Supplementary Information

Quantitative dose-response analysis untangles host bottlenecks to enteric infection

Ian W. Campbell, Karthik Hullahalli, Jerrold R. Turner, and Matthew K. Waldor*

*mwaldor@research.bwh.harvard.edu

Supplemental figure 1. Validation of *Citrobacter rodentium* STAMP libraries.

(a) Growth of STAMP-CR253 library compared to the parental, untagged strain. Growth curve performed in 96 well plate reader at 37°C, shaking, in LB. 18 clones (colonies) from STAMP library and 2 from parent. Lines are means of triplicate samples.

(b) The ability to determine the size of the founding population from STAMP libraries was validated in culture by comparing the number of plated colonies (CFU; known number of founders) to the size of the founding population following processing of those plated populations (calculated founders). Without calibration, STAMP accurately determined the number of founders up to ~10⁴ CFU and plateaued at ~10⁶ CFU. Therefore, these values can be used to calibrate future experiments to determine the size of founding populations up to 10⁶, with increased uncertainty above 10⁴. STAMP-CR253 (253 unique barcodes) founders (N_r) measured for 4 cultures across 7 doses. STAMP-CR69K (~69,000 unique barcodes) founders (N_s) measured for 3 cultures across 10 doses.

Source data are provided as a Source Data file.

Supplemental figure 2. Additional data related to shedding of C57BL/6J mice in Figure 2.

In C57BL/6J mice inoculated with a high enough dose to cause infection ($\geq 10^8$ CFU), dose impacts the lag between inoculation and peak shedding (**a**) and the lag between inoculation and clearance (**d**) but does not change the days of peak shedding (**b**) or the total fecal burden (**c**). 4 animals per dose. (**a**, **b**, **d**) Arithmetic mean, (**c**) geometric mean.

Source data are provided as a Source Data file.

Supplemental figure 3. All intra-cage relationships from Figure 4a-e.

Comparison by genetic distance of *C. rodentium* populations 5 days post inoculation in 5 cohoused (intra-cage) C57BL/6J mice inoculated with STAMP-CR253. Zero indicates no difference between populations (identical). From proximal (p) to distal (d): p small intestine (SI), mid (m) SI, dSI, cecum, pcolon, dcolon, feces. Source data are provided as a Source Data file.

Supplemental figure 4. Super-colonization resistance prevents cohoused mice from sharing *C. rodentium* populations.

To test transmission of *C. rodentium* to already infected mice, two cages of 4 C57BL/6J mice (seeds A and B) were separately inoculated with mixed pools of barcoded strains (barcodes A and B). Barcodes A and B are each a group of 3 separate strains with non-redundant barcodes. Seed animals A and B were separated until peak colonization. On the 6th day after seed inoculation, the mice were re-arranged to cohouse 1 mouse each of seed A, seed B, and uninfected contact C overnight for 16 hours. The next morning, they were separated, housing the A seeds together, the B seeds together, and the C contacts together. 12 days post seed inoculation (5 days post cohousing) the fecal *C. rodentium* populations were analyzed to determine the contribution from pools A and B. <1% of reads from seed A mice were contributed by the B barcodes and vice versa. (a) Shedding data is presented as geometric means and standard deviations. Source data are provided as a Source Data file.

pH of stomach content

Supplemental figure 5. The effect of microbiota on gastric acid.

Conventional, untreated C57BL/6J mice have similar stomach acidity as mice treated for 3 days with the antibiotic streptomycin (as in Figure 6) or mice lacking a microbiota (germ-free, as Figure 7). pH measured post-mortem in aspirated stomach fluid. Boxes are arithmetic means. One-way ANOVA adjusted *p*-values 0.54 (streptomycin) and 0.32 (germ-free), not significant (ns). 5 animals per group. Source data are provided as a Source Data file.

Supplemental table 1

microbiota	days p. i.	cage	mouse	variation	genomic change	annotation	coding change	amino acid change
SPF C57BL/6J	5 davs	A	A1	complex	g.30811463081467	intergenic		
			A2	none				
			A3	SNV	g.388509C>G	lamB	c.766G>C	p.Val256Leu
			A4	none				
		В	B1	none				
			B2	none				
			C1	SNV	g.527543C>T	panE	c.232G>A	p.Asp78Asn
			C2	none				
			C3	SNV	g.330872T>C	ROD_03001	c.557A>G	p.Glu186Gly
				SNV	g.4274290A>G	dgoT	c.442A>G	p.Arg148Gly
			C4	none				
	20 days	С	C1	deletion	g.31003493180553	multiple (including LEE)		
				SNV	g.4029101C>T	glpK	c.1000C>T	p.Pro334Ser
				SNV	g.5295383C>T	intergenic		
			C2	deletion	g.31003493180553	multiple (including LEE)		
				SNV	g.4029101C>T	glpK	c.1000C>T	p.Pro334Ser
				SNV	g.5295383C>T	intergenic		
			C3	deletion	g.31003493180553	multiple (including LEE)		
				SNV	g.4029101C>T	glpK	c.1000C>T	p.Pro334Ser
germ-free				SNV	g.5295383C>T	intergenic		
C57BL/6J			C4	deletion	g.31003493180553	multiple (including LEE)		
				SNV	g.4029101C>T	glpK	c.1000C>T	p.Pro334Ser
				SNV	g.5295383C>T	intergenic		
		D	D1	SNV	g.4270455T>A	dgoR	c.143T>A	p.Val48Glu
				SNV	g.4274290A>G	dgoT	c.442A>G	p.Arg148Gly
				SNV	g.4634927C>T	gntU	c.895C>T	non-coding
				insertion	g.5407322^5407357	intergenic		
		E	E1	deletion	g.3100354319782 3	multiple (including LEE)		
				insertion	g.4989831^4989834	gatZ		
		F	F1	deletion	g.31003573198048	multiple (including LEE)		
				SNV	g.3937003C>T	purH	c.837C>T	non-coding
				SNV	g.4274290A>G	dgoT	c.442A>G	p.Arg148Gly
		G	G1	deletion	g.23913462391356	galS		
				complex	g.31745633174662	grlR		

Supplemental table 1. Changes in the *C. rodentium* genome following mouse expansion.

Whole genome sequencing was used to detect variations in the *C. rodentium* genome after expansion and selection in mice. 3 clones (colonies) from the STAMP-CR69K library were compared to isolates from the feces of infected mice (1 colony per mouse). No variants ("none") detected in 4/6 isolates from SPF (specific pathogen free) animals 5 days p. i., 2/4 isolates from germ-free animals 5 days p. i., and 0/8 isolates from germ-free animals 20 days p. i. (C1-4) had identical (clonal) isolates. These data were filtered to only include high confidence variants (present in >90% of reads).

Supplemental table 2

Aim	5' -> 3'		
Clone ~800bp of <i>C. rodentium</i>	cttcggaataggaactaaggaggatattcaGTCTGACGCCGGTATCTGTA ATGC		
	acggctgacatgggaattagccatggtccaAAAAAGCGCCGGGTGGCG		
Check insertion into pKD4	gcgggactctggggttcgaa		
	cgcagttcaacctgttgata		
Clone <i>C. rodentium</i> ~800bp and KanR	ATATGTGATGGGTTAAAAAGGATCGATCCTnnnnnnnnnn		
from pKD4 into pDS132 with 20n	cgggagagctcgatatcgcatgcggtacctaaaaagcgccgggtggcggcttcgc		
	CAGAAAATATCATAATATCT		
Chook insortion into pDS122	ACATGTGGAATTGTGAGCGG		
Check insertion into pDS152	GATTTGCAGACTACGGGCCTAAAG		
	GTGAGCGGATAACAATTTGTGG		
Check integration into genome	GATTTGCAGACTACGGGCCT		
Check integration into genome	ctggaggatgagggggggggtgattggctcgaaccatctgc		

Supplemental table 2. Primers used in the creation of STAMP-CR253.

Supplemental table 3

Name	5' -> 3'
AD001	CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGATC CTTGGCGGCAAGAAA
AD002	CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGATC CTTGGCGGCAAGAAA
AD003	CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGATC CTTGGCGGCAAGAAA
AD004	CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGATC CTTGGCGGCAAGAAA
AD005	CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGATC CTTGGCGGCAAGAAA
AD006	CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGATC CTTGGCGGCAAGAAA
AD007	CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGATC CTTGGCGGCAAGAAA
AD008	CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGATC CTTGGCGGCAAGAAA
AD009	CAAGCAGAAGACGGCATACGAGATCTGATCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGATC CTTGGCGGCAAGAAA
AD010	CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGATC CTTGGCGGCAAGAAA
AD011	CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT CCTTGGCGGCAAGAAA
AD012	CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGATC CTTGGCGGCAAGAAA
AD013	CAAGCAGAAGACGGCATACGAGATTTGACTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGATC CTTGGCGGCAAGAAA
AD014	CAAGCAGAAGACGGCATACGAGATGGAACTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT CCTTGGCGGCAAGAAA
AD015	CAAGCAGAAGACGGCATACGAGATTGACATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGATC CTTGGCGGCAAGAAA
AD016	CAAGCAGAAGACGGCATACGAGATGGACGGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT CCTTGGCGGCAAGAAA
AD018	CAAGCAGAAGACGGCATACGAGATGCGGACGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT CCTTGGCGGCAAGAAA
AD019	CAAGCAGAAGACGGCATACGAGATTTTCACGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGATC CTTGGCGGCAAGAAA
AD020	CAAGCAGAAGACGGCATACGAGATGGCCACGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCAGAT CCTTGGCGGCAAGAAA
Var11	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTGATGGGTTAA AAAGGATCGATCC
Var12	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTAGATGGGTTA AAAAGGATCGATCC
Var13	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTTACGATGGGT TAAAAAGGATCGATCC
Var14	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTGCTAGATGGG TTAAAAAGGATCGATCC
Var15	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTCGACTGGATG GGTTAAAAAGGATCGATCC
Var16	
Var17	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTTGCTGAGTCG ATGGGTTAAAAAGGATCGATCC
Var18	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTGCTGATAGTA GATGGGTTAAAAAGGATCGATCC
Var19	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTCAACTGCGTA GCGATGGGTTAAAAAGGATCGATCC

	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGACCGTCT
Var20	CGAGATGGGTTAAAAAGGATCGATCC
	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTAATGATGGGT
var21	TAAAAAGGATCGATCC
	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGCGATGGG
var22	TTAAAAAGGATCGATCC
	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTTGCACGATGG
var23	GTTAAAAAGGATCGATCC
	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTTCATTCGATG
var24	GGTTAAAAAGGATCGATCC
	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTGAATCGAGAT
var25	GGGTTAAAAAGGATCGATCC
	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTGTCAACTTGAT
var26	GGGTTAAAAAGGATCGATCC
	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTCGGCGTGGCG
var27	ATGGGTTAAAAAGGATCGATCC
	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTCCTGTACCTT
var28	GATGGGTTAAAAAGGATCGATCC

Supplemental table 3. Primers used for STAMP sequencing.