Cellular senescence in malignant cells promotes tumor progression in mouse and

patient Glioblastoma
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Supplementary Figure 1
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Supplementary Figure 1. Identification of senescent cells in patient and mouse gliomas.
(a) Table recapitulating the patient resected diffuse gliomas stained for SA-B-gal and
annotated for their glioma type, age, sex, molecular alterations and percentage of SA-B-gal
area over the tumor area. Recurrent gliomas are highlighted in grey.

(b) Representative SA-B-gal staining (blue) of the 3 categories of senescence in patient
gliomas. Sections are counterstained with hematoxylin (H) (n=28 independent patient GBMs).
(c) Representative Hematoxylin and Eosin (HE) staining on mouse GBM cryosections. The
mouse GBM model recapitulates the patient GBM histological features. Note that all mouse or
patient GBMs included in this manuscript have been counterstained in HE.

(d) Representative HE and SA-B-gal/Ki67 staining on adjacent mouse GBM cryosections
highlighting the presence SA-B-gal+ cells in proliferative and necrotic areas (n=8 independent
mouse GBMs).

Scale bars, b: 50 ym; ¢: 20 uym; d: 100 ym. amp: amplification; del.: deletion; methyl.:
methylation; mut.: mutation; NS: not specified. Arrowheads point to SA-B-gal+ cells. Dashed
lines highlight SA-B-gal+ area in b, and necrotic area in d. Raw data are provided as a Source

Supplementary Data file.



Supplementary Figure 2
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Supplementary Figure 2. Senescent cells partial removal increases the survival of GBM
bearing mice

(a) Relative transcript levels shown as ratios of normalized values of tumor samples (GFP+,
n=7) from WT and p16-3MR transgenic mice (GFP+, n=8) over the surrounding parenchyma
from the same transgenic animals (GFP-, n=8). Data are represented as the mean + SEM.
Statistical significance was determined by a Kruskal Wallis test with a Dunn’s multiple
comparisons correction (* p<0.05; ** p<0.01; **** p<0.0001).

(b) Heatmaps representing bulk RNAseq analysis of the differentially expressed (DE) genes
(FDR<0.05; logFC>0.5) between p16-3MR+GCV (n=9) compared with WT+GCV (n=5) GBMs
collected at the end points of the mice.

(c) Volcano plots of the DE genes (FDR<0.05; logFC>0.5) between p16-3MR+GCV (n=9)
compared with WT+GCV (n=5) GBMs collected at the end points of the mice.

(d) Heatmaps representing bulk RNAseq analysis of the DE genes (FDR<0.05; logFC>0.5)
between of p16-3MR+GCV (n=7) compared with p16-3MR+vhc GBMs (n=4) collected at the
end points of the mice.

(e) Volcano plots of the DE genes between p16-3MR+GCV (n=7) compared with p16-
3MR+vhc GBMs (n=4) collected at the end points of the mice. Annotated genes are common
to those in B.

(f) GSEA ridge plots of the significant representative Hallmark gene lists common to the two
RNAseq analysis (a, b and ¢, d).

(g) GSEA graph representing the enrichment score of the Fridman senescence pathway in
p16-3MR+GCV compared with p16-3MR+vhc GBMs.

GCV: ganciclovir; FDR: false discovery rate; NES: normalized enrichment score; r. enrichment
score: running enrichment score.

(h) Relative transcript levels shown as ratios of normalized values of p16-3MR+GCV GBMs
(n=6) over WT+GCV GBMs (n=4). Data are represented as the mean + SD. Statistical
significance was determined by Wilcoxon-Mann-Whitney test (**, p<0.01, ns, not significant).

Raw data are provided as a Source Supplementary Data file.



Supplementary Figure 3
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Supplementary Figure 3. Identification of p16'"“2Hi cells in a subset of malignant cells
(a) Timeline of the mouse GBMs generation for scRNAseq at the early timepoint.

(b) In vivo bioluminescence imaging of WT+GCV and p16-3MR+GCV GBM-bearing mice.

(c) Graph representing the head to body ratio bioluminescence of GBM-bearing mice over
time. Yellow lines correspond to GCV injections.

(d) UMAP plots of WT+GCV and p16-3MR+GCV GBM cells per biological sample at a 0.5
resolution and annotated malignant cells and cells from the tumor microenvironment (TME).
(e) Heatmap representing inference of chromosomal copy number variations (CNVs) in
WT+GCV GBMs with cells as rows, grouped in clusters, and genes as columns, ordered
according to chromosome.

(f) Heatmap of the top 3 differentially expressed (DE) genes (FDR<0.05; avlogFC>0.25) in
malignant clusters (0.6 resolution) in WT+GCV GBMs. When the same gene is DE in more
than one cluster, it appears only once.

(g) GSEA dot plots of DE genes (FDR<0.05; avlogFC>0.25) in WT+GCV (grey dots) and p16-
3MR+GCYV (red dots) GBMs of gene lists from Bhaduri et al.' (Supplementary Table 1).

(h) Volcano plots of the DE genes between of p16-3MR+GCV (n=4) compared with WT+GCV
GBMs (n=4).

(i) GSEA graph representing the enrichment score of the cycling pathways (Weng et al., 2019;
Supplementary Table 1) in p16-3MR+GCV (n=4) compared with WT+GCV (n=4).

d-g: analysis performed from scRNAseq data as shown in a-c. h and i: analysis performed
from bulk RNAseq data at the early time point of the mice. GCV: ganciclovir; TMX: tamoxifen;
i.p.: intraperitoneal; Iv-luc: lentivirus-luciferase; UMAP: uniform manifold approximation and
projection; chr: chromosome; FDR: false discovery rate; NES: normalized enrichment score.

Raw data are provided as a Source Supplementary Data file.



Supplementary Figure 4
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Supplementary Figure 4. Modulation of the immune compartment following p16'42 Hi
cells partial removal

(a) Heatmap of the top 5 differentially expressed (DE) genes (FDR<0.05; avlogFC>0.25) in
CD45+ clusters (0.5 resolution) in WT+GCV GBMs. When the same gene is DE in more than
one cluster, it appears only once.

(b) GSEA graphs representing the enrichment score of core bone marrow-derived
macrophages (BMDM) and Anti-inflammatory pathways (Bowman et al.®; Darmanis et al.*;
Supplementary Table 1) in p16-3MR+GCV compared with WT+GCV GBMs at the early and
late timepoints. Analysis performed from bulk RNAseq data.

(c) Bar plot representing the estimation of the abundance of immune cell types in WT+GCV
(n=4 for the early time point and n=5 for the late time point) and p16-3MR+GCV (n=4 for the
early time point and n=9 for the late time point) GBMs using CIBERSORT (reference data set
GSE124829) at the early and late time points. Analysis performed from bulk RNAseq data.
Statistical significance was determined by Wilcoxon-Mann-Whitney test (ns, not significant; *,
p<0.05).

(d) Relative transcript levels shown as ratios of normalized values of p16-3MR+GCV GBMs
(n=6) over WT+GCV GBMs (n=4) collected at the late timepoint. Data are represented as the
mean + SD and statistical significance was determined by Wilcoxon-Mann-Whitney test (*,
p<0.05; ns, not significant).

FDR: false discovery rate; NES: normalized enrichment score; macro.: macrophages; GCV:

ganciclovir. Raw data are provided as a Source Supplementary Data file.



Supplementary Figure 5
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Supplementary Figure 5. Identification of NRF2 activity and its putative targets in p16'"42
" malignant cells

(a) Timeline of the mouse GBM generation for scRNAseq at the late timepoint (LATE(1)).

(b) Scheme of the scRNAseq experiment.

(c¢) UMAP plots of GBM cells and annotated cell type at a 0.6 resolution.

(d) UMAP plots of the expression of p716™in GBM cells.

(e) Barplot representing the percentage of cells per cluster positive and negative for p16"#
expression.

(f) Low magnification of representative immunohistochemistry (IHC, brown) counterstained
with hematoxylin (H, purple) on mouse GBM cryosections at the late timepoint (NRF2:
WT+GCV, n=7; p16-3MR+GCV n=7; uPAR: WT+GCV, n=3; p16-3MR+GCV, n=3; CX43:
WT+GCV, n=5; p16-3MR+GCV, n=6; TNC: WT+GCV, n=5; p16-3MR+GCV, n=7 independent
mouse GBMs).

(g) Western blot (WB) for TNC from independent WT+GCV (n=5) and p16-3MR+GCV (n=7)
GBMs collected at the late timepoint. Each lane corresponds to one GBM. TUBULIN-f was
taken as a loading reference. Quantification of the WB is shown in Fig. 5.

(h) Dot plot representing ligand-receptor interactions between the cluster 0 and the immune
clusters in the scRNAseq data at the early timepoint using CellPhoneDB. The colors indicate
the mean expression of the ligand-receptor complexes.

Scale bar, f: 40 ym. GCV: ganciclovir; TMX: tamoxifen; FACS: fluorescence-activated cell
sorting; UMAP: uniform manifold approximation and projection; TME: tumor microenvironment.

Raw data are provided as a Source Supplementary Data file.
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Supplementary Figure 6
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Supplementary Figure 6. Knockdown of NRF2 in malignant cells recapitulates most
features of the senolytic treatment

(a) Relative transcript levels shown as ratios of normalized values of GL261 cells expressing
miR-NRF2 over miR-ctl. The graph shows two independent experiments performed in
duplicate. miR-NRF2 #4 reduces the expression of all the NRF2 targets (canonical targets:
Hmox1 and Srxn1, and NRF2 targets from the combined analysis: Areg, Tnc, Plaur and
Angptl2) and was subsequently used for in vivo experiments.

(b) Volcano plots of the differentially expressed (DE) genes in miR-NRF2 GBMs (n=3)
compared with miR-ctl GBMs (n=3).

(c) GSEA ridge plots of the 10 most significant representative Hallmark gene lists.

(d) Low magnification of representative NRF2 IHC (brown) counterstained with hematoxylin
(purple) on miR-ctl (n=4) and miR-NRF2 (n=4) GBM cryosections.

(e) Low magnification of representative SA-B-gal staining (blue) counter stained with
hematoxylin (purple) on miR-ctl (n=4) and miR-NRF2 (n=4) GBM cryosections.

Scale bar, d, e 100 um. d, e, Necrotic areas are outlined in red dashed lines. b, c: Analysis
performed from bulk RNAseq of GBMs collected at the late time point. Raw data are provided

as a Source Supplementary Data file.
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Supplementary Figure 7
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Supplementary Figure 7. Mouse senescent signature is conserved in patient GBM and
its enrichment score is predictive of a worse survival

(a) GSEA ridge plot of significant Hallmark gene lists between the astrocyte and NP-like
clusters compared with the remaining malignant cells in WT+GCV GBMs. The Hallmark gene
lists represent the gene lists common to the GSEA analysis of the p16-3MR+GCV GBMs
compared with controls (Supplementary Fig. 2e).

(b) GSEA ridge plot of gene lists used throughout the study (Supplementary Table 1), between
the astrocyte and NP-like clusters compared with the remaining malignant cells in WT+GCV
GBMs.

(c) Top: violin plots of the single sample GSEA (ssGSEA) senescent Z-score (sen-Z-score) in
all malignant cells of WT+GCV and p16-3MR+GCV GBMs. Bottom: barplots of the percentage
of the ssGSEA senescent Z-score distribution rate in all malignant cells of mouse GBMs. High
and Low distribution rates correspond to the highest and lowest decile, respectively.

(d) Low magnification of representative SA-B-gal staining (blue) coupled with IHC (brown) and
counterstained with hematoxylin (H, purple) on patient GBM cryosections. 3 patient GBMs
were analyzed per antibody. Scale bar: 40 ym. Raw data are provided as a Source

Supplementary Data file.
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