
Combat-TB-NeoDB Supplementary 
Section 1 Towards a de-facto modelling standard 
Biological data is typically highly connected, semi-structured and relationships are imprecisely 
known. Conventionally, biological data is stored in relational database management systems 
(RDBMS) and flat files. Albeit useful, issues such as transforming the data to conform to a 
predefined schema, redesigning the schema and application logic on new discoveries, and the 
computationally expensive use of JOIN queries remain. Considering that one of the 
fundamental aims in biology is to understand complex relationships among heterogeneous 
biological data that contribute to biological function, a graph-based approach has been 
proposed as an alternative to the relational model for storing biological data.  
Graph databases can increase research throughput in the TB research community by bridging 
the gap between the amount of data produced and the amount of data analyzed. 

 
The design of stable, shared schemas that are acceptable to a wide variety of projects is a non-
trivial task. In efforts to move towards a more de-facto modelling standard by binding the 
labelled property graph model to a consensus controlled vocabulary, we investigated Chado, 
an ontology based RDBMS capable of representing many of the general classes of data 
encountered in modern biology, and the Sequence Ontology (SO), a structured controlled 
vocabulary that provides a set of terms and definitions used to facilitate the exchange, analysis 
and management of genomic data. 

 

 
Figure S1: Chado Modules 

The Chado schema is built with a set of modules. A Chado module is a set of database tables 
and relationships that stores information about a well-defined area of biology, such as sequence 
or attribution. Central to Chado sequence data management is the Sequence module which 
houses genomic features and things that can be tied to or descend from genomic features. 
Diagram obtained from http://gmod.org/wiki/File:ChadoModules.png 
 



 
Figure S2: Main tables in Chado Sequence Module 

In Chado, all features are stored in the feature table, with a very limited set of columns for 
recording attributes, of the sequence module and feature SO types (gene, transcript, etc.). 
Relationships are stored, via feature_relationship table and type_id column, in the cvterm 
table. Columns such a dbxref_idand organism_id are used to link the feature to its public 
identifier in the dbxref table and the organism it belongs to in the organism table. Due to the 
limited set of columns for recoding attributes, Chado uses the featureprop table to store these 
for any given feature. Figure S2 obtained from http://gmod.org/wiki/File:Feature-tables.png 
More information can be found on the link below: 

• http://www.gmod.org/wiki/Chado_Modules 

To model Combat-TB-NeoDB, we examined the five core modules that are required by all 
Chado installations; the Organism, General, Publications, Controlled Vocabulary, and the 
Sequence module. 
 



Combat-TB-NeoDB Graph Model 
 

 
Figure S3: Combat-TB-NeoDB Graph Model 

Adapting a RDBMS model to a graph database model is fundamentally a task of converting 
from ER structure to graph structure. Most notably, a row in a relational model is a node, a 
table name is represented by a label on nodes, and columns on tables are node properties. 
Foreign keys and JOIN tables can be used to build edges, thereby transforming loosely coupled 
data records into a highly bounded group of nodes. The determination and construction of the 
right relationships is a key activity that impacts the ability of the data structure to respond 
efficiently to queries. 
Rather than modelling biological entities, or sequence features as an abstract feature and 
relying on index lookups and JOIN tables to find related data, the labelled property graph model 
allows for each feature to be modelled as a node in the graph and describes the relationship 
using the SO terms and or biologically accepted terms (e.g. encodes and translated). This 
provides the ability to retrieve data by traversing relationships. 

Variant Data Model 

 
Figure S4:GA4GH inspired Variant Data Model 

In our Variant data model, a variant call (Variant) expresses an alternative allele found at a 
particular genomic location. This location is given in 1-based coordinates relative to the 
reference sequence (H37Rv). A Variant belongs to a CallSet and multiple CallSets can belong 
to a VariantSet. This is different to the GA4GH model and expresses the situation where 



multiple sets of variant calls are logically associated into a higher level collection. For ease of 
querying, each Variant is also directly associated with its containing VariantSet. This schema 
allows rapid search for genomic variants at a particular location. It might, however, change as 
the discussion on how to model genetic variation in pathogens evolves. 
More information about the GA4Gh Variant Data Model can be found in the link below: 

• https://ga4gh-schemas.readthedocs.io/en/latest/api/variants.html 

Section S2: Data Sources and Integration 

Biological Databases 
Prominent biological resources were used to build a database containing the most updated 
functional genome annotation information with bi-monthly updates. 
 

Table S1: A list of public data sources used for data collection 

Database URL 
EnsemblBacteria https://bacteria.ensembl.org  
UniProt https://www.uniprot.org/ 
QuickGo https://www.ebi.ac.uk/QuickGO/ 
InterPro https://www.ebi.ac.uk/interpro/ 
KEGG https://www.kegg.jp/ 
Reactome https://reactome.org/ 
STRING (v11.0) https://string-db.org/  
DrugBank https://www.drugbank.ca/ 
Pubmed https://www.ncbi.nlm.nih.gov/pubmed/ 

Reference Genome 
Annotation of M.tb is done primarily using the H37Rv, the most studied strain, as a starting 
point with additional strains to be added in subsequent releases. A tool called tb2neo 
(https://github.com/COMBAT-TB/tb2neo) was developed to integrate and import M.tb data from the 
above mentioned biological resources into Neo4j. tb2neo takes the H37Rv GFF3 file from 
EnsemblBacteria as input and generates the Combat-TB-NeoDB reference graph database. 

TB Variants Libraries 
To integrate known drug resistance-conferring variants, we utilised libraries curated by 
resources in the table below.  
 

 

Table S2: Variant libraries used 

Source  Reference 
TBProfiler https://dio.org/10.1186/s13073-015-0164-0  
PhyResSe https://dio.org/10.1128/JCM.00025-15  



Section S3: Installation 

Running Combat-TB-NeoDB locally 
To install Combat-TB-NeoDB please follow README file in https://github.com/COMBAT-
TB/combat-tb-neodb 

Running tb2neo locally 
To install tb2neo please follow README file in https://github.com/COMBAT-TB/tb2neo 

Running vcf2neo locally 
To install vcf2neo please follow README file in https://github.com/COMBAT-TB/vcf2neo 

Section S4: Use Cases 

Querying and analysis on COMBAT-TB NeoDB 
Neo4j provides several interfaces for multiple programming languages including Python, a 
predominant language in bioinformatics, and integrates a web-based, intuitive browser. Integration 
and exploration of data within the database are done using Cypher, a declarative language. 

Using Cypher 
Using Cypher, it is possible to perform federated queries in Combat-TB-NeoDB. For example, 
finding known variants from a list of genes of interest (E.g. kasA, and katG).  
 
WITH ['kasa','katg'] as genes  
MATCH(vs:VariantSet)--(cs:CallSet)--(v:Variant)--(g:Gene) 
WHERE tolower(g.name) IN genes  
RETURN g.name as gene,  v.consequence as variant,cs.name as variant_collection 
 
A second use case could be finding genes that interact with known drug targets, considering a 
score≥0.770, yields 229 genes that interact with known drug targets. (see Table S3 for top 10 
results) 
 
MATCH(gene:Gene)-[:ENCODES]-(p1:Protein)-[i:INTERACTS_WITH]->(p2:Protein)<-
[:TARGET]-(drug:Drug) 
WHERE i.score>= 0.770 
RETURN gene.name as Gene, i.score as Score, p2.uniquename as Interactor, drug.name as Drug 
ORDER BY Score DESC 
 
Another use case could be in knowledge-driven variant prioritization where the assessment of genes 
possessing functional variants in the context of existing biomedical knowledge is vital in producing a 
manageable set of variants for further exploration. Depending on the study and the biological 
questions at hand, candidates can be evaluated individually or as a set. 
 
Upon following instructions in https://github.com/COMBAT-TB/vcf2neo and loading SnpEff 
annotated variants into Combat-TB-NeoDB using vcf2neo, a researcher might want to know if 
there are any variants in genes that encode known drug targets. 
 
MATCH(vs:VariantSet {name: ‘'MyVariantSet' ’})--(cs:CallSet)--(v:Variant)--(g:Gene)--
(p:Protein)--(d:Drug)  



RETURN g.name as gene, collect(distinct v.consequence) as variants,collect(distinct d.name) as 
drugs 
 
‘MyVariantSet’ would be the collection/directory containing the user-generated VCF files. 
 
A researcher might also want to find which variants are associated with pathways in his/her 
VariantSet. 
 
MATCH(vs:VariantSet {name: ‘'MyVariantSet' ’})--(cs:CallSet)--(v:Variant)--(g:Gene)--
(p:Protein)--(pathway:Pathway)  
RETURN g.name as gene,collect(distinct v.consequence) as variants,collect(distinct 
pathway.name) as pathways 
 
More example queries can be found here https://combattb.org/combat-tb-neodb.  

 
Table 3: Top 10 results for the Cypher query to find genes that interact with known drug targets 

Gene Score Interactor Drug 
rpoA 0.999 P9WGY7 Rifapentine 
rpoZ 0.999 P9WGY7 Rifapentine 
folP1 0.999 P9WNC7 Aminosalicylic Acid 
folB 0.999 P9WNC7 Aminosalicylic Acid 
thyA 0.999 P9WNX1 Isoniazid 
fabD 0.999 P9WNG3 Lauric Acid 
gltB 0.999 P9WIQ3 Flavin adenine dinucleotide 
pstP 0.999 P9WI81 Fostamatinib 
atpC 0.999 P9WPS1 Bedaquiline 
atpD 0.999 P9WPS1 Bedaquiline 

 

Using Python 
The Neo4j community has contributed a range of driver options when it comes to working 
with the database via Python. These range from lightweight to comprehensive driver 
packages.  See https://neo4j.com/developer/python/ for more information. 
 
We are going to use a python package called combattbmodel (https://github.com/COMBAT-
TB/combattbmodel).  We developed combattbmodel to model the NeoDB schema using py2neo 
(https://py2neo.org/v3/), a client library and toolkit for working with Neo4j from within Python 
applications and from the command line. This package enables bioinformaticians to interact with 
Combat-TB-NeoDB using pure Python. 
 
To install combattbmodel, run: 

pip install -i https://test.pypi.org/simple/ combattbmodel 
 
The simplest way to try out a connection to Combat-TB-NeoDB is via the console. Once you 
have started a local Combat-TB-NeoDB instance (https://combattb.org/combat-tb-
neodb/installation/), open a new Python console and enter the following code:  
 



Using Python, it is possible to perform federated queries in Combat-TB-NeoDB. For 
example, finding known variants from a list of genes of interest (katG and gyrB).  
 
>>> from py2neo import Graph  
>>> graph = Graph(host='localhost', password='')  
>>> from combattbmodel.vcfmodel import Variant 
>>> genes = ['katG', 'gyrB'] 
>>> for v in Variant.select(graph): 
...      for g in v.occurs_in: 
...              if g.name in genes: 
...                       print(g.name, v.pos, v.consequence) 
...  
gyrB 6620 Asp461Asn 
 
Alternatively: 
 
>>> from py2neo import Graph  
>>> graph = Graph(host='localhost', password='')  
>>> from combattbmodel.vcfmodel import Variant 
>>> genes = ['katG', 'gyrB'] 
>>> for gene in genes: 
...        for v in list(Variant.select(graph).where(f”_.gene=~’(?i).*{gene}.*’”)): 
...        print(g.name, v.pos, v.consequence) 
...  
katG 2155168 Ser315Thr 
 
More example queries can be found here https://combattb.org/combat-tb-neodb.  


