functional annotation part 

could gain in interest by integrating more data. 

7. Please comment on HbA1c levels availability in UKBB and if yes, consider and discuss on the 

interest in performing a genetic comparison with RG in the same way they compared to FG. 

Reviewer #2 (Remarks to the Author): 

J. Qiao and colleagues performed an exciting study on the genetic architecture of fasting and random 

glucose. 

1-The authors may precise in the introduction that the genetic architecture of fasting glucose level and 

type 2 diabetes is only partially overlapping (Bouatia-Naji et al., Science 2008, Bouatia-Naji et al., Nat 

Genet 2009). 

2-I am surprised by the huge number of related individuals excluded from the analysis (N=86465) in 

the UK Biobank. Many GWAS have been previously performed in the UK Biobank, and I never saw that 

many individuals excluded from the analysis because of relatedness issues. The authors may consider 

using a more relaxed threshold of relatedness (e.g. exclusion of 1st and 2nd degree relatives) to 



improve statistical power. Another option can be to adjust the GWAS analysis for relatedness, as 

previously described in literature. 

3-Related to my previous comment, did the authors apply similar exclusion procedure for related 

individuals in the MAGIC sample. 

4-The authors defined five groups based-on their self-reported fasting time (0-2h, 3h, 4h, 5h and 6-

24h) to ensure that at least 30K participants were included in each group. They may also consider 

physiological considerations (e.g. shape of post-prandial glucose curves) to reach an optimal definition 

of groups. Glucose values change a lot during the 2h postprandial period (in relation to the 1st and 

2nd phase of insulin secretion), and it seems a little bit counterintuitive to have a 0-2h group. 

5-The authors may precise the ancestry of the Lagou et al. sample (UK Biobank is predominantly EU). 

6-For clarity, please define in the text what means LDSC intercept. 

7-‘Overall, we found no significant evidence of heterogeneous SNP effects across fasting time groups 

except for rs1881415 (PHET < 5×10-8), which only showed a significant effect on glucose levels 

within 3h post-meal (Supplementary Table 7). Importantly, this intergenic variant is in highly LD (r 

140 2 > 0.8) with SNPs previously associated with fasting proinsulin and T2D risk’. 

The SNP rs1881415 is also in strong LD with another SNP strongly associated with fasting glucose in 

the European population (Chen et al., Nat Genet 2021). This is somewhat discordant with the author’s 

findings and should be mentioned and discussed. 

8-‘Note, as a benchmark, that this estimate is similar to the 170 LDSC genetic correlation between 

males and females for traits like body mass index (BMI) and waist circumference’. I think this 

sentence may be out of context. Please consider removing. 

9-‘We also quantified the ability of our FG and RG PGSs to predict T2D in an independent sample of 

6,905 cases and 46,983 controls from the Genetic Epidemiology Research on Adult Health and Aging 

(GERA) study cohort’. As GERA is multiethnic, the authors may consider performing the T2D genetic 

prediction study on the EU subset of GERA participants for consistency, as they identified FG and RG-

associated SNPs in populations of EU ancestry. 

10-The authors may consider performing molecular pathway / gene function / tissue expression GWAS 

gene-enrichment analyses to investigate the biological mechanisms underlying the genetic 

architecture of FG and RG. As the genetic overlap between FG and RG is partial, they may identify 

different mechanisms involved in FG or RG genetic variation. 

11-The authors did not perform post-GWAS in vitro / in vivo studies (e.g. cellular / animal studies) to 

investigate the role of newly discovered GWAS variants and genes in glucose homeostasis. I 

understand that this may be considered as beyond the scope of the current study, but they may at 

least mention this limitation in the discussion.



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

Qiao et al., report a very interesting study leveraging UKB data where mostly random glucose levels were 

collected to improve the current knowledge about the genetic basis of glucose levels, an important trait for 

glucose homeostasis. The authors provided an interesting analytical strategy making use of 5 fasting time 

ranges to astutely estimate genetic correlations between FG and RG from these ranges. The high genetic 

correlations observed, except for the first post-prandial period, encouraged performing a meta-analysis with 

the most recent meta-analysis dataset of FG. This analysis provided a significant increase estimated of 16% 

in the number of association signals detected. The global analytical work is very solid and used sound 

methods, although the annotation part is very superficial. The prediction of T2D is limited as well and I have 

few comments about these aspects in particular. Overall, I find the study very well written and the authors 

provide an interesting and substantial addition to the field of the genetics of fasting glucose.  

We thank the referee for their accurate summary of our study, for highlighting many of its strengths and for 

making suggestions to improve it. We address below each of the referee’s comments. 

1. Please comment on the rs1881415 heterogeneity association. What is the association level in the Saxena 

et al meta-analysis for 2h glucose post glucose challenge or any work related to post-prandial glucose levels, 

if any? Confirm if the direction of effect is consistent with higher risk of T2D of the allele associated with higher 

3h post meal?  

We thank the referee for this suggestion. We looked up summary statistics for rs1881415 in the currently 

largest GWAS of 2h-glucose from Chen et al. (2021)1 [max N ~ 86K, i.e., larger than Saxena et al. (2010)2, 

N < 46K] and compared effect sizes with that on FG, HbA1c, fasting insulin (FI) and T2D. The results are 

summarised in the table below and in Supplementary Table 7. 

These results show that the T allele at rs1881415 is positively associated with T2D risk3,4, while showing 

opposite effects on 2h glucose levels (negative effect) vs FG (positive effect). Our data recapitulate this 

heterogeneous pattern (effect sizes are sign-consistent) although the relatively small number of UK Biobank 

participants fasting for > 5 hours reduces statistical power to detect the negative effect on FG at genome-

wide significance. As discussed elsewhere5, these heterogenous patterns of associations with various 

glycemic traits suggest that this locus contributes to T2D risk through beta-cell dysfunction and not through 

reduced insulin sensitivity. 

Following the referee’s comment, we have now rephrased the paragraph (in the result section) reporting a 

significant heterogeneous effect at rs1881415 as (Lines 140–147): “We found genome-wide significant 

evidence of heterogeneous SNP effects across fasting time groups for rs1881415 (PHET < 5 × 10-8; 

Supplementary Table 7). This variant is in high LD (r2 > 0.8) with SNPs previously associated with fasting 

glucose, fasting proinsulin, 2h-glucose1 and T2D risk3. Importantly, the T2D risk allele at this locus shows 

opposite effects on FG (positive effect) vs 2h glucose levels (negative effect). Our data recapitulates this 

heterogeneous pattern (i.e., effect sizes are not sign-consistent across fasting time) although the relatively 

small number of UKB participants fasting for > 5 hours reduces the statistical power to detect a genome-wide 

significant effect.” 

Trait 
Effect 

Allele 

Other 

Allele 
Frequency Effect size 

Standard 

Error 
P-value 

Sample Size 

(N) 
Ref 

2h Glucose T C 0.582 -0.0445 0.0078 1.01E-08    63,396 (Chen et al. 2021)1



Fasting glucose 0.0209 0.0017 1.02E-31   200,622 

Fasting insulin -3.00E-04 0.0019 6.68E-01   151,013 

HbA1c -1.00E-04 0.0013 7.42E-01   146,806 

T2D 0.561 0.0462 0.0065 1.10E-12   684,683 (Mahajan et al. 2022)3

2. Did the authors performed prediction of T2D using the 156 COJO SNPs by considering the association 

with T2D? Given that many FG and RG determinants are demonstrated not to be T2D determinants, how 

informative one would expect this predictive value to be?  

Please comment on the extremely low predictive power of glucose SNPs for T2D in general. 

We thank the referee for these questions. We re-assessed the accuracy to predict T2D from various glucose 

PGS constructed only using SNPs with consistent direction of effects on T2D risk6. The Table below (now 

included as Supplementary Table 10) summarises our results and shows a slight improvement of accuracy. 

Glucose PGS have a low accuracy to predict T2D largely because of the relatively low genetic correlation 

between them (rg ~ 0.3). In fact, the transferability of prediction accuracy across traits scales with the square 

of the genetic correlation. We have now highlighted this in the main text (Lines 210–214): “Note that the 

accuracy of all glucose PGSs remained smaller than that of T2D PGSs derived from GWAS summary 

statistics of Xue et al.6 (Table 2), which can be expected because of the relatively low genetic correlation 

between glucose and T2D, and the fact that prediction accuracy (on the liability scale) for a correlated trait 

scales with the square of the genetic correlation7.” 

FG mega-RG meta-RG meta-analysis of 

glucose 

Sample size 151,188 367,427 367,427 518,615 

Count of SNPs 

COJO SNPs  66 109 127 156 

COJO SNPs presented in 

T2D sumstats 

63 83 102 147 

COJO SNPs with same 

direction of effects on 

T2D risk 

51 50 78 108 

Number of SNPs re-

estimated by SBayesR 

(SBayesR SNPs) 

1,097,166 1,108,030 1,108,030 1,097,166 



SBayesR SNPs presented 

in the sumstats 

1,078,874 1,088,847 1,088,847 1,078,874 

SBayesR SNPs with same 

direction of effects on 

T2D risk 

540,494 532,812 529,704 548,951 

Prediction of T2D risk using glucose PGS in GERA (AUC) 

PGS constructed using SNPs with consistent direction of effects on T2D risks 

Predictor based on COJO 

(s.e.) 

0.5346 

(0.0038) 

0.5561 (0.0038) 0.5642 (0.0038) 0.5557 (0.0037) 

Predictor based on 

SBayesR (s.e.) 

0.5498 

(0.0038) 

0.5864 (0.0038) 0.5818 (0.0037) 0.5565 (0.0038) 

Prediction of T2D risk using glucose PGS in GERA (AUC) 

Reported in the main text  

Predictor based on COJO 

(s.e.) 

0.5309 

(0.0038) 

0.5547 (0.0038) 0.5558 (0.0038) 0.5497 (0.0038) 

Predictor based on 

SBayesR (s.e.) 

0.5500 

(0.0038) 

0.5684 (0.0037) 0.5625 (0.0038) 0.5664 (0.0037) 

3. Only if the data is reasonably accessible in the cohorts analyzed here, could the authors test the predictive 

power of glucose determinants on cardiac related events or diseases?  

Taking coronary artery disease (CAD, i.e., the most common type of cardiovascular disease) as an example, 

we estimated the genetic correlation (rg) between CAD and the four glucose phenotypes used in our study, 

and we observed that the rg between CAD and FG was higher than that between CAD and RG. Interestingly, 

genetic overlap between CAD and glucose phenotypes were much lower compared to that between CAD 

and T2D4 (rg=0.4044, s.e. of rg=0.0224). We also used glucose PGSs to predict cardiovascular disease risks 

among unrelated GERA samples (13,664 cases and 37,594 controls) similarly as what had been done for 

T2D. Given the low rg between glucose phenotypes and CAD, we were not surprised to observe such low 

predictive power.  

Unless the referee and/or Editor insist, we believe that these additional analyses are beyond the scope of 

our study. Therefore, we have not integrated them into our revised manuscript.  

FG mega-RG meta-RG meta-analysis of 

glucose 

Genetic correlation with CAD 



0.1476 

(0.0317) 

0.1043 (0.0269) 0.0788 (0.0256) 0.1060 (0.0243) 

Prediction of cardiovascular disease risk using glucose PGS in GERA (AUC) 

Predictor based on COJO 

(s.e.) 

0.5012 

(0.0029) 

0.5035 (0.0029) 0.5028 (0.0029) 0.5034 (0.0029) 

Predictor based on 

SBayesR (s.e.) 

0.5101 

(0.0029) 

0.5048 (0.0029) 0.5043 (0.0029) 0.5087 (0.0029) 

4. I would be curious to see if using a PGS with only those SNPs that provide consistent direction of effects 

on T2D risk (increasing glucose levels allele increase risk for T2D, without considering significance of course), 

would have an improved predictive power.  

We refer the reviewer to our answer to their Question 2 above. Overall, we observed a slight increase in the 

predictive power. 

5. The authors are invited to explicit how they came with the estimation about the likelihood that a third of the 

future FG-associated SNPs to be discovered within 1Mb of the currently described loci obtained from this 

meta-analysis.  

We apologise for the lack of clarity of this sentence. This conclusion is based on our estimates of partitioned 

SNP-based heritability (Figure 4), which shows that ~10% of FG variance is explained by SNPs within 1 Mb 

of the 156 COJO SNPs identified in this study. Given that these COJO SNPs only explain ~3% of FG variance, 

we can expect that other associations, accounting for the difference between the 10% expected and the 3% 

already explained, remain to be detected within 1 Mb of these 156 COJO SNPs. Next, we compared the 7% 

(=10%-3%) missing heritability contained within 1 Mb of COJO SNPs with the genome-wide SNP-based 

heritability of ~20% (in Lifelines) to get a final estimate of 7/20, i.e., ~1/3rd. The latter estimate is based on 

the additional (implicit) assumption that SNP-traits associations are randomly distributed across genome. 

However, given that this assumption has been challenged for many complex traits (e.g., heritability is 

concentrated in evolutionary conserved regions8), we have decided to remove the “1/3rd prediction” while 

still emphasizing that additional associations remain to be detected with 1 Mb of these 156 COJO SNPs 

(Lines 298–301): “Nevertheless, this analysis suggests that additional associations, accounting for the 

difference between the ~10% of FG variance expected and the ~3% already explained, remain to be 

discovered within 1 Mb of the 156 COJO SNPs identified in this study.” 

6. Could the authors confirm there are no existing eQTL datasets for a more relevant tissue to glucose 

homeostasis other than blood? (e.g pancreatic islets, muscle, adipose tissue, where one putative gene 

(CREB3L4) seem to be mentioned as likely to regulate adipogenesis). The functional annotation part could 

gain in interest by integrating more data.  

We thank the referee for this suggestion. Accordingly, we extended our Summary-data based Mendelian 

Randomization (SMR) analyses, which now includes eQTL data from 3 studies based on multiple tissues. 

These additional analyses have led to identify 185 unique genes showing evidence of a transcriptomic 

relationship with glucose levels. We further used these 185 genes to prioritize pathways and report our 

findings in the following (revised) section (Lines 218–284): 



“Prioritisation of glucose-related genes and pathways

We performed a summary data-based mendelian randomization (SMR) analysis9 to prioritise genes, which 

mRNA expression could mediate associations between SNPs and glucose. For these analyses, we used 

multi-tissue expression quantitative trait loci (eQTLs) identified in the eQTLGen study10 (N=31,684 whole 

blood samples), the GTEx study11 (N=838, across 49 different tissues) and the InsPIRE study12 (N = 420 

pancreatic islets samples). Using GWAS data from our largest meta-analysis of glucose (N = 519K), we 

prioritised 185 genes passing both the SMR and HEterogeneity In Dependent Instruments (HEIDI) tests (PSMR

< 3.20 × 10-6=0.05/15,645 and PHEIDI > 0.01; Methods), suggesting increased evidence of a pleiotropic or a 

causal effect of these genes on glucose levels. A complete list of these 185 genes (hereafter referred to as 

SMR genes) is provided in Supplementary Table 11. This list includes GCK, NFX1, CGREF1, CCNE2, 

QPCTL, ABHD1, SLC39A13, SLC12A4, YWHAB, ACVR1C, TRIM59, ITFG3, SMC4, INTS8, TP53INP1, 

ZCWPW1, KLHL42 and SYNM previously associated with glucose measurements, insulin measurements 

and T2D. Another number of SMR genes had no prior evidence of any role in glucose metabolism, but have 

been implicated in glucose regulation. Those include HBM, CREB3L4, NPEPPS, HEXIM2, LCAT, UNC13D, 

CHMP4B, MTMR3, RCCD1, as well as several long non-coding RNAs and pseudogenes (Supplementary 

Table 11). Among those genes, CREB3L4 was reported to negatively regulate adipogenesis when expressed 

in adipose tissues13. Importantly, adipose tissues are involved in insulin resistance and T2D through 

adipokines secretion affecting systemic glucose homeostasis14. Therefore, differential expression of 

CREB3L4 may change adipokine profile and, thereby, alter insulin sensitivity (Supplementary Figure 4).  

Next, we compared our SMR results across tissues and found that 108/185 (i.e., ~58%) SMR genes had a 

significant effect size in at least two tissues. The remaining 77 SMR genes were more often associated with 

expression in pancreatic islets (16 genes), blood (15 genes) and testis (10 genes), although this enrichment 

was not statistically significant (Fisher Exact Test P > 0.7). We then focused on the 108 SMR genes detected 

in at least two tissues and quantified the heterogeneity of estimated effect size of gene expression on glucose 

levels. Overall, we found consistent effect sizes of gene expression across tissues (median Cochran’s 

heterogeneity I2 ~ 40%). However, we also observed 12/108 genes (KLHL42, STEAP1, MBTPS1, TAPBP, 

TP53INP1, SMC4, TMEM45A, PLEKHM1, CCNE2, ZCWPW1, PABPC1L, YWHAB), which estimated effects 

had inconsistent direction across tissues. For instance, TMEM45A expression in pancreas, pancreatic islets, 

pituitary, spleen and blood was positively associated with glucose, while expression in omentum, artery (aorta 

and tibial), spinal cord and cultured fibroblast was negatively associated with glucose. This pattern can be 

explained by various mechanisms causing differential regulation of gene expression across tissues including 

the fact that eQTLs can have opposite effects across tissues as reported previously11. For example, the G 

allele at rs4132537, an eQTL for TMEM45A expression, has opposite effects on gene expression in arteries 

and pituitary. Besides these 12 genes displaying heterogeneous effects on glucose, GCK showed the largest 

coefficient of variation of effect sizes across 7 tissues although estimates were consistently positive 

(Supplementary Table 11). Importantly, GCK also had the largest effect size on glucose levels (bSMR = 0.27 

mmol/L per SD of GCK expression in blood; S.E.=0.03; PSMR=1.6×10-19, PHEIDI=0.012), consistent with its 

glucose sensing role15.  

Finally, we used the GENE2FUNC module of the online FUMA GWAS platform16 to annotate SMR genes 

with biological and functional information. Overall, we found that SMR genes are down-regulated in liver, 

muscle, pancreas, heart and kidney (Supplementary Figure 5), and significantly (False discovery rate < 5%) 

enriched among genes involved in peptidase activity (Supplementary Figure 6A), vacuole and endoplasmic 

reticulum membrane organisation (Supplementary Figure 6B and 6C). Moreover, SMR genes were 

significantly enriched among genes involved in myogenesis, MTORC1 signalling, as well as within pathways 

related to myometrial relaxation/contraction and G-protein-coupled receptors (in particular class B secretin-

like family) activity (Supplementary Figure 7). We also compared biological and functional enrichments of 

SMR genes identified through analyses of FG (N=23 genes; Supplementary Table 11) and our meta-RG 

(N=148 genes; Supplementary Table 11) GWAS, but did not find a significant differential enrichment 

between these two sets of genes.  



In summary, we prioritise here 185 genes which expression across multiple tissues may explain how SNPs 

can induce physiological glucose variation. Further functional experiments are required to fully characterise 

a potential causal relationship between steady state gene expression of these genes and glucose levels.” 

7. Please comment on HbA1c levels availability in UKBB and if yes, consider and discuss on the interest in 

performing a genetic comparison with RG in the same way they compared to FG.  

We thank the referee for this question although we are not sure of what is suggested here. HbA1c measures 

are available in the UKB. We analysed this phenotype to detect heritability differences between fasting time 

groups (as we did for RG). We did not find any significant difference, implying no expected gain in using a 

meta-GWAS over a mega-GWAS. This observation (previously reported in Supplementary Table 12) is 

expected as HbA1c reflects glucose variation over a longer period of time (past 2-3 months).  

We estimated the genetic correlation between HbA1c and FG to be ~0.52 (0.07), which suggests significant 

genetic overlap between the two traits but much less than between FG and RG (rg~0.8). Therefore, directly 

meta-analysing FG and HbA1c would not systematically improve statistical power to detect associations for 

each of these two traits. Other methods such as MTAG can improve power of GWAS by combining multiple 

genetically correlated traits. We now mention this in the discussion (Lines 311–313): “GWAS power to detect 

associations with FG can be further improved using statistical methods integrating GWAS data from 

genetically correlated traits like T2D or HbA1c17.”



Reviewer #2 (Remarks to the Author): 

J. Qiao and colleagues performed an exciting study on the genetic architecture of fasting and random glucose. 

We thank Reviewer #2 for their thorough revision of our manuscript and for making specific suggestions, 

each of which is addressed below. We also thank them for expressing excitement towards our study. 

1-The authors may precise in the introduction that the genetic architecture of fasting glucose level and type 

2 diabetes is only partially overlapping (Bouatia-Naji et al., Science 2008, Bouatia-Naji et al., Nat Genet 2009). 

We thank the referee for underlining this. We now mention the partial overlap with type 2 diabetes in our 

introduction (Lines 51–57) supported by the two suggested references. “In particular, genome-wide 

association studies (GWAS) of glycemic traits have provided insights into the genetic regulation of glucose 

levels and that of T2D susceptibility2,18,19, while revealing a partial overlap between them20,21. Overall, GWAS 

of glycemic traits have discovered a range of genetic loci associated with fasting glucose (FG) 

concentration18,19,22-25, post-challenge glucose concentration2 and fasting insulin concentration19,23,25” 

2-I am surprised by the huge number of related individuals excluded from the analysis (N=86,465) in the UK 

Biobank. Many GWAS have been previously performed in the UK Biobank, and I never saw that many 

individuals excluded from the analysis because of relatedness issues. The authors may consider using a 

more relaxed threshold of relatedness (e.g. exclusion of 1st and 2nd degree relatives) to improve statistical 

power. Another option can be to adjust the GWAS analysis for relatedness, as previously described in 

literature. 

The number of relatives excluded in our analysis is consistent with other UKB-based studies. For example, 

Loh et al. (2018) introduced BOLT-LMM in their paper reporting 459K participants with European ancestries 

including a subset of 337K unrelated White British samples (i.e., > 100K samples excluded)26. Our definition 

of relatedness is based on a cut-off of 0.05 on the estimated SNP relatedness, which is slightly more stringent 

than 0.0625 corresponding to 2nd degree relatives. We used this definition in previously published studies 

(e.g., Jiang et al. Nature Genetics. 201927, Truong et al. Nat Communs. 202028, Hivert et al. AJHG. 202129, 

and Wainschtein et al. Nature Genetics. 202230) as this is the recommended threshold for estimates of SNP-

based heritability not be confounded with shared environmental effects. Estimation of heritability (across 

fasting time) is central in our study design hence the use of this threshold. We agree with the referee that 

there are methods in the GWAS literature (e.g., BOLT-LMM) to account for relatedness. However, given our 

study design, we still would have needed to exclude related individuals across fasting time groups to ensure 

no inflation of false positives in our meta-GWAS analysis. 

In summary, we acknowledge that our criterion to exclude relatives is conservative (although not 

unconventional), yet led to demonstrate an increase of power of a meta-GWAS over a mega-GWAS approach. 

3-Related to my previous comment, did the authors apply similar exclusion procedure for related individuals 

in the MAGIC sample. 

The MAGIC consortium consists of a large number of participating cohorts and each participating cohort has 

been applied with study-level quality control procedures. Therefore, there is no single criterion used. For 

example, a 2021 MAGIC study reports that the first- OR second-degree relatives in each cohort were 

excluded during their sample QC checks unless by design1. Another 2021 MAGIC reports that related 

samples were excluded separately in each dataset22, but no specific thresholds were given neither in the 

main text nor in their Supplementary Data 1. As detailed above, we applied a relatedness threshold slightly 

stricter than 2nd degree relatives to minimize confounding of our estimates of SNP-based heritability. 

4-The authors defined five groups based-on their self-reported fasting time (0-2h, 3h, 4h, 5h and 6-24h) to 

ensure that at least 30K participants were included in each group. They may also consider physiological 

https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-19366-9/MediaObjects/41467_2020_19366_MOESM5_ESM.xlsx


considerations (e.g. shape of post-prandial glucose curves) to reach an optimal definition of groups. Glucose 

values change a lot during the 2h postprandial period (in relation to the 1st and 2nd phase of insulin secretion), 

and it seems a little bit counterintuitive to have a 0-2h group. 

We thank the referee for this comment. We acknowledge that substantial changes in glucose levels (and 

likely regulation) occur within 2h post meal. In fact, we previously highlighted this as a limitation in our 

Discussion: “Secondly, by choosing to analyse groups with at least 30,000 individuals, participants within 2h-

post meal were aggregated in a single group, and therefore we could not assess differences in SNP effects 

within this critical time window.” We initially defined these groups to ensure sufficiently large sample sizes 

(N > 30K) to detect heritability and genetic correlation differences. We therefore aggregated the 0-1h group 

(N=13,325) with the 2h group (N=59,494) for that reason, noting that the 0-1h group represents less than 20% 

of the 0-2h group. Following the referee’s comment, we assessed the genetic correlation within the 0-2h 

group by comparing 0-1h (N=13,325) vs 2h (N=59,494). We used GCTA instead of LD score regression to 

estimate this genetic correlation because the former yields more precise estimates with smaller sample 

sizes31. Although, standard errors remain large, we found a genetic correlation rg=0.60 (S.E. 0.17; 95%CI: 

0.26-0.93) significantly lower than 1 (P=0.018), suggesting some heterogeneity of SNP effects between these 

two groups. However, there was no significant heritability difference between these groups (0-1h: h2=0.072, 

S.E. 0.026; 2h: h2=0.066, S.E. 0.007) implying that splitting the 0-2h group in two may not further improve 

statistical power. 

We have expanded our discussion of this limitation by including the results above (Lines 344–359): 

“Secondly, by choosing to analyse groups with at least 30,000 individuals, participants within 2h-post meal 

were aggregated in a single group despite the substantial changes in glucose levels occurring in that critical 

window (Supplementary Figure 8). Although the vast majority (~82%) of participants in that group reported 

their last meal exactly 2h prior to the assessment, we sought to quantify the genetic correlation of glucose 

levels between the 0-1h (N=13,325) and the 2h group (N=59,494). We used GCTA instead of LDSC to 

estimate this genetic correlation because the former yields more precise estimates with smaller sample 

sizes31. While standard errors remain large, we found a genetic correlation rg=0.60 (S.E. 0.17; 95%CI: 0.26-

0.93) significantly lower than 1 (P=0.018), suggesting some heterogeneity of SNP effects between these two 

sub-groups. However, there was no significant heritability difference between these groups (0-1h: h2=0.072, 

S.E. 0.026; 2h: h2=0.066, S.E. 0.007) implying that splitting the 0-2h group in two sub-groups may not further 

improve statistical power of our meta-GWAS. Nevertheless, if sample size is large enough, more loci showing 

heterogeneity of SNP effects on glucose levels can be detected within that time interval.” 

5-The authors may precise the ancestry of the Lagou et al. sample (UK Biobank is predominantly EU). 

We have now clarified this in the manuscript at lines 110-111: “Lagou et al. (2021) (N = 151,188 European 

ancestry individuals without diabetes).” 

6-For clarity, please define in the text what means LDSC intercept. 

We have now clarified this in the main text (Lines 129–135): “The mean chi-square association statistic was 

1.46 in the mega-GWAS vs. 1.53 in the meta-GWAS. We also compared the LDSC intercept (a statistic 

reflecting the degree of confounding in a GWAS; Methods) between these analyses and found that both 

analyses yielded similar estimates of the LDSC intercept (Table 2, Supplementary Table 5), suggesting that 

the increased chi-square statistic observed in our meta-GWAS reflects enhanced statistical power but no 

inflation of false positives.” 

And in the method section (Lines 451–453): “The LDSC intercept approximates the mean χ2 association 

statistic at SNPs not associated with the trait, and therefore provides a quantification of confounding due to 

population stratification32.” 



7-‘Overall, we found no significant evidence of heterogeneous SNP effects across fasting time groups except 

for rs1881415 (PHET < 5×10-8), which only showed a significant effect on glucose levels within 3h post-meal 

(Supplementary Table 7). Importantly, this intergenic variant is in highly LD (r2 > 0.8) with SNPs previously 

associated with fasting proinsulin and T2D risk’. The SNP rs1881415 is also in strong LD with another SNP 

strongly associated with fasting glucose in the European population (Chen et al., Nat Genet 2021). This is 

somewhat discordant with the author’s findings and should be mentioned and discussed. 

We thank the referee for this question, which also echoes another comment made by the first referee. We 

refer this reviewer to our response above to Reviewer #1’s first comment. In brief, our observation is 

consistent with what was previously reported, i.e., that the T2D risk allele at this locus is both associated with 

an increased FG and a decreased 2h-glucose. In our analyses, we had a limited number of fasting 

participants (e.g., > 5h fasting time), which limits our power to replicate the association with FG. However, 

we find a sign consistent pattern (Supplementary Table 7). We have rephrased this paragraph entirely (lines 

140 – 147): “We found genome-wide significant evidence of heterogeneous SNP effects across fasting time 

groups for rs1881415 (PHET < 5 × 10-8; Supplementary Table 7). This variant is in high LD (r2 > 0.8) with 

SNPs previously associated with fasting glucose, fasting proinsulin, 2h-glucose1 and T2D risk3. Importantly, 

the T2D risk allele at this locus shows opposite effects on FG (positive effect) vs 2h glucose levels (negative 

effect). Our data recapitulates this heterogeneous pattern (i.e., effect sizes are not sign-consistent across 

fasting time) although the relatively small number of UKB participants fasting for > 5 hours reduces the 

statistical power to detect a genome-wide significant effect.” 

8-‘Note, as a benchmark, that this estimate is similar to the 170 LDSC genetic correlation between males and 

females for traits like body mass index (BMI) and waist circumference’. I think this sentence may be out of 

context. Please consider removing. 

We thank the referee for this comment. We added this sentence to underline that meta-analysing traits with 

a genetic correlation of ~0.8 is not unusual as this is what we do when combining data from males and 

females. We apologise if this was confusing. We have now removed the sentence. 

9-‘We also quantified the ability of our FG and RG PGSs to predict T2D in an independent sample of 6,905 

cases and 46,983 controls from the Genetic Epidemiology Research on Adult Health and Aging (GERA) 

study cohort’. As GERA is multiethnic, the authors may consider performing the T2D genetic prediction study 

on the EU subset of GERA participants for consistency, as they identified FG and RG-associated SNPs in 

populations of EU ancestry. 

Our analyses in GERA were already restricted to European ancestries participants. We have re-emphasized 

this the Methods section (Lines 556–558): “Our analysis is focused on individuals of European ancestry and 

excluded related individuals at a genetic relatedness threshold of 0.05. After QC, 6,905 T2D cases and 

46,983 controls were retained.” 

10-The authors may consider performing molecular pathway / gene function / tissue expression GWAS gene-

enrichment analyses to investigate the biological mechanisms underlying the genetic architecture of FG and 

RG. As the genetic overlap between FG and RG is partial, they may identify different mechanisms involved 

in FG or RG genetic variation. 

We thank the reviewer for this suggestion. We have now performed a pathway and gene function enrichment 

analysis based on genes prioritised using Mendelian Randomization. We update the method section (Lines 

510–513 and 518–528) and report these additional results in the main text (Lines 273–286) and above in 

response to point #6 from Reviewer 1. However, given the limited number of genes prioritised from FG GWAS 

(Lagou et al. (2021), N=23), we lacked power to detect a significant differential enrichment as compared to 

the N=148 genes prioritised from our meta-RG GWAS. 



11-The authors did not perform post-GWAS in vitro / in vivo studies (e.g. cellular / animal studies) to 

investigate the role of newly discovered GWAS variants and genes in glucose homeostasis. I understand that 

this may be considered as beyond the scope of the current study, but they may at least mention this limitation 

in the discussion. 

We thank the reviewer for underlining this limitation, which we now echo in our discussion section (Lines 

361–363): “Lastly, we did not perform any post-GWAS in vitro or in vivo studies, which can provide valuable 

evidence to investigate the role of newly discovered GWAS variants and genes in glucose homeostasis.”
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REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

I thank the authors for addressing all of my main comments. I specifically appreciate the annotation 

provided now which I find very informative and complete. 

I have no further comment, and leave the call to the editor regarding the relevance to include the 

predictive power estimation of RG and FG for cardiovascular disease. 

Reviewer #2 (Remarks to the Author): 

The authors adressed carefully all my comments, thank you. They may just consider defining the 

abbreviation LDSC in the text for clarity (linkage disequilibrium score regression (LDSR or LDSC)).



REVIEWERS' COMMENTS

We thank the two referees for their valuable suggestions to improve our manuscript. 

Reviewer #1 (Remarks to the Author): 

I thank the authors for addressing all of my main comments. I specifically appreciate the 
annotation provided now which I find very informative and complete. I have no further 
comment, and leave the call to the editor regarding the relevance to include the predictive 
power estimation of RG and FG for cardiovascular disease. 

We thank Reviewer #1 for acknowledging the completeness of our response. We believe that 
these additional results could be accessed in our review (if published), as they remain outside 
the score of our study.

Reviewer #2 (Remarks to the Author): 

The authors addressed carefully all my comments, thank you. They may just consider 
defining the abbreviation LDSC in the text for clarity (linkage disequilibrium score regression 
(LDSR or LDSC)). 

We thank Reviewer #2 for appreciating our revised manuscript. We have opted for the use of 
“LDSC” to refer to the LD score regression method as that is also the name of the software 
implementing it. We have updated the manuscript accordingly.


