

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Computer-assisted analysis of routine EEG to identify hidden biomarkers of epilepsy: protocol for a systematic review

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-066932
Article Type:	Protocol
Date Submitted by the Author:	26-Jul-2022
Complete List of Authors:	Lemoine, Émile; University of Montreal, Department of Neurosciences; Ecole Polytechnique de Montreal, Institute of Biomedical Engineering Neves Briard, Joel; University of Montreal, Department of Neurosciences; University of Montreal Hospital Centre Research Centre Rioux, Bastien; University of Montreal, Department of Neurosciences; University of Montreal Hospital Centre Research Centre Podbielski, Renata; University of Montreal Hospital Centre Research Centre Nauche, Bénédicte; University of Montreal Hospital Centre Research Centre Toffa, Denahin; University of Montreal, Department of Neurosciences; University of Montreal Hospital Centre Research Centre Keezer, Mark; University of Montreal, Department of Neurosciences; Stichting Epilepsie Instellingen Nederland Lesage, Frederic; Ecole Polytechnique de Montreal, Institute of Biomedical Engineering Nguyen, Dang ; University of Montreal, Department of Neurosciences; University of Montreal Hospital Centre Research Centre
Keywords:	Epilepsy < NEUROLOGY, Neurophysiology < NEUROLOGY, NEUROLOGY
	•

BMJ Open

Title: Computer-assisted analysis of routine EEG to identify hidden biomarkers of epilepsy: protocol for a systematic review

Authors

Mont Émile Lemoine^{1, 2, 3} Joel Neves Briard^{1, 3} Bastien Rioux^{1, 3} Renata Podbielski3 Bénédicte Nauche³ Denahin Toffa^{1,3} Mark Keezer^{1,3-5} Frédéric Lesage² Dang K. Nguyen^{1,3} Elie Bou Assi^{1,3} ¹Department of Neurosciences, University of Montreal, Canada ²Institute of biomedical engineering, Polytechnique Montreal, Canada ³University of Montreal Hospital Center's Research Center, Canada ⁴School of Public Health, University of Montreal, Canada ⁵Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands

Corresponding author

Émile Lemoine, emile.lemoine@umontreal.ca 1051 rue Sanguinet, Montréal, Québec. H2X 3E4

Abstract

Introduction: The diagnosis of epilepsy frequently relies on the visual interpretation of the electroencephalogram (EEG) by a neurologist. The hallmark of epilepsy on EEG is the interictal epileptiform discharge (IED). This marker lacks sensitivity: it is only captured in a small percentage of 30-minute routine EEGs in patients with epilepsy. In the past three decades, there has been growing interest in the use of computational methods to analyze the EEG without relying on the detection of IEDs, but none have made it to the clinical practice. We aim to review the diagnostic accuracy of quantitative methods applied to ambulatory EEG analysis to guide the diagnosis and management of epilepsy. Methods and analysis: The protocol complies with the recommendations for systematic reviews of diagnostic test accuracy by Cochrane. We will search MEDLINE, EMBASE, EBM reviews, IEEE Explore along with grey literature for articles, conference papers and conference abstracts published after 1961. We will include observational studies that present a computational method to analyze the EEG for the diagnosis of epilepsy in adults or children without relying on the identification of IEDs or seizures. The reference standard is the diagnosis of epilepsy by a physician. We will report the estimated pooled sensitivity and specificity, and receiver operating characteristic area-under-the-curve (ROC AUC) for each marker. If possible, we will perform a meta-analysis of the sensitivity and specificity and ROC AUC for each individual marker. We will assess the risk of bias using an adapted QUADAS-2 tool. We will also describe the algorithms used for signal processing, feature extraction and predictive modeling, and comment on the reproducibility of the different studies. Ethics and dissemination: Ethical approval was not required. Findings will be disseminated through peer-reviewed publication and presented at conferences related to this field. PROSPERO registration number: CRD42022292261 Strengths and limitations of this study: This systematic review will be the first to critically evaluate the diagnostic accuracy of • computational markers of epilepsy on routine EEG, with an emphasis on identifying the barriers towards clinical translation of this technology; The publication of this protocol ensures transparency, and evaluation of all studies during • screening, selection, and data extraction by independent reviewers reduces the risk of bias in the selection and analysis of included studies;

1 ว		
2	31	• High heterogeneity in reporting standards and inclusion criteria is anticipated, possibly preventing
4 5	32	the reliable estimation of diagnostic performance metrics;
6 7	33	• Our review will constitute a comprehensive reference of current practices in the automated
8 9	34	processing and analysis of routine EEG for epilepsy.
10	35	
12		
13 14	36	${\bf Keywords:}\ {\rm Epilepsy-Electroencephalogram-Machine\ Learning-Diagnosis-Computer-assisted-}$
15 16	37	Biomarker
$\begin{array}{c} 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 50\\ 51\\ 52\\ 53\\ \end{array}$	38	Word count (abstract): 290
54 55 56 57 58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		. e. peer enter enty intepr/strijepenstrijteent/ster/usou(/guidentes/steri

39 Background

Epilepsy is characterized by an enduring propensity towards epileptic seizures—transient neurological manifestations provoked by a state of abnormal and excessive neuronal activity in the brain¹. Epilepsy affects over 65 millions of people worldwide, and 10% of the population will experience at least one seizure in their lifetime^{2,3}. Epileptic seizures can lead to fractures, road accidents, isolation, anxiety, cognitive decline, and death⁴. In specialized-care settings, the first anti-seizure medication (ASM) achieves seizure freedom in approximately 47% of patients⁵. A prompt diagnosis is key in the prevention of epilepsy-related morbidity and mortality⁴. A history of epileptic seizures or a high recurrence risk after a single seizure are the basis for the definition of epilepsy by the International League Against Epilepsy (ILAE)¹. Ancillary tests are often needed to estimate seizure recurrence risk after a single seizure. These include the neurological examination, neuroimaging, and the electroencephalogram (EEG). An EEG records the electrical activity of the brain. It is recommended that all patients who present with a first unprovoked seizure or with new diagnosis of epilepsy undergo an EEG^{6,7}. The initial EEG is generally performed with electrodes applied to the patient's scalp (scalp EEG or *routine EEG*) for a duration of 20–40 minutes⁸. The EEG tracing is then interpreted visually by a neurologist, who attempts to identify interictal epileptiform discharges (IEDs; aka spikes). IEDs are brief (20–200ms) sharp discharges, clearly emerging from background oscillations, often negative in polarity and sometimes followed by a typical slow wave⁸. The presence of interictal spikes on the EEG is considered a hallmark of epilepsy, as it represents a strong predictor of seizure recurrence^{9,10}. Furthermore, the identification of interictal spikes can help localize an epileptic focus that may be amenable to surgical resection, and can guide the withdrawal of ASMs in patients after a prolonged period of seizure freedom^{11,12}. The interictal spike has several limitations. It occurs very sporadically: in patients with epilepsy, only 29

62 - 55% of routine EEGs will capture these transient abnormalities⁸. After a first unprovoked seizure in

BMJ Open

adults, the sensitivity of a single routine EEG for detecting epileptiform abnormalities is only $17\%^{9}$. Furthermore, their identification is somewhat subjective: the percent agreement between EEG experts is around 76%¹³. Many physiological transient discharges can be misinterpreted as epileptiform spikes. This can lead to the erroneous diagnosis of epilepsy, with sometimes important consequences^{14,15}. In patients labelled with drug-resistant epilepsy, over 25% may have had an erroneous diagnosis as a result of both inadequate history taking and misinterpretation of the EEG¹⁶. Despite the abundant information on brain activity recorded by the EEG, no other interictal anomalies have been validated for use in clinical settings^{1,17,18}.

Compared to other neuroimaging modalities, a scalp EEG is inexpensive, easy to acquire, and confers functional information with high temporal resolution^{19,20}. Moreover, great effort was put in the last decade by the ILAE in standardizing the equipment, recording and storage of EEG data^{10,21}. Decades of research have demonstrated that the automated analysis of EEG can identify hidden differences between with epilepsy and non-epileptic subjects in terms of connectivity^{22–24}, signal predictability and complexity^{25,26}, spectral power^{27,28}, and chaoticity²⁹. Computational analysis of EEG holds the promise of extracting information that is invisible to the naked eye of the human interpreter, in an objective and reproducible manner. Discovering new, non-visible markers of epilepsy could increase the diagnostic yield of the EEG, improve its accessibility, and reduce costs, especially in settings where the expertise of a fellowship-trained neurophysiologist is unavailable^{18,30}. In spite of this, none of the proposed non-visible markers of epilepsy have made it into clinical practice^{10,31}.

We will perform a systematic review of diagnostic test accuracy for automated methods of EEG analysis to distinguish between patients with and without epilepsy without relying on the detection of spikes and seizures. The questions that this review addresses are the following: What is the current evidence on the performances of automatically extracted hidden markers of epilepsy for the diagnosis of epilepsy? And what are the different algorithms that have been tested and how does their diagnostic accuracy compare?

87 Methods

88 Study design

This will be a systematic review and meta-analysis following guidance from the Cochrane Diagnostic
 Test Accuracy group. We will report the results according to the PRISMA statement for diagnostic test
 accuracy (PRISMA-DTA)³².

92 Study selection criteria

Type of studies

We will include all studies that describe a computed marker of epilepsy on routine (scalp) EEG which does not explicitly rely on the identification of interictal spikes or ictal activity (seizures). Studies must compare the EEG signal of individuals with and without epilepsy. We will include retrospective or prospective comparative studies enabling the assessment of diagnostic accuracy (cohort or case-control studies). We will exclude studies reporting data on non-human animals only, studies that include only intracranial or critical care EEG recordings, studies that do not include both individuals with and without epilepsy, and studies that are focused solely on seizure/spike detection or on short-term (<24h) seizure prediction. For studies that include multiple EEG types, we will only extract data that meet the inclusion criteria. We restricted the search to studies published after 1961 (the first use of digital EEG)³³. There are no restrictions for language.

Population

105 Our population of interest is individuals undergoing routine EEG in a clinical or research setting. A
106 routine EEG is defined as a 20- to 60-minute scalp recording using the international 10–20 electrodes
107 system, with or without prior sleep deprivation. There is no restriction for age groups or diagnoses.

BMJ Open

Reference standard

We defined the reference standard as the diagnosis of epilepsy by a physician based on criteria specified by the authors (clinical or para-clinical). These criteria must accord with the definition of epilepsy by the ILAE: having had at least one seizure and long-term enduring predisposition to other unprovoked seizures^{1,34}.

113 Index test

The index test is a characteristic or feature which is computationally extracted from the EEG signal to identify patients with epilepsy, without relying on detecting IEDs or seizures. These include measures of connectivity, entropy, chaoticity, and power spectrum density³⁵. Also included are statistical models that combine several features or models that take as input the raw or processed EEG.

118 Search strategy

The search strategy (Appendix 1) was developed by two medical librarians specialized in systematic reviews (BN and RP), and peer-reviewed by a senior colleague. We will search MEDLINE (Ovid), EMBASE (Ovid), EBM reviews (Ovid), IEEE Explore along with grey literature for articles, conference papers and conference abstracts. We will use the Covidence platform (Melbourne, Australia) to manage our data for eligibility assessment, selection, and data collection. Two independent reviewers (EL, and either JNB or BR) will screen the records for eligibility using their title and abstract. Any item selected by either reviewer will proceed to the next phase. This process will be repeated on the screened items, this time by consulting the items' full text. A third, senior reviewer (EBA) will settle conflicts as necessary during the final selection.

128 Data items

Data collection will be performed using Covidence by two independent reviewers (EL and JNB/BR), and
conflicts will be resolved by a third author (EBA). Authors of the primary study will be contacted if the

1		
2 3 4	131	required data are not available in the original publication. Data collection will include the following
5 6	132	information:
7 8 9	133	1. Title and authors of the study, country of sampling, year of publication;
) 10 11	134	2. Study type: retrospective vs. prospective, design (cohort, case control);
11 12 13	135	3. Study sample: exclusion and inclusion criteria, number of screened and included patients;
14 15	136	4. Data collection:
16 17	137	a. Number of patients, number of EEGs, duration of EEG recordings, use of activation
18 19	138	procedures (hyperventilation, photic stimulation, sleep deprivation), setting of recording
20 21	139	(hospitalized or ambulatory), whether the same protocol was used for all patients;
22 23	140	b. Number of electrodes, sampling frequency;
24 25	141	c. If public dataset: reference to the original dataset, dataset name, exclusion/inclusion
26 27 28 29 30 31 32	142	criteria used on the EEG segments from the dataset;
	143	d. Participant characteristics: age, sex, comorbidities, number of ASM, age of first seizure;
	144	5. Reference standard: whether a predefined reference standard was used, definition of reference
32 33 34	145	standard, whether all patients underwent the same reference standard, time lapse between
35 36	146	reference standard and EEG;
37 38	147	6. Index test:
39 40	148	a. Pre-processing: artifact detection and removal (automated or manual), filtering method,
41 42	149	filtering frequencies, segmentation protocol (whole EEG vs. EEG segments, window
43 44	150	size, overlapping vs. non-overlapping segments, manual vs. automated selection of
45 46	151	segments), channel selection;
47 48	152	b. Feature extraction and selection: multi-channel vs. single channel, number of channels
49 50	153	selected, whether feature selection was performed, feature extraction algorithm, feature
51 52	154	selection method, whether feature selection was applied to data before vs. after excluding
55 55	155	testing data;
55 56 57		
58 50		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 9 of 40

BMJ Open

1 2		
- 3 4	156	c. Classification: algorithm(s) used for classification, testing methodology (cross-validation
5 6	157	vs. held out testing set);
7 8	158	d. Metric used to report diagnostic performances: ROC AUC,
9 10	159	accuracy/sensibility/specificity, F1-score, reporting of confidence intervals (CI);
11 12	160	7. Diagnostic performances: number of true positives, number of true negatives, number of false
13 14	161	positives, number of false negatives, reported accuracy, reported sensitivity, reported specificity,
15 16	162	reported F ₁ -score, reported ROC AUC (if more than one index test is performed on the same
17 18	163	patient, we will only consider the first test);
19 20 21	164	8. Reproducibility: whether every data processing step is detailed, whether methods can be
21 22 23	165	reproduced easily, data availability, code availability, open-source computer libraries referenced.
24 25	166	Disk of hiss
26 27	166	Risk of blas
28 29	167	The risk of bias of all included studies will be assessed through an adapted version of the QUADAS-2
29 30 31 32 33 34 35 36 37	168	tool ³⁶ . Risk of bias for each of the following four elements will be evaluated by two independent
	169	reviewers (EL and JNB/BR) as low, high, or unclear. Conflicts will be resolved by a third author (EBA).
	170	In addition, all publicly available datasets used by at least one of the included studies will be evaluated
	171	with the same tool. The following items will be assessed:
38 39	172	1. Patient selection
40 41	173	a. Is the population representative of clinical practice?
42 43	174	b. Are inclusion and exclusion criteria identical for cases (patients with epilepsy) and
44 45	175	controls?
46 47	176	c. Are withdrawals explained and appropriate? If individual EEG segments were excluded,
48 49	177	were the same criteria used for all segments?
50 51	178	2. Index test
52 53	179	a. Were the protocols used for recording the EEG identical in all patients, irrespective of the
54 55	180	epilepsy diagnosis?
56 57	-	
58 59		For near rayion, only, http://hmianan.hmi.com/rite/shout/ruidelines.html
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 10 of 40

BMJ Open

1

2		
3 4	181	b. Was the index test validated on an independent sample of patients (patients which were
5 6	182	not used to identify the index test's threshold or train the learning algorithm)?
7 8	183	3. Reference standard
9 10	184	a. Are the criteria used for the diagnosis of epilepsy specified and acceptable (likely to
11 12	185	correctly classify the target condition)?
13 14	186	b. Was the reference standard assessment independent and blinded to the index test?
15 16	187	4. Flow and timing
17 18	188	a. Did the whole sample undergo the reference standard?
19 20	189	b. Did the whole sample undergo the same reference standard?
21 22 22	190	c. Was the time lapse between reference standard and EEG acceptable?
25 24 25	191	d. Was the same data used in the index method available at the time of the reference
25 26 27	192	standard?
28 29	193	e. Were all EEGs included in the analysis?
30 31 32	194	Data synthesis
33 34	195	We will provide a table summarizing every published study included in the review, comparing the
35 36 27	196	studies' design, population, reference standard, dataset size, data processing methods, and diagnostic
37 38 30	197	accuracy. We will also provide a table summarizing the risk of bias for all items in the adapted
40 41	198	QUADAS-2 tool, comparing 1) every individual article included in the review, and 2) every public
42 43	199	dataset that is used in ≥ 2 studies.
	177	
44 45	200	We will describe the number of patients, number of EEGs, duration of EEGs, and the EEG-duration-per-
44 45 46 47	200 201	We will describe the number of patients, number of EEGs, duration of EEGs, and the EEG-duration-per- patient ratio across all included studies. We will report the pooled proportion of patients with focal vs.
44 45 46 47 48 49	200 201 202	We will describe the number of patients, number of EEGs, duration of EEGs, and the EEG-duration-per- patient ratio across all included studies. We will report the pooled proportion of patients with focal vs. generalized epilepsy, adult vs. children, structural vs. non-structural epilepsy, and with specific epilepsy
44 45 46 47 48 49 50 51	200 201 202 203	We will describe the number of patients, number of EEGs, duration of EEGs, and the EEG-duration-per- patient ratio across all included studies. We will report the pooled proportion of patients with focal vs. generalized epilepsy, adult vs. children, structural vs. non-structural epilepsy, and with specific epilepsy syndromes. For every publicly available dataset identified during the review, we will report the number of
44 45 46 47 48 49 50 51 52 53 54	 200 201 202 203 204 	We will describe the number of patients, number of EEGs, duration of EEGs, and the EEG-duration-per- patient ratio across all included studies. We will report the pooled proportion of patients with focal vs. generalized epilepsy, adult vs. children, structural vs. non-structural epilepsy, and with specific epilepsy syndromes. For every publicly available dataset identified during the review, we will report the number of studies that used that dataset in their work.
44 45 46 47 48 49 50 51 52 53 54 55 56	200 201 202 203 204	We will describe the number of patients, number of EEGs, duration of EEGs, and the EEG-duration-per- patient ratio across all included studies. We will report the pooled proportion of patients with focal vs. generalized epilepsy, adult vs. children, structural vs. non-structural epilepsy, and with specific epilepsy syndromes. For every publicly available dataset identified during the review, we will report the number of studies that used that dataset in their work.
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	200 201 202 203 204	We will describe the number of patients, number of EEGs, duration of EEGs, and the EEG-duration-per- patient ratio across all included studies. We will report the pooled proportion of patients with focal vs. generalized epilepsy, adult vs. children, structural vs. non-structural epilepsy, and with specific epilepsy syndromes. For every publicly available dataset identified during the review, we will report the number of studies that used that dataset in their work.

BMJ Open

2	205	We will successive the model descend by the difference with her descine the minute size in the descine (and
4 5 6 7 8 9 10 11	205	We will summarize the methods used by the different articles during the pipeline's algorithm (pre-
	206	processing, feature extraction, feature selection, and classification algorithm), along with the proportion
	207	of studies that used each method.
	208	Analyses
12 13	209	We will estimate the specificity and sensitivity for each study, using the Wilson score to compute 95%
14 15 16	210	CI. For studies with varying thresholds, we will estimate the ROC AUC and 95% CI.
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	211	If there are sufficient (\geq 5) studies that report the number of true/false positives and true/false negatives,
	212	we will estimate the pooled sensitivity and specificity of each individual marker using a hierarchical,
	213	bivariate generalized linear mixed model ³⁷ . This allows us to account for the correlation between
	214	specificity and sensitivity in a single study. If \geq 5 studies report these numbers for varying thresholds, we
	215	will estimate the pooled ROC curve using the Rutter and Gatsonis HSROC model ³⁸ . All analyses will be
	216	implemented with the R statistical language. A <i>p</i> -value <0.05 will be considered statistically significant.
	217	Given insufficient data for the pooled estimates, we will only describe the diagnostic performances
	218	(sensitivity, specificity, ROC AUC) narratively. We will present the results of the analyses with forest
	219	plots.
	220	We will quantify heterogeneity using the variances of the logit specificity and sensitivity, as well as the
	221	median odds ratio (median OR) ³⁹ . The median OR is a measure of inter-study variance translated on the
	222	OR scale. It corresponds to the increase in the odds of being true positive/negative in a patient/control
42 43	223	going from a study with lower sensitivity/specificity to a study with higher sensitivity/specificity. For
44 45 46	224	heterogeneity in the ROC plane, we will compute the area of the 95% prediction ellipse ³⁹ . The median OR
40 47 48	225	and the area of the 95% prediction ellipse are easily obtained and interpreted, and take into account the
49 50	226	correlation between a single study's specificity and sensitivity in contrast to univariate methods like
51 52	227	Cochrane's Q and $P^{237,40}$. We will perform subgroup analysis for the following variables: epilepsy type
53 54	228	(focal, generalized), epilepsy etiology (structural vs. non-structural), age groups (children (< 18 y.o.),
55 56 57	229	adults (\geq 18 y.o.)), epilepsy syndromes, extracted marker, and dataset used. We will assess heterogeneity
58		

3
4
5
6
7
/ 0
8
9
10
11
12
13
14
15
16
10
1/
18
19
20
21
22
23
24
24
25
26
27
28
29
30
31
32
22
27
34
35
36
37
38
39
40
/1
40 1
42
45
44
45
46
47
48
49
50
51
51
52
53
54
55
56
57
58
50
72

60

1 2

> for all subgroup analyses. We will consider a study as belonging to a particular subgroup if \geq 80% of the studied population belongs to that subgroup. Sensitivity analysis will be conducted for the main analyses by excluding studies with overall high/unclear risk of bias.

Some studies use m ultiple markers to classify patients with epilepsy from controls (*e.g.*, as input features for a machine learning algorithm). For each marker that is used in ≥ 2 of such studies, we will evaluate the number of studies for which these markers were identified as "important" (selected for the classification task or statistically significant in separating the two classes) and the ratio between the number of studies in which this marker was extracted vs. identified as important.

238 Reporting bias for sensitivity and specificity will be evaluated by visual inspection of funnel plots.

239 **Discussion**

The interictal EEG is key in the diagnosis of epilepsy, solely based on the visual identification of interictal spikes.⁴¹ Despite years of research on computational biomarkers of epilepsy, only these spikes are currently used in clinical settings.^{1,17,18} This review aims to systematically evaluate the diagnostic performances of hidden interictal markers of epilepsy on EEG, describe the data processing pipelines favored by the researchers to classify the EEG for epilepsy diagnosis, and identify the pitfalls that prevent clinical translation of these algorithms.

Algorithms have gained growing interest in medicine for their potential to assist diagnosis and guide clinical decision-making.⁴² EEG analysis is well-suited for this application due to the complex nature of the EEG signal. Automated extraction of new epilepsy markers on routine EEG could lead to reduced rate of misdiagnosis, increased availability in areas without access to an expert neurophysiologist, and more efficient clinical trials. Research on automatic analysis of EEG data is thriving, in part assisted by the recent increase in computational capacities.^{43–50} However, automatic analysis of EEG is not mentioned in any of the high-quality clinical practice guidelines systematically reviewed by the ILAE.¹⁷

Page 13 of 40

BMJ Open

3 4	253	In recent years, increased computational capacities have allowed the development of powerful algorithms
5 6	254	that can learn complex representations such as medical images and EEG signals. ^{43,51,52} A growing number
7 8	255	of algorithms have now been approved by the United States Food and Drug Administration for assisting
9 10	256	in the diagnosis of several diseases. ⁵³ Recent systematic reviews have found that most of the studies on
11 12	257	automated diagnosis using artificial intelligence have high risk of bias, mostly due to patient selection
13 14	258	methodology and absence of validation on external data.54-56 Systematic reviews on computer-based
15 16 17	259	clinical-decision support systems also highlight the need for more robust patient selection. ^{57–62}
17 18 19	260	Translation of technology to clinical practice requires strong evidence based on high quality research.
20 21	261	This review is important because it will establish the potential of automatic analysis of EEG as a
22 23	262	diagnostic tool for epilepsy, and if evidence to support its use is lacking, it will identify the pitfalls that
24 25	263	need to be overcome in future research. Also, by systematically describing current practices that are used
26 27	264	by research groups, it will serve as a reference for new researchers in the field.
28 29 20	265	We anticipate that diagnostic accuracy of automatic analysis of EEG for epilepsy will be hard to estimate
30 31 32	266	because of the high heterogeneity between the different dataset used and between the data processing
33 34	267	methodology. We also anticipate high risk of bias in many studies, because of the high volume of "proof-
35 36	268	of-concept" studies that emphasize computation performances and algorithm development over rigorous
37 38	269	diagnostic study methodology. In these cases, we hope to produce recommendations that will assist in
39 40	270	bridging the gap between the development of new automated markers and validation in appropriate
41 42 43 44 45	271	populations, for ultimate implementation into clinical practice.

272 List of abbreviations

ASM: anti-seizure medication; CI: confidence interval; EEG: electroencephalogram; IED: interictal
epileptiform discharge; ILAE: International League Against Epilepsy; ROC AUC: receiver operatingcharacteristic area-under-the-curve.

Funding

MRK and DKN report unrestricted educational grants from UCB and Eisai, and research grants for investigator-initiated studies from UCB and Eisai. Émile Lemoine is supported by a scholarship from the Canadian Institute of Health Research. Dang Nguyen is supported by the Canada Research Chairs Program, the Canadian Institutes of Health Research, and Natural Sciences and Engineering Research Council of Canada.

Authors' contributions

EL planned the study, drafted the protocol, reviewed the search strategy, and is the guarantor of the review. DT, FL, DKN, and EBA participated in the design of the study. JNB, BR, DT, MRK, FL, DKN, and EBA provided content expertise and critically reviewed the manuscript and the search strategy. BN and RP designed the search strategy. All authors read and approved the final manuscript.

Competing interests

None of the authors have any competing interest to declare.

Patient and public involvement

No patient involved.

Data sharing statement

·2007 Data collected for this study will be available upon reasonable request.

References

1. Fisher, R. S. et al. ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia 55, 475-482 (2014).

2. Ngugi, A. K., Bottomley, C., Kleinschmidt, I., Sander, J. W. & Newton, C. R. Estimation of the burden of active and life-time epilepsy: a meta-analytic approach. *Epilepsia* **51**, 883–890 (2010). Page 15 of 40

BMJ Open

1 2			
3 4	298	3.	Hauser, W. A. & Beghi, E. First seizure definitions and worldwide incidence and mortality. Epilepsia
5 6	299		49 Suppl 1 , 8–12 (2008).
7 8	300	4.	Devinsky, O., Spruill, T., Thurman, D. & Friedman, D. Recognizing and preventing epilepsy-related
9 10	301		mortality: A call for action. Neurology 86, 779–786 (2016).
11 12	302	5.	Kwan, P. & Brodie, M. J. Early identification of refractory epilepsy. N Engl J Med 342, 314-319
13 14	303		(2000).
15 16	304	6.	Krumholz, A. et al. Practice Parameter: evaluating an apparent unprovoked first seizure in adults (an
17 18 10	305		evidence-based review): report of the Quality Standards Subcommittee of the American Academy of
20 21	306		Neurology and the American Epilepsy Society. Neurology 69, 1996–2007 (2007).
22 23	307	7.	Hirtz, D. et al. Practice parameter: evaluating a first nonfebrile seizure in children: report of the
24 25	308		quality standards subcommittee of the American Academy of Neurology, The Child Neurology
26 27	309		Society, and The American Epilepsy Society. Neurology 55, 616–623 (2000).
28 29	310	8.	Pillai, J. & Sperling, M. R. Interictal EEG and the Diagnosis of Epilepsy. <i>Epilepsia</i> 47, 14–22 (2006).
30 31	311	9.	Bouma, H. K., Labos, C., Gore, G. C., Wolfson, C. & Keezer, M. R. The diagnostic accuracy of
32 33	312		routine electroencephalography after a first unprovoked seizure. European Journal of Neurology 23,
34 35	313		455–463 (2016).
36 37 38	314	10.	Tatum, W. O. et al. Clinical utility of EEG in diagnosing and monitoring epilepsy in adults. Clinical
30 39 40	315		Neurophysiology 129, 1056–1082 (2018).
40 41 42	316	11.	Lamberink, H. J. et al. Individualised prediction model of seizure recurrence and long-term outcomes
43 44	317		after withdrawal of antiepileptic drugs in seizure-free patients: a systematic review and individual
45 46	318		participant data meta-analysis. Lancet Neurol 16, 523-531 (2017).
47 48	319	12.	West, S. et al. Surgery for epilepsy. Cochrane Database of Systematic Reviews (2019)
49 50	320		doi:10.1002/14651858.CD010541.pub3.
51 52	321	13.	Jing, J. et al. Interrater Reliability of Experts in Identifying Interictal Epileptiform Discharges in
53 54	322		Electroencephalograms. JAMA Neurology 77, 49–57 (2020).
55 56			
57 58 50			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	323	14.	Amin, U. & Benbadis, S. R. The Role of EEG in the Erroneous Diagnosis of Epilepsy. J Clin	
5 6	324		<i>Neurophysiol</i> 36 , (2019).	
7 8	325	15.	Kang, J. Y. & Krauss, G. L. Normal Variants Are Commonly Overread as Interictal Epileptiform	
9 10	326		Abnormalities. J Clin Neurophysiol 36, 257–263 (2019).	
11 12	327	16.	Smith, D., Defalla, B. A. & Chadwick, D. W. The misdiagnosis of epilepsy and the management of	f
13 14	328		refractory epilepsy in a specialist clinic. QJM 92, 15-23 (1999).	
15 16	329	17.	Sauro, K. M. et al. The current state of epilepsy guidelines: A systematic review. Epilepsia 57, 13-	-23
17 18 10	330		(2016).	
20 21	331	18.	Engel Jr, J., Bragin, A. & Staba, R. Nonictal EEG biomarkers for diagnosis and treatment. Epilepsi	ia
22 23	332		<i>Open</i> 3 , 120–126 (2018).	
24 25	333	19.	DellaBadia Jr, J., Bell, W. L., Keyes Jr, J. W., Mathews, V. P. & Glazier, S. S. Assessment and cos	st
26 27	334		comparison of sleep-deprived EEG, MRI and PET in the prediction of surgical treatment for epilep	osy.
28 29	335		Seizure 11, 303–309 (2002).	
30 31	336	20.	Abdelhady, S., Shokri, H., Fathy, M. & wahid el din, mona M. Evaluation of the direct costs of	
32 33	337		epilepsy in a sample of Egyptian patients following up in Ain Shams University Hospital. The	
34 35 26	338		Egyptian Journal of Neurology, Psychiatry and Neurosurgery 56, 112 (2020).	
30 37 38	339	21.	Velis, D., Plouin, P., Gotman, J., Da Silva, F. L., & members of the ILAE DMC Subcommittee on	
39 40	340		Neurophysiology. Recommendations Regarding the Requirements and Applications for Long-term	l
41 42	341		Recordings in Epilepsy. Epilepsia 48, 379–384 (2007).	
43 44	342	22.	Schmidt, H. et al. A computational biomarker of idiopathic generalized epilepsy from resting state	
45 46	343		EEG. <i>Epilepsia</i> 57 , e200–e204 (2016).	
47 48	344	23.	Lopes, M. A. et al. Revealing epilepsy type using a computational analysis of interictal EEG.	
49 50	345		Scientific Reports 9, 10169 (2019).	
51 52	346	24.	Verhoeven, T. et al. Automated diagnosis of temporal lobe epilepsy in the absence of interictal	
53 54	347		spikes. NeuroImage: Clinical 17, 10–15 (2018).	
55 56 57				
57 58 59				17
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	10

1 2			
- 3 4	348	25.	Ouyang, CS., Yang, RC., Wu, RC., Chiang, CT. & Lin, LC. Determination of Antiepileptic
5 6	349		Drugs Withdrawal Through EEG Hjorth Parameter Analysis. Int. J. Neur. Syst. 30, 2050036 (2020).
7 8	350	26.	Zhang, JH. et al. Personalized prediction model for seizure-free epilepsy with levetiracetam therapy:
9 10	351		a retrospective data analysis using support vector machine. Br J Clin Pharmacol 84, 2615–2624
11 12	352		(2018).
13 14	353	27.	Oliva, J. T. & Rosa, J. L. G. Differentiation between Normal and Interictal EEG Using Multitaper
15 16	354		Spectral Classifiers. in 2018 International Joint Conference on Neural Networks (IJCNN) 1-8
17 18 10	355		(2018). doi:10.1109/IJCNN.2018.8489503.
19 20 21	356	28.	Pegg, E. J., Taylor, J. R. & Mohanraj, R. Spectral power of interictal EEG in the diagnosis and
22 22 23	357		prognosis of idiopathic generalized epilepsies. Epilepsy & Behavior 112, 107427 (2020).
24 25	358	29.	Jacob, J. E., Sreelatha, V. V., Iype, T., Nair, G. K. & Yohannan, D. G. Diagnosis of epilepsy from
26 27	359		interictal EEGs based on chaotic and wavelet transformation. Analog Integrated Circuits and Signal
28 29	360		Processing 89, 131–138 (2016).
30 31	361	30.	Wahl, B., Cossy-Gantner, A., Germann, S. & Schwalbe, N. R. Artificial intelligence (AI) and global
32 33	362		health: how can AI contribute to health in resource-poor settings? BMJ Global Health 3, e000798
34 35	363		(2018).
36 37	364	31.	Pitkänen, A. et al. Advances in the development of biomarkers for epilepsy. The Lancet Neurology
38 39 40	365		15 , 843–856 (2016).
40 41 42	366	32.	McInnes, M. D. F. et al. Preferred Reporting Items for a Systematic Review and Meta-analysis of
43 44	367		Diagnostic Test Accuracy Studies: The PRISMA-DTA Statement. JAMA 319, 388–396 (2018).
45 46	368	33.	November, J. Biomedical computing: Digitizing life in the United States. Biomedical Computing:
47 48	369		Digitizing Life in the United States 1–344 (2012).
49 50	370	34.	Fisher, R. S. et al. Epileptic seizures and epilepsy: definitions proposed by the International League
51 52	371		Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46, 470-472
53 54	372		(2005).
55 56			
57 58 50			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3 4	373	35.	Supriya, S., Siuly, S., Wang, H. & Zhang, Y. Automated epilepsy detection techniques from
5 6	374		electroencephalogram signals: a review study. Health Information Science and Systems 8, 33 (2020).
7 8	375	36.	Whiting, P. F. et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy
9 10	376		studies. Ann Intern Med 155, 529–536 (2011).
11 12	377	37.	Reitsma, J. B. et al. Bivariate analysis of sensitivity and specificity produces informative summary
13 14	378		measures in diagnostic reviews. Journal of Clinical Epidemiology 58, 982-990 (2005).
15 16	379	38.	Rutter, C. M. & Gatsonis, C. A. A hierarchical regression approach to meta-analysis of diagnostic test
17 18 10	380		accuracy evaluations. Stat Med 20, 2865–2884 (2001).
20 21	381	39.	Plana, M. N., Pérez, T. & Zamora, J. New measures improved the reporting of heterogeneity in
22 23	382		diagnostic test accuracy reviews: a metaepidemiological study. Journal of Clinical Epidemiology
24 25	383		131 , 101–112 (2021).
26 27	384	40.	Rücker, G., Schwarzer, G., Carpenter, J. R. & Schumacher, M. Undue reliance on I2 in assessing
28 29	385		heterogeneity may mislead. BMC Medical Research Methodology 8, 79 (2008).
30 31	386	41.	Smith, S. J. M. EEG in the diagnosis, classification, and management of patients with epilepsy. J
32 33	387		Neurol Neurosurg Psychiatry 76, ii2–ii7 (2005).
34 35	388	42.	Obermeyer, Z. & Emanuel, E. J. Predicting the Future - Big Data, Machine Learning, and Clinical
36 37 29	389		Medicine. N Engl J Med 375, 1216–1219 (2016).
30 39 40	390	43.	Roy, Y. et al. Deep learning-based electroencephalography analysis: a systematic review. Journal of
41 42	391		Neural Engineering 16, 051001 (2019).
43 44	392	44.	Craik, A., He, Y. & Contreras-Vidal, J. L. Deep learning for electroencephalogram (EEG)
45 46	393		classification tasks: a review. J. Neural Eng. 16, 031001 (2019).
47 48	394	45.	Rasheed, K. et al. Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A
49 50	395		Review. IEEE Rev. Biomed. Eng. 14, 139–155 (2020).
51 52	396	46.	Gemein, L. A. W. et al. Machine-learning-based diagnostics of EEG pathology. NeuroImage 220,
53 54	397		117021 (2020).
55 56 57			
58 59			10
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
3 4	398	47.	Mesraoua, B. et al. Electroencephalography in epilepsy: look for what could be beyond the visual
5 6	399		inspection. Neurological Sciences 40, 2287–2291 (2019).
7 8	400	48.	van Diessen, E. et al. Brain Network Organization in Focal Epilepsy: A Systematic Review and
9 10	401		Meta-Analysis. PLOS ONE 9, e114606 (2014).
11 12	402	49.	Faiman, I., Smith, S., Hodsoll, J., Young, A. H. & Shotbolt, P. Resting-state EEG for the diagnosis of
13 14	403		idiopathic epilepsy and psychogenic nonepileptic seizures: A systematic review. Epilepsy & Behavior
15 16	404		121 , 108047 (2021).
17 18	405	50.	Pegg, E. J., Taylor, J. R., Keller, S. S. & Mohanraj, R. Interictal structural and functional connectivity
19 20 21	406		in idiopathic generalized epilepsy: A systematic review of graph theoretical studies. Epilepsy &
21 22 23	407		Behavior 106, (2020).
24 25	408	51.	Esteva, A. et al. A guide to deep learning in healthcare. Nature Medicine 25, 24–29 (2019).
26 27	409	52.	Litjens, G. et al. A survey on deep learning in medical image analysis. Medical Image Analysis 42,
28 29	410		60–88 (2017).
30 31	411	53.	FDA Cleared AI Algorithms. American College of Radiology Data Science Institute
32 33	412		https://models.acrdsi.org.
34 35	413	54.	Aggarwal, R. et al. Diagnostic accuracy of deep learning in medical imaging: a systematic review
36 37	414		and meta-analysis. <i>npj Digital Medicine</i> 4 , 65 (2021).
38 39 40	415	55.	Liu, X. et al. A comparison of deep learning performance against health-care professionals in
40 41 42	416		detecting diseases from medical imaging: a systematic review and meta-analysis. The Lancet Digital
42 43 44	417		<i>Health</i> 1 , e271–e297 (2019).
45 46	418	56.	Nagendran, M. et al. Artificial intelligence versus clinicians: systematic review of design, reporting
47 48	419		standards, and claims of deep learning studies. BMJ vol. 368 m689 (2020).
49 50	420	57.	Riches, N. et al. The Effectiveness of Electronic Differential Diagnoses (DDX) Generators: A
51 52	421		Systematic Review and Meta-Analysis. PLoS One 11, e0148991 (2016).
53 54	422	58.	Bright, T. J. et al. Effect of clinical decision-support systems: a systematic review. Ann Intern Med
55 56	423		157, 29–43 (2012).
57 58 50			
60			19 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	424	59.	Jaspers, M. W. M., Smeulers, M., Vermeulen, H. & Peute, L. W. Effects of clinical decision-support
5 6	425		systems on practitioner performance and patient outcomes: a synthesis of high-quality systematic
7 8	426		review findings. J Am Med Inform Assoc 18, 327-334 (2011).
9 10	427	60.	Garg, A. X. et al. Effects of computerized clinical decision support systems on practitioner
11 12	428		performance and patient outcomes: a systematic review. JAMA 293, 1223-1238 (2005).
13 14	429	61.	Varghese, J., Kleine, M., Gessner, S. I., Sandmann, S. & Dugas, M. Effects of computerized decision
15 16 17	430		support system implementations on patient outcomes in inpatient care: a systematic review. J Am
17 18 19	431		Med Inform Assoc 25, 593–602 (2018).
20 21	432	62.	Vasey, B. et al. Association of Clinician Diagnostic Performance With Machine Learning-Based
22 23	433		Decision Support Systems: A Systematic Review. JAMA Network Open 4, e211276–e211276 (2021).
24 25	434		
26 27			
27			
29			
30			
31			
32 33			
34			
35			
36			
37 38			
39			
40			
41			
42 43			
44			
45			
46			
47			
48 49			
50			
51			
52			
53			
54 55			
56			
57			
58			
59			20

Appendix 1: Search strategy

Medline [OVID]

Ovid MEDLINE(R) and Epub Ahead of Print, In-Process, In-Data-Review & Other Non-Indexed Citations, Daily and Versions(R) <1946 to December 13, 2021>

#	Searches	Results
1	exp Electroencephalography/	173584
2	(EEG* or Electroencephalograph* or "electr* encephalograph*" or "brain wave*").tw,kf.	111352
3	1 or 2	201652
4	exp Epilepsy/	118716
5	Epilep*.tw,kf.	152323
6	(seizure* or convulsion* or infantile spasm*).tw,kf.	147989
7	(BCECTS or BECTS).tw,kf.	346
8	(panayiotopoulos adj2 syndrome*).tw,kf.	166
9	((Nodding or dravet or doose or may white or fukhura) adj2 (disease* or syndrome*)).tw,kf.	1407
10	(myoencephalopathy ragged red fiber* disease* or MERRF).tw,kf.	530
11	((Lafora or Unverricht or Landau-Kleffner or Lennox Gastaut) adj2 (disease* or syndrome* or disorder* or seizure*)).tw,kf.	2534
12	or/4-11	244612
13	exp Algorithms/	375058
14	Machine learning.tw,kf.	54804
15	((Deep or hierarchical) adj1 learning).tw,kf.	25347
16	((transfer* or representation* or network*) adj2 learning).tw,kf.	7945
17	((artificial or machine or computer or computational) adj2 intelligence).tw,kf.	19275
18	algorithm*.tw,kf.	299232
19	((data or binary or multiclass or multilabel) adj2 classification).tw,kf.	4758

20	((artificial or computational or computer* or convolutional or connectionist or mathematical) adj2 neur* network*).tw,kf.	28375
21	exp Pattern Recognition, Automated/	26085
22	(Automat* adj2 pattern* adj2 recognition*).tw,kf.	155
23	(Back* propagation* or backpropagation*).tw,kf.	4397
24	exp Bayes Theorem/	40554
25	(Bayes* adj2 (theorem or learning or analysis or approach* or forecast* or method* or prediction*)).tw,kf.	21469
26	(feature* adj2 (detecti* or extracti* or learning* or ranking* or selection*)).tw,kf.	21577
27	(Fuzzy or neurofuzzy).tw,kf.	13240
28	exp Markov chains/	15485
29	(Markov adj2 (model* or chain\$1 or process*)).tw,kf.	21918
30	K nearest neighbor*.tw,kf.	3529
31	(Kernel\$1 adj2 (method* or algorithm* or approach or correlation or estim* or regression or model* or string or tree)).tw,kf.	3950
32	exp Knowledge discovery/	130
33	(Knowledge adj2 discover*).tw,kf.	1589
34	exp Multifactor Dimensionality Reduction/	226
35	Dimensionality reduction*.tw,kf.	3836
36	(predicti* adj2 model*).tw,kf.	79862
37	connectom*.tw,kf.	4980
38	neur* decod*.tw,kf.	361
39	(outlier* adj2 detection*).tw,kf.	893
40	Neural networks, computer/	35265
41	(neural adj2 network*).tw,kf.	70371
42	perceptron*.tw,kf.	3390
43	radial basis function*.tw,kf.	2359
44	random forest*.tw,kf.	13717

45	recursive feature* elimination*.tw,kf.	688
46	recursive partition*.tw,kf.	2380
47	exp Support Vector Machine/	8553
48	(vector* adj2 (machine* or classifi* or network* or regression)).tw,kf.	22248
49	support vector*.tw,kf.	21483
50	rough set*.tw,kf.	397
51	((automat* or electron* or comput* or information or analytic*) adj2 (processing or reasoning)).tw,kf.	38719
52	(quantitative adj2 analys*).tw,kf.	90324
53	(Peak* adj2 (alpha* or frequenc*)).tw,kf.	5453
54	Entrop*.tw,kf.	45494
55	Lyapunov exponent*.tw,kf.	2179
56	Hjorth*.tw,kf.	184
57	Sub-band energ*.tw,kf.	18
58	exp fourier Analysis/	17272
59	(Fourier* or (cyclic adj2 (analys* or series or transform* or approach*)) or FFT).tw,kf.	87439
60	(Hilbert* adj2 transform*).tw,kf.	1008
61	(dimension* adj2 (fractal* or correlation*)).tw,kf.	8106
62	(Hurst adj2 exponent*).tw,kf.	575
63	exp wavelet analysis/	2541
64	(Wavelet* adj2 (analysis or processing or transform*)).tw,kf.	7248
65	phase locking value*.tw,kf.	311
66	Fisher information*.tw,kf.	870
67	Dynamic network*.tw,kf.	1839
68	Principal component* analys*.tw,kf.	47819
69	Independant component* analys*.tw,kf.	2
70	Functional connectivit*.tw,kf.	22171

71 (grad	lient* boost* or Adaboost*).tw,kf.	3337
72 (QEE	EG or Quantitative Electroencephalogra*).tw,kf.	1750
73 (chao	otic feature* or chaos).tw,kf.	9755
74 comp	put*.tw,kf.	958508
75 quant	titative.tw,kf.	689806
76 or/13	-75	2378446
77 (sens	itiv* or diagnos* or predict*).mp. or scor*.tw. or observ*.mp.	11325259
78 di.fs.		2760821
79 or/77	'-78	11325259
80 3 and	1 12 and 76 and 79	599(
81 (Anir	mals/ or Models, animal/ or Disease models, animal/) not Humans/	4900078
82 ((anir lamb piglet veteri	mal or animals or canine* or cat or cats or dog or dogs or feline or hamster* or or lambs or mice or monkey or monkeys or mouse or murine or pig or pigs or t* or porcine or primate* or rabbit* or rats or rat or rodent* or sheep* or inar*) not (human* or patient* or women or men)).tw,kf.	3315730
83 81 or	· 82	5542727
84 80 no	ot 83	5627
85 limit	84 to yr="1961 -Current"	5627

EMBASE [OVID]

EM	IBASE [OVID]	
Emb	base <1974 to 2021 December 13>	
#	Searches	Results
1	exp electroencephalography/	124495
2	(EEG* or Electroencephalograph* or "electr* encephalograph*" or "brain wave*").tw,kf.	146325
3	1 or 2	206929
4	exp epilepsy/	251058
5	Epilep*.tw,kf.	214171
6	(seizure* or convulsion* or infantile spasm*).tw,kf.	216888
7	(BCECTS or BECTS).tw,kf.	509

Page 25 of 40

1	
2	
4	
5	
7	
8	
9 10	
11	
12 13	
14	
15 16	
17	
18	
20	
21	
22	
24	
25 26	
27	
28 29	
30	
31 32	
33	
34 35	
36	
37	
39	
40	
41	
43	
44 45	
46	
47 48	
49	
50 51	
52	
53 54	
54 55	
56	
57 58	
59	
60	

8	(panayiotopoulos adj2 syndrome*).tw,kf.	249
9	((Nodding or dravet or doose or may white or fukhura) adj2 (disease* or syndrome*)).tw,kf.	2324
10	(myoencephalopathy ragged red fiber* disease* or MERRF).tw,kf.	711
11	((Lafora or Unverricht or Landau-Kleffner or Lennox Gastaut) adj2 (disease* or syndrome* or disorder* or seizure*)).tw,kf.	3984
12	or/4-11	371364
13	Machine learning/	49774
14	Machine learning.tw,kf.	63858
15	((Deep or hierarchical) adj1 learning).tw,kf.	28566
16	exp network learning/	886
17	((transfer* or representation* or network*) adj2 learning).tw,kf.	8790
18	exp artificial intelligence/	55153
19	((artificial or machine or computer or computational) adj2 intelligence).tw,kf.	23056
20	exp algorithm/	465121
21	algorithm*.tw,kf.	381089
22	((data or binary or multiclass or multilabel) adj2 classification).tw,kf.	6087
23	exp artificial neural network/	62826
24	((artificial or computational or computer* or convolutional or connectionist or mathematical) adj2 neur* network*).tw,kf.	33889
25	exp pattern recognition/ or exp automated pattern recognition/	68427
26	(Automat* adj2 pattern* adj2 recognition*).tw,kf.	199
27	exp back propagation/	2553
28	(Back* propagation* or backpropagation*).tw,kf.	5107
29	exp Bayesian learning/	4303
30	(Bayes* adj2 (theorem or learning or analysis or approach* or forecast* or method* or prediction*)).tw,kf.	24116
31	exp Feature detection/ or exp feature extraction/ or exp feature learning/ or exp feature ranking/ or exp feature selection/	31030

32	((feature* or representation) adj2 (detecti* or extracti* or learning* or ranking* or selection*)).tw,kf.	28097
33	exp fuzzy system/	4077
34	(fuzzy or neurofuzzy).tw,kf.	16138
35	exp Markov chain/ or exp Markov state model/	12093
36	(Markov adj2 (model* or chain\$1 or process*)).tw,kf.	29000
37	exp k nearest neighbor/	4553
38	K nearest neighbor*.tw,kf.	4260
39	kernel method/	6720
40	(Kernel\$1 adj2 (method* or algorithm* or approach or correlation or estim* or regression or model* or string or tree)).tw,kf.	4389
41	exp Knowledge discovery/	727
42	(Knowledge adj2 discover*).tw,kf.	1804
43	exp multifactor dimensionality reduction/	864
44	Dimension* reduction*.tw,kf.	7086
45	(predicti* adj2 model*).tw,kf.	105404
46	connectom*.tw,kf.	6225
47	neur* decod*.tw,kf.	433
48	exp Outlier detection/	470
49	(outlier* adj2 detection*).tw,kf.	1010
50	exp artificial neural network/	62826
51	exp Perceptron/	2478
52	perceptron*.tw,kf.	3962
53	(neural adj2 network*).tw,kf.	84786
54	exp radial basis function/	942
55	radial bas* function*.tw,kf.	2927
56	exp random forest/	14358
57	(random adj2 forest*).tw,kf.	17752

1	
2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
25	
22	
36	
37	
38	
39	
40	
<u>Δ</u> 1	
רו∕	
42	
43	
44	
45	
46	
47	
48	
.0 ⊿0	
+7	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

58	exp recursive feature elimination/	393
59	recursive feature* elimination*.tw,kf.	860
60	exp recursive partitioning/	462
61	recursive partition*.tw,kf.	3567
62	exp relevance vector machine/ or exp support vector machine/	28522
63	(vector* adj2 (machine* or classifi* or network* or regression)).tw,kf.	27021
64	support vector*.tw,kf.	26266
65	exp rough set/	248
66	rough set*.tw,kf.	531
67	exp online analytical processing/	187
68	((automat* or electron* or comput* or information or analytic*) adj2 (processing or reasoning)).tw,kf.	44254
69	Quantitative analysis/	367570
70	(quantitative adj2 analys*).tw,kf.	113093
71	(Peak* adj2 (alpha* or frequenc*)).tw,kf.	6315
72	Entrop*.tw,kf.	43483
73	Lyapunov exponent*.tw,kf.	1600
74	Hjorth*.tw,kf.	264
75	Sub-band energ*.tw,kf.	23
76	exp Fourier analysis/	10056
77	(Fourier* or (cyclic adj2 (analys* or series or transform* or approach*)) or FFT).tw,kf.	89584
78	Hilbert transform/	183
79	(Hilbert* adj2 transform*).tw,kf.	1253
80	(dimension* adj2 (fractal* or correlation*)).tw,kf.	8947
81	(Hurst adj2 exponent*).tw,kf.	555
82	exp wavelet transform/	2217
83	(Wavelet* adj2 (analysis or processing or transform*)).tw,kf.	9182

84	phase locking value*.tw,kf.	425
85	Fisher information*.tw,kf.	746
86	Dynamic network*.tw,kf.	1972
87	Principal component* analys*.tw,kf.	58526
88	Independent component* analys*.tw,kf.	7493
89	Functional connectivity/	21903
90	Functional connectivit*.tw,kf.	30389
91	(gradient* boost* or Adaboost*).tw,kf.	4097
92	(QEEG or Quantitative Electroencephalogra*).tw,kf.	2861
93	(chaotic feature* or chaos).tw,kf.	8412
94	comput*.tw,kf.	1156500
95	quantitative.tw,kf.	852081
96	or/13-95	2994032
97	(sensitiv* or diagnos* or predict*).mp. or scor*.tw. or observ*.mp.	14413096
98	di.fs.	3343316
99	or/97-98	14413096
100	3 and 12 and 96 and 99	8362
101	(exp animal/ or animal experiment/ or nonhuman/) not (exp human/ or human experiment/)	6801969
102	(animal or animals or canine* or dog or dogs or feline or hamster* or lamb or lambs or mice or monkey ormonkeys or mouse or murine or pig or pigs or piglet* or porcine or primate* or rabbit* or rats or rat or rodent* or sheep* or veterinar*).ti,kw,dq,jx. not (human* or patient*).mp.	2062187
103	101 or 102	6872024
104	100 not 103	7906
105	limit 104 to yr="1961 -Current"	7890
106	limit 105 to embase	5134

EBM Reviews [OVID]

All EBM Reviews - Cochrane DSR, ACP Journal Club, DARE, CCA, CCTR, CMR, HTA, and NHSEED <executed on December 14>

#	Searches	Results
1	(EEG* or Electroencephalograph* or "electr* encephalograph*" or "brain wave*").tw,kw,sh.	12245
2	Epilep*.tw,kw,sh.	10099
3	(seizure* or convulsion* or infantile spasm*).tw,kw,sh.	11675
4	(BCECTS or BECTS).tw,kw,sh.	31
5	(panayiotopoulos adj2 syndrome*).tw,kw,sh.	5
6	((Nodding or dravet or doose or may white or fukhura) adj2 (disease* or syndrome*)).tw,kw,sh.	413
7	(myoencephalopathy ragged red fiber* disease* or MERRF).tw,kw,sh.	5
8	((Lafora or Unverricht or Landau-Kleffner or Lennox Gastaut) adj2 (disease* or syndrome* or disorder* or seizure*)).tw,kw,sh.	339
9	or/2-8	16595
10	algorithm*.tw,kw.	16401
11	Machine learning.tw,kw,sh.	1918
12	((Deep or hierarchical) adj1 learning).tw,kw,sh.	708
13	((transfer* or representation* or network*) adj2 learning).tw,kw,sh.	691
14	((artificial or machine or computer or computational) adj2 intelligence).tw,kw,sh.	827
15	algorithm*.tw,kw,sh.	18549
16	((data or binary or multiclass or multilabel) adj2 classification).tw,kw,sh.	335
17	((artificial or computational or computer* or connectionist or convolutional or mathematical) adj2 neur* network*).tw,kw,sh.	782
18	(Automat* adj2 pattern* adj2 recognition*).tw,kw,sh.	15
19	(Back* propagation* or backpropagation*).tw,kw,sh.	66
20	(Bayes* adj2 (theorem or learning or analysis or approach* or forecast* or method* or prediction*)).tw,kw,sh.	1841
21	(feature* adj2 (detecti* or extracti* or learning* or ranking* or selection*)).tw,kw,sh.	607

2
2
3
4
5
6
7
, 0
ð
9
10
11
10
12
13
14
15
16
17
17
18
19
20
21
22
22
23
24
25
26
27
2/
28
29
30
31
27
32
33
34
35
36
50
3/
38
39
40
<u>1</u>
יד גע
42
43
44
45
46
-U 4-7
4/
48
49
50
51
57
52
53
54
55
56
57
57
58
59
60

22	(fuzzy or neurofuzzy).tw,kw,sh.	197
23	(Markov adj2 (model* or chain\$1 or process*)).tw,kw,sh.	4373
24	K nearest neighbor*.tw,kw,sh.	73
25	(Kernel\$1 adj2 (method* or algorithm* or approach or correlation or estim* or regression or model* or string or tree)).tw,kw,sh.	90
26	(Knowledge adj2 discover*).tw,kw,sh.	26
27	Dimensionality reduction*.tw,kw,sh.	73
28	(predicti* adj2 model*).tw,kw,sh.	5378
29	connectom*.tw,kw,sh.	308
30	neur* decod*.tw,kw,sh.	2
31	(outlier* adj2 detection*).tw,kw,sh.	14
32	perceptron*.tw,kw,sh.	76
33	(neural adj2 network*).tw,kw,sh.	1672
34	radial basis function*.tw,kw,sh.	39
35	random forest*.tw,kw,sh.	615
36	recursive feature* elimination*.tw,kw,sh.	30
37	recursive partition*.tw,kw,sh.	282
38	(vector* adj2 (machine* or classifi* or network* or regression)).tw,kw,sh.	555
39	support vector*.tw,kw,sh.	544
40	rough set*.tw,kw,sh.	3
41	((automat* or electron* or comput* or information or analytic*) adj2 (processing or reasoning)).tw,kw,sh.	7510
42	(quantitative adj2 analys*).tw,kw,sh.	8960
43	(Peak* adj2 (alpha* or frequenc*)).tw,kw,sh.	357
44	Entrop*.tw,kw,sh.	951
45	Lyapunov exponent*.tw,kw,sh.	37
46	Hjorth*.tw,kw,sh.	29
47	Sub-band energ*.tw,kw,sh.	0
1		

48	(Fourier* or (cyclic adj2 (analys* or series or transform* or approach*)) or FFT).tw,kw,sh.	1043
49	(Hilbert* adj2 transform*).tw,kw,sh.	19
50	(dimension* adj2 (fractal* or correlation*)).tw,kw,sh.	184
51	(Hurst adj2 exponent*).tw,kw,sh.	14
52	(Wavelet* adj2 (analysis or processing or transform*)).tw,kw,sh.	126
53	phase locking value*.tw,kw,sh.	11
54	Fisher information*.tw,kw,sh.	7
55	Dynamic network*.tw,kw,sh.	12
56	Principal component* analys*.tw,kw,sh.	1207
57	Independant component* analys*.tw,kw,sh.	0
58	Functional connectivit*.tw,kw,sh.	2220
59	(gradient* boost* or Adaboost*).tw,kw,sh.	168
60	(QEEG or Quantitative Electroencephalogra*).tw,kw,sh.	448
61	(chaotic feature* or chaos).tw,kw,sh.	141
62	comput*.tw,kw,sh.	80820
63	quantitative.tw,kw,sh.	33706
64	or/10-63	145496
65	(sensitiv* or diagnos* or predict*).mp. or scor*.tw. or observ*.mp.	810011
66	di.tw,kw,sh.	17162
67	65 or 66	811399
68	1 and 9 and 64 and 67	350
69	((animal or animals or canine* or cat or cats or dog or dogs or feline or hamster* or lamb or lambs or mice or monkey or monkeys or mouse or murine or pig or pigs or piglet* or porcine or primate* or rabbit* or rats or rat or rodent* or sheep* or veterinar*) not (human* or patient* or women or men)).tw,kw,sh.	5147
70	68 not 69	346
71	limit 70 to yr="1961 -Current" [Limit not valid in DARE; records were retained]	321
72	remove duplicates from 71	315

IEEE Xplore

<executed on December 14>

((((((((All Metadata:predicted OR All Metadata:prediction OR All Metadata:predictions OR	2492	
All Metadata:predicting OR All Metadata:predictive OR All Metadata:predictor OR All		
Metadata:predictors OR All Metadata:predicts OR All Metadata:predictability OR All		
Metadata:predictable OR All Metadata:predictably OR All Metadata:predictively OR All		
Metadata:predictiveness))) OR ((All Metadata:sensitivity OR All Metadata:sensitively OR All		
Metadata:sensitiveness OR All Metadata:sensitive OR All Metadata:sensitivities))) OR ((All		
Metadata:diagnose OR All Metadata:diagnosis OR All Metadata:diagnosed OR All		
Metadata:diagnoses OR All Metadata:diagnostic OR All Metadata:diagnosing OR All		
Metadata:diagnosable OR All Metadata:diagnostics OR All Metadata:diagnoseable OR All		
Metadata:diagnostical OR All Metadata:diagnostician OR All Metadata:diagnosticians OR All		
Metadata:diagnostically))) AND ((No Keywords Specified))) AND ((No Keywords		
Specified))) AND ((Index Terms:EEG) OR (Index Terms:Electroencephalograph*) OR (Index		
Terms: "electr* encephalograph*") OR (Index Terms: "brain wave") OR (Index Terms:"brain		
waves"))) OR ((Document Title:EEG) OR (Document Title:Electroencephalograph*) OR		
(Document Title:"electr* encephalograph*") OR (Document Title:"brain wave") OR		
(Document Title:"brain waves"))) AND ((Index Terms:epilep*) OR (Document Title:seizure		
OR Document Title:seizures OR Document Title:convulsion OR Document Title:convulsions		
OR Document Title:"infantile spasm" OR Document Title:"infantile spasms"))		
Google Scholar (using Publish or Perish)		
<executed 21="" december="" on=""></executed>		

Electroencephalogram epilepsy [title], machine learning algorithm* diagnos* [keywords]	32 selected articles out of 32
Electroencephalography epilepsy [title], machine learning algorithm* diagnos* [keywords]	21 selected article out of 21
EEG epilepsy [title], machine learning algorithm* diagnos* [keywords]	433 sur 433

Grey literature

Alberta: Health evidence reviews

https://www.alberta.ca/health-evidence-reviews.aspx

Electroencephalography	0 selected articles out of 1
EEG	0 selected articles out of 3

Canadian Agency for Drug and Technologies in Health

2
2
5
4
5
6
7
/
8
9
10
11
11
12
13
14
15
15
16
17
18
10
17
20
21
22
 วว
23
24
25
26
20
27
28
29
30
21
31
32
33
34
25
35
36
37
38
20
39
40
41
42
42
43
44
45
46
47
4/
48
49
50
50
51
52
53
51
54
55
56
57
58
20
60

60

https://www.cadth.ca/search?keywords

Electroencephalography	0 selected articles out of 1
EEG	0 selected articles out of 4

Health Quality Council of Alberta

https://hqca.ca/studies-and-reviews/

Electroencephalography	0 selected articles out of 0
EEG	0 selected articles out of 0

Health Quality Ontario: Health Technology Assessment

Quality Standards - Health Quality Ontario (HQO) (hqontario.ca)

Electroencephalography	1 selected article out of 7
EEG	1 selected article out of 5

INESS

https://www.inesss.qc.ca/en/publications/publications.html?tx_solr%5Bq%5D=EEG

électroencéphalographie	0 selected articles out of 5
EEG	0 selected articles out of 0

McGill University Health Centre (MUHC). Technology Assessment Unit Reports

https://muhc.ca/tau/page/tau-reports

Electroencephalography	0 selected article out of 0
EEG	0 selected articles out of 3

Newfoundland & Labrador Centre For Applied Health Research

http://www.nlcahr.mun.ca/CHRSP/CompletedCHRSP.php

Electroencephalography AND epilepsy	0 selected articles out of 37
Electroencephalogram AND epilepsy	0 selected articles out of 34
EEG AND epilepsy	0 selected articles out of 28

The Ottawa Hospital Research institute: Knowledge Synthesis Group

http://www.ohri.ca/ksgroup/

Electroencephalography	0 selected articles out of 0
Electroencephalogram	0 selected articles out of 0
EEG AND epilepsy	0 selected articles out of 7

Programs for Assessment of Technology in Health

https://www.path-hta.com/research-1

Electroencephalography	0 selected articles out of 0
Electroencephalogram	0 selected articles out of 0
EEG	0 selected articles out of 0

The International Network of Agencies for Health Technology Assessment

Publications - INAHTA

Electroencephalography	0 selected articles out of 1
Electroencephalogram	0 selected articles out of 4
EEG	0 selected articles out of 4

Horizon Scanning

Horizon Scanning - Australia and New Zealand Horizon Scanning Network - Technologies Assessed

Electroencephalography	0 selected articles out of 1
Electroencephalogram	0 selected articles out of 0
EEG	0 selected articles out of 0

Austrian Academy of Sciences

https://www.oeaw.ac.at/en/

Electroencephalography	0 selected articles out of 0
Electroencephalogram	0 selected articles out of 0
EEG	0 selected articles out of 2

Austrian Institute Of Health Technology Assessment

Welcome to Repository of AIHTA GmbH - Repository of AIHTA GmbH (lbg.ac.at)

Electroencephalography	0 selected articles out of 4
Electroencephalogram	0 selected articles out of 0
EEG	0 selected articles out of 2
-----	------------------------------

KCE: Belgian health Knowledge Center

All reports - KCE (fgov.be)

Electroencephalography	0 selected articles out of 1
Electroencephalogram	0 selected articles out of 0
EEG	0 selected articles out of 1
électroencéphalographie	0 selected article out of 1

CEDIT, the Hospital-Based HTA Agency Of AP-HP

Recommendations and Reports | Cedit (aphp.fr)

Electroencephalography	0 selected articles out of 0
Electroencephalogram	0 selected articles out of 0
EEG	0 selected articles out of 1
électroencéphalographie	0 selected article out of 0

Haute Autorité de Santé

Haute Autorité de Santé - Résultat de recherche (has-sante.fr)

EEG	1 selected article out of 218
électroencéphalographie	0 selected article out of 27
Health Information and Quality Autority	
Health Technology Assessments HIQA	

Health Information and Quality Autority

Health Technology Assessments | HIQA

Electroencephalography	0 selected articles out of 0
Electroencephalogram	0 selected articles out of 0
EEG	0 selected articles out of 0

Irish Health Repository

Lenus the Irish Health Repository

Title: Electroencephalography AND epilepsy	1 selected article out of 51
Electroencephalogram	0 selected articles out of 3
Title: EEG AND epilepsy	0 selected articles out of 51

Norwegian Institute of Public Health

Norwegian Institute of Public Health - NIPH (fhi.no)

Electroencephalography	0 selected articles out of 0
Electroencephalogram	0 selected articles out of 0
EEG	0 selected articles out of 3

Swedish Agency for Health Technology Assessment And Assessment Of Social Services

Home (sbu.se)

Electroencephalography	0 selected articles out of 2
Electroencephalogram	0 selected articles out of 2
EEG	0 selected articles out of 4

Healthcare Improvement Scotland

Healthcare Improvement Scotland

Electroencephalography	0 selected articles out of 0
Electroencephalogram	0 selected articles out of 0
EEG	0 selected articles out of 0

National Institute for Health and Care Excellence

NICE | The National Institute for Health and Care Excellence

electroencephalography AND epilepsy	0 selected articles out of 2
Electroencephalogram AND epilepsy	1 selected article out of 5
EEG	0 selected articles out of 9

NIHR Innovation Observatory

Innovation Observatory | Next generation search tools for the next generation. (nihr.ac.uk)

Electroencephalography	1 selected article out of 2
Electroencephalogram	0 selected articles out of 1
EEG	0 selected articles out of 5

National institute for health Research

Research Programmes (nihr.ac.uk)

electroencephalography AND epilepsy	1 selected article out of 67
Electroencephalogram AND epilepsy	0 selected articles out of 67
EEG	0 selected articles out of 67

Agency for Healthcare Research and Quality : Technology Assessment Program Technology Assessment Program | Agency for Healthcare Research and Quality (ahrq.gov)

Electroencephalography AND epilepsy AND diagnosis	0 selected articles out of 1
Electroencephalogram AND epilepsy AND diagnosis	0 selected articles out of 78
EEG AND epilepsy AND diagnosis	0 selected articles out of 83

Agency for Healthcare Research and Quality : Evidence-Based Reports

Search Evidence-Based Reports | Agency for Healthcare Research and Quality (ahrq.gov)

Electroencephalography	0 selected articles out of 0
Electroencephalogram	0 selected articles out of 0
EEG AND epilepsy	0 selected articles out of 4

Google

intitle: Electroencephalography AND epilepsy AND machine learning AND diagnosis	3 selected articles out of 9
intitle: Electroencephalogram AND epilepsy AND machine learning AND diagnosis	0 selected articles out of 9
intitle: EEG AND epilepsy AND machine learning AND diagnosis	1 selected articles out of 9
intitle: Electroencephalography AND epilepsy AND algorithm AND diagnosis	0 selected articles out of 9
intitle: Electroencephalogram AND epilepsy AND algorithm AND diagnosis	0 selected articles out of 9
intitle: EEG AND epilepsy AND algorithm AND diagnosis	0 selected articles out of 9

PRISMA-P 2015 Checklist

This checklist has been adapted for use with protocol submissions to *Systematic Reviews* from Table 3 in Moher D et al: Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. *Systematic Reviews* 2015 **4**:1

Santian/tania	щ		Informatio	Line	
Section/topic	#		Yes	No	number(s)
ADMINISTRATIVE INFO	RMAT	ION			
Title					
Identification	1a	Identify the report as a protocol of a systematic review			Title page
Update	1b	If the protocol is for an update of a previous systematic review, identify as such			NA
Registration	2	If registered, provide the name of the registry (e.g., PROSPERO) and registration number in the Abstract			24
Authors					
Contact	За	Provide name, institutional affiliation, and e-mail address of all protocol authors; provide physical mailing address of corresponding author			Title page
Contributions	3b	Describe contributions of protocol authors and identify the guarantor of the review			265 – 270
Amendments	4	If the protocol represents an amendment of a previously completed or published protocol, identify as such and list changes; otherwise, state plan for documenting important protocol amendments			NA
Support					
Sources	5a	Indicate sources of financial or other support for the review			265 – 270
Sponsor	5b	Provide name for the review funder and/or sponsor			265 – 270
Role of sponsor/funder	5c	Describe roles of funder(s), sponsor(s), and/or institution(s), if any, in developing the protocol			265 – 270
INTRODUCTION					
Rationale	6	Describe the rationale for the review in the context of what is already known			29 – 70
Objectives	7	Provide an explicit statement of the question(s) the review will address with reference to participants, interventions, comparators, and outcomes (PICO)			71 – 75

Saction/topia	#	Checklist item	Information reported		Line	
Section/topic	#		Yes	No	number(s)	
METHODS						
Eligibility criteria	8	Specify the study characteristics (e.g., PICO, study design, setting, time frame) and report characteristics (e.g., years considered, language, publication status) to be used as criteria for eligibility for the review			82 – 106	
Information sources	9	Describe all intended information sources (e.g., electronic databases, contact with study authors, trial registers, or other grey literature sources) with planned dates of coverage			107 – 116	
Search strategy	10	Present draft of search strategy to be used for at least one electronic database, including planned limits, such that it could be repeated			Арр. 1	
STUDY RECORDS						
Data management	11a	Describe the mechanism(s) that will be used to manage records and data throughout the review			111 – 116	
Selection process	11b	State the process that will be used for selecting studies (e.g., two independent reviewers) through each phase of the review (i.e., screening, eligibility, and inclusion in meta-analysis)			111 – 116	
Data collection process	11c	Describe planned method of extracting data from reports (e.g., piloting forms, done independently, in duplicate), any processes for obtaining and confirming data from investigators			111 – 116	
Data items	12	List and define all variables for which data will be sought (e.g., PICO items, funding sources), any pre-planned data assumptions and simplifications			118 – 154	
Outcomes and prioritization	13	List and define all outcomes for which data will be sought, including prioritization of main and additional outcomes, with rationale			149 – 152	
Risk of bias in individual studies	14	Describe anticipated methods for assessing risk of bias of individual studies, including whether this will be done at the outcome or study level, or both; state how this information will be used in data synthesis			156 – 182	
DATA						
	15a	Describe criteria under which study data will be quantitatively synthesized	\square		184 – 188	
Synthesis	15b	If data are appropriate for quantitative synthesis, describe planned summary measures, methods of handling data, and methods of combining data from studies, including any planned exploration of consistency (e.g., <i>I</i> ² , Kendall's tau)			198 – 221	
-	15c	Describe any proposed additional analyses (e.g., sensitivity or subgroup analyses, meta- regression)			198 – 221	
	15d	If quantitative synthesis is not appropriate, describe the type of summary planned			189 – 196	
Meta-bias(es)	16	Specify any planned assessment of meta-bias(es) (e.g., publication bias across studies, selective			220 – 227	

Soction/tonio	#		Informatio	Line	
Section/topic	#		Yes	No	number(s)
		reporting within studies)			
Confidence in cumulative evidence	17	Describe how the strength of the body of evidence will be assessed (e.g., GRADE)			NA

un of the body of evidence will be assessed (e.g.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Computer-assisted analysis of routine electroencephalogram to identify hidden biomarkers of epilepsy: protocol for a systematic review

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-066932.R1
Article Type:	Protocol
Date Submitted by the Author:	13-Dec-2022
Complete List of Authors:	Lemoine, Émile; University of Montreal, Department of Neurosciences; Ecole Polytechnique de Montreal, Institute of Biomedical Engineering Neves Briard, Joel; University of Montreal, Department of Neurosciences; University of Montreal Hospital Centre Research Centre Rioux, Bastien; University of Montreal, Department of Neurosciences; University of Montreal Hospital Centre Research Centre Podbielski, Renata; University of Montreal Hospital Centre Research Centre Nauche, Bénédicte; University of Montreal Hospital Centre Research Centre Toffa, Denahin; University of Montreal, Department of Neurosciences; University of Montreal Hospital Centre Research Centre Keezer, Mark; University of Montreal, Department of Neurosciences; Stichting Epilepsie Instellingen Nederland Lesage, Frederic; Ecole Polytechnique de Montreal, Institute of Biomedical Engineering Nguyen, Dang ; University of Montreal, Department of Neurosciences; University of Montreal Hospital Centre Research Centre Bou Assi, Elie; University of Montreal, Department of Neurosciences; University of Montreal Hospital Centre Research Centre
Primary Subject Heading :	Neurology
Secondary Subject Heading:	Epidemiology, Diagnostics, Health informatics
Keywords:	Epilepsy < NEUROLOGY, Neurophysiology < NEUROLOGY, Health informatics < BIOTECHNOLOGY & BIOINFORMATICS, NEUROLOGY

SCHOLARONE[™] Manuscripts

BMJ Open

Title: Computer-assisted analysis of routine electroencephalogram to identify hidden biomarkers of epilepsy: protocol for a systematic review

Authors

Mont Émile Lemoine^{1, 2, 3} Joel Neves Briard^{1, 3} Bastien Rioux^{1, 3} Renata Podbielski3 Bénédicte Nauche³ Denahin Toffa^{1,3} Mark Keezer^{1,3-5} Frédéric Lesage² Dang K. Nguyen^{1,3} Elie Bou Assi^{1,3} ¹Department of Neurosciences, University of Montreal, Canada ²Institute of biomedical engineering, Polytechnique Montreal, Canada ³University of Montreal Hospital Center's Research Center, Canada ⁴School of Public Health, University of Montreal, Canada ⁵Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands

Corresponding author

Émile Lemoine, emile.lemoine@umontreal.ca 1051 rue Sanguinet, Montréal, Québec. H2X 3E4

Abstract

Introduction: The diagnosis of epilepsy frequently relies on the visual interpretation of the electroencephalogram (EEG) by a neurologist. The hallmark of epilepsy on EEG is the interictal epileptiform discharge (IED). This marker lacks sensitivity: it is only captured in a small percentage of 30-minute routine EEGs in patients with epilepsy. In the past three decades, there has been growing interest in the use of computational methods to analyze the EEG without relying on the detection of IEDs, but none have made it to the clinical practice. We aim to review the diagnostic accuracy of quantitative methods applied to ambulatory EEG analysis to guide the diagnosis and management of epilepsy. Methods and analysis: The protocol complies with the recommendations for systematic reviews of diagnostic test accuracy by Cochrane. We will search MEDLINE, EMBASE, EBM reviews, IEEE Explore along with grey literature for articles, conference papers and conference abstracts published after 1961. We will include observational studies that present a computational method to analyze the EEG for the diagnosis of epilepsy in adults or children without relying on the identification of IEDs or seizures. The reference standard is the diagnosis of epilepsy by a physician. We will report the estimated pooled sensitivity and specificity, and receiver operating characteristic area-under-the-curve (ROC AUC) for each marker. If possible, we will perform a meta-analysis of the sensitivity and specificity and ROC AUC for each individual marker. We will assess the risk of bias using an adapted QUADAS-2 tool. We will also describe the algorithms used for signal processing, feature extraction and predictive modeling, and comment on the reproducibility of the different studies. Ethics and dissemination: Ethical approval was not required. Findings will be disseminated through peer-reviewed publication and presented at conferences related to this field. PROSPERO registration number: CRD42022292261 Strengths and limitations of this study: This systematic review will be the first to critically evaluate the diagnostic accuracy of • computational markers of epilepsy on routine EEG, with an emphasis on identifying the barriers towards clinical translation of this technology; The publication of this protocol ensures transparency, and evaluation of all studies during • screening, selection, and data extraction by independent reviewers reduces the risk of bias in the selection and analysis of included studies;

1		
2 3	31	• High heterogeneity in reporting standards and inclusion criteria is anticipated, possibly preventing
4 5	32	the reliable estimation of diagnostic performance metrics;
6 7	33	• Our review will constitute a comprehensive reference of current practices in the automated
8	34	processing and analysis of routine EEG for epilepsy.
9 10		
11 12	35	
13	36	Keywords: Epilepsy – Electroencephalogram – Machine Learning – Diagnosis – Computer-assisted –
14 15	37	Biomarker
16 17	0,	
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46		
48 49		
50 51		
52 53		
54 57		
55 56		
57 58		
59		For peer review only - http://bmiopen.hmi.com/site/about/guidelines.yhtml
60		rorpeerreview only intep.//binjopen.binj.com/site/about/guidelines.sititin

39 Background

 Epilepsy is characterized by an enduring propensity towards epileptic seizures—transient neurological manifestations provoked by a state of abnormal and excessive neuronal activity in the brain¹. Epilepsy affects over 65 million people worldwide, and 10% of the population will experience at least one seizure in their lifetime^{2,3}. Epileptic seizures can lead to fractures, road accidents, isolation, anxiety, cognitive decline, and death⁴. In specialized-care settings, the first anti-seizure medication (ASM) achieves seizure freedom in approximately 47% of patients⁵. A prompt diagnosis is key in the prevention of epilepsy-related morbidity and mortality⁴. A history of epileptic seizures or a high recurrence risk after a single seizure are the basis for the definition of epilepsy by the International League Against Epilepsy (ILAE)¹. Ancillary tests are often needed to estimate seizure recurrence risk after a single seizure. These include the neurological examination, neuroimaging, and the electroencephalogram (EEG).

An EEG records the electrical activity of the brain. It is recommended that all patients who present with a first unprovoked seizure or with new diagnosis of epilepsy undergo an EEG^{6,7}. The initial EEG is generally performed with electrodes applied to the patient's scalp (scalp EEG or *routine EEG*) for a duration of 20–40 minutes⁸. The EEG tracing is then interpreted visually by a neurologist, who attempts to identify interictal epileptiform discharges (IEDs; aka spikes). IEDs are brief (20–200ms) sharp discharges, clearly emerging from background oscillations, often negative in polarity and sometimes followed by a typical slow wave⁸. The presence of interictal spikes on the EEG is considered a hallmark of epilepsy, as it represents a strong predictor of seizure recurrence^{9,10}. Furthermore, the identification of interictal spikes can help localize an epileptic focus that may be amenable to surgical resection, and can guide the withdrawal of ASMs in patients after a prolonged period of seizure freedom^{11,12}.

The interictal spike has several limitations. It occurs very sporadically: in patients with epilepsy, only 29
 - 55% of routine EEGs will capture these transient abnormalities⁸. After a first unprovoked seizure in

BMJ Open

adults, the sensitivity of a single routine EEG for detecting epileptiform abnormalities is only $17\%^{9}$. Furthermore, their identification is somewhat subjective: the percent agreement between EEG experts is around 76%¹³. Many physiological transient discharges can be misinterpreted as epileptiform spikes. This can lead to the erroneous diagnosis of epilepsy, with sometimes important consequences^{14,15}. In patients labelled with drug-resistant epilepsy, over 25% may have had an erroneous diagnosis as a result of both inadequate history taking and misinterpretation of the EEG¹⁶. Despite the abundant information on brain activity recorded by the EEG, no other interictal anomalies have been validated for use in clinical settings^{1,17,18}.

Compared to other neuroimaging modalities, a scalp EEG is inexpensive, easy to acquire, and confers functional information with high temporal resolution^{19,20}. Moreover, great effort was put in the last decade by the ILAE in standardizing the equipment, recording and storage of EEG data^{10,21}. Decades of research have suggested that the automated analysis of EEG can identify hidden differences between with epilepsy and non-epileptic subjects in terms of connectivity²²⁻²⁴, signal predictability and complexity^{25,26}, spectral power^{27,28}, and chaoticity²⁹. Computational analysis of EEG holds the promise of extracting information that is invisible to the naked eye of the human interpreter, in an objective and reproducible manner. Discovering new, non-visible markers of epilepsy could increase the diagnostic yield of the EEG, improve its accessibility, and reduce costs, especially in settings where the expertise of a fellowship-trained neurophysiologist is unavailable^{18,30}. In spite of this, none of the proposed non-visible markers of epilepsy have made it into clinical practice^{10,31}. This discrepancy calls attention to the lack of comprehensible and systematic evaluation of these new methods. We will perform a systematic review of diagnostic test accuracy for automated methods of interictal EEG

analysis to distinguish between patients with and without epilepsy, without relying on the detection of
 spikes. The questions that this review addresses are the following: What is the current evidence on the
 performances of automatically extracted hidden markers compared to the clinical diagnosis of epilepsy by

87 a physician? What is the benefit over the visual identification of IEDs on routine EEG? And what are the

88 different algorithms that have been tested and how does their diagnostic accuracy compare?

89 Methods

90 Study design

This will be a systematic review and meta-analysis following guidance from the Cochrane Diagnostic
 Test Accuracy group. We will report the results according to the PRISMA statement for diagnostic test
 accuracy (PRISMA-DTA)³².

94 Study selection criteria

Type of studies

We will include all studies that describe a computed marker of epilepsy on routine (scalp) EEG which does not explicitly rely on the identification of interictal spikes or ictal activity (seizures). Studies must compare the EEG signal of individuals with and without epilepsy. We will include retrospective or prospective comparative studies enabling the assessment of diagnostic accuracy (cohort or case-control studies). We will exclude studies reporting data on non-human animals only, studies that include only intracranial or critical care EEG recordings, studies that do not include both individuals with and without epilepsy, and studies that are focused solely on seizure/spike detection or on short-term (<24h) seizure prediction. For studies that include multiple EEG types, we will only extract data that meet the inclusion criteria. We restricted the search to studies published after 1961 (the first use of digital EEG)³³. There are no restrictions for language.

07

08

1 2 **BMJ** Open

3 4	1
5 6	1
7	1
o 9	1
10 11	
12 13	1
14 15	1
16 17	1
18	1
20	1
21 22	1
23 24	1
25 26	1
27 28	1
29 30	1
31 32	1
33	1
34 35	1
36 37	1
38 39	1
40 41	1
42 43	1
44 45	1
46	1
47	1
49 50	1
51 52	1
53 54	1
55 56	1
57 58	
59 60	
~~	

Our population of interest is individuals undergoing routine EEG in a clinical or research setting. A routine EEG is defined as a 20- to 60-minute scalp recording using the international 10–20 electrodes

109 system, with or without prior sleep deprivation. There is no restriction for age groups or diagnoses.

110 **Reference standard**

Population

We defined the reference standard as the diagnosis of epilepsy by a physician based on criteria specified by the authors (clinical or para-clinical). These criteria must accord with the definition of epilepsy by the ILAE: having had at least one seizure and long-term enduring predisposition to other unprovoked seizures^{1,34}.

115 Index test

The index test is a characteristic or feature which is computationally extracted from the EEG signal to identify patients with epilepsy, without relying on detecting IEDs or seizures. These include measures of connectivity, entropy, chaoticity, and power spectrum density³⁵. Also included are statistical models that combine several features or models that take as input the raw or processed EEG.

120 Search strategy

21 The search strategy (Appendix 1) was developed by two medical librarians specialized in systematic 22 reviews (BN and RP), and peer-reviewed by a senior colleague. We will search MEDLINE (Ovid), 23 EMBASE (Ovid), EBM reviews (Ovid), IEEE Explore along with grey literature for articles, conference 24 papers and conference abstracts. We will use the Covidence platform (Melbourne, Australia) to manage 25 our data for eligibility assessment, selection, and data collection. Two independent reviewers (EL, and 26 either JNB or BR) will screen the records for eligibility using their title and abstract. Any item selected by 27 either reviewer will proceed to the next phase. This process will be repeated on the screened items, this 28 time by consulting the items' full text. A third, senior reviewer (EBA) will settle conflicts as necessary 29 during the final selection.

3 4	130	Data items
5 6 7	131	Data collection will be performed using Covidence by two independent reviewers (EL and JNB/BR), and
/ 8	132	conflicts will be resolved by a third author (EBA). Authors of the primary study will be contacted if the
9 10 11	133	required data are not available in the original publication. Data collection will include the following
12 13	134	information:
14 15	135	1. Title and authors of the study, country of sampling, year of publication;
16 17	136	2. Study type: retrospective vs. prospective, design (cohort, case control);
18 19	137	3. Study sample: exclusion and inclusion criteria, number of screened and included patients;
20 21 22	138	4. Data collection:
22 23 24	139	a. Number of patients, number of EEGs, duration of EEG recordings, use of activation
25 26	140	procedures (hyperventilation, photic stimulation, sleep deprivation), setting of recording
27 28	141	(hospitalized or ambulatory), whether the same protocol was used for all patients;
29 30	142	b. Number of electrodes, sampling frequency;
31 32	143	c. If public dataset: reference to the original dataset, dataset name, exclusion/inclusion
33 34	144	criteria used on the EEG segments from the dataset;
35 36	145	d. Participant characteristics: age, sex, comorbidities, number of ASM, age of first seizure;
37 38	146	5. Reference standard: whether a predefined reference standard was used, definition of reference
39 40 41	147	standard, whether all patients underwent the same reference standard, time lapse between
42 43	148	reference standard and EEG;
44 45	149	6. Index test:
46 47	150	a. Pre-processing: artifact detection and removal (automated or manual), filtering method,
48 49	151	filtering frequencies, segmentation protocol (whole EEG vs. EEG segments, window
50 51	152	size, overlapping vs. non-overlapping segments, manual vs. automated selection of
52 53 54 55	153	segments), channel selection;
56 57 58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 ว		
2 3 4	154	b. Feature extraction and selection: multi-channel vs. single channel, number of channels
5 6	155	selected, whether feature selection was performed, feature extraction algorithm, feature
7 8	156	selection method, whether feature selection was applied to data before vs. after excluding
9 10	157	testing data;
11 12	158	c. Classification: algorithm(s) used for classification, testing methodology (cross-validation
13 14	159	vs. held out testing set);
15 16	160	d. Metric used to report diagnostic performances: ROC AUC,
17 18	161	accuracy/sensibility/specificity, F ₁ -score, reporting of confidence intervals (CI);
19 20	162	7. Diagnostic performances: number of true positives, number of true negatives, number of false
21 22	163	positives, number of false negatives, reported accuracy, reported sensitivity, reported specificity,
23 24 25	164	reported F ₁ -score, reported ROC AUC (if more than one index test is performed on the same
25 26 27	165	patient, we will only consider the first test);
27 28 20	166	8. Reproducibility: whether every data processing step is detailed, whether methods can be
30 31	167	reproduced easily, data availability, code availability, open-source computer libraries referenced.
32 33		
34 35	168	Risk of bias
36 37	169	The risk of bias of all included studies will be assessed through an adapted version of the QUADAS-2
38 39	170	tool ³⁶ . Risk of bias for each of the following four elements will be evaluated by two independent
40 41	171	reviewers (EL and JNB/BR) as low, high, or unclear. Conflicts will be resolved by a third author (EBA).
42 43	172	In addition, all publicly available datasets used by at least one of the included studies will be evaluated
44 45	173	with the same tool. The following items will be assessed:
46 47	174	1. Patient selection
48 49	175	a. Is the population representative of clinical practice?
50 51	176	b. Are inclusion and exclusion criteria identical for cases (patients with epilepsy) and
52 53	177	controls?
54 55		
56 57		
58 59		For poor roviow only, http://bmiopon.hmi.com/site/about/avidalines.yhtml
60		Tor peer review only - http://binjopen.binj.com/site/about/guidennes.xittin

3 4	178	c. Are withdrawals explained and appropriate? If individual EEG segments were excluded,
5 6	179	were the same criteria used for all segments?
7 8	180	2. Index test
9 10	181	a. Were the protocols used for recording the EEG identical in all patients, irrespective of the
11 12	182	epilepsy diagnosis?
13 14	183	b. Was the index test validated on an independent sample of patients (patients which were
15 16	184	not used to identify the index test's threshold or train the learning algorithm)?
17 18	185	3. Reference standard
19 20	186	a. Are the criteria used for the diagnosis of epilepsy specified and acceptable (likely to
21 22 22	187	correctly classify the target condition)?
23 24 25	188	b. Was the reference standard assessment independent and blinded to the index test?
25 26 27	189	4. Flow and timing
28 29	190	a. Did the whole sample undergo the reference standard?
30 31	191	b. Did the whole sample undergo the same reference standard?
32 33	192	c. Was the time lapse between reference standard and EEG acceptable?
34 35	193	d. Was the same data used in the index method available at the time of the reference
36 37	194	standard?
38 39	195	e. Were all EEGs included in the analysis?
40 41		
42 43	196	Data synthesis
44 45	197	We will provide a table summarizing every published study included in the review, comparing the
46 47	198	studies' design, population, reference standard, dataset size, data processing methods, and diagnostic
48 49	199	accuracy. We will also provide a figure that summarizes the risk of bias for each item in the adapted
50 51	200	QUADAS-2 tool, comparing 1) every individual article included in the review, and 2) every public
52 53	201	dataset that is used in ≥ 2 studies.
54 55		
56 57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml 1°

3 4	202	We will describe the number of patients, number of EEGs, duration of EEGs, and the EEG-duration-per-
5 6	203	patient ratio across all included studies. We will report the pooled proportion of patients with focal vs.
7 8	204	generalized epilepsy, adult vs. children, structural vs. non-structural epilepsy, IEDs on EEG, and with
9 10	205	specific epilepsy syndromes. For every publicly available dataset identified during the review, we will
11 12 13	206	report the number of studies that used that dataset in their work.
14 15	207	We will summarize in a table the methods used by the different articles during the pipeline's algorithm
16 17	208	(pre-processing, feature extraction, feature selection, and classification algorithm), along with the
18 19 20	209	proportion of studies that used each method.
21 22 22	210	Analyses
23 24	211	We will estimate the specificity and sensitivity for each study, using the Wilson score to compute 95%
25 26 27	212	CI. For studies with varying thresholds, we will estimate the ROC AUC and 95% CI.
28 29	213	If there are sufficient (\geq 5) studies that report the number of true/false positives and true/false negatives,
30 31	214	we will estimate the pooled sensitivity and specificity of each individual marker using a hierarchical,
32 33	215	bivariate generalized linear mixed model ³⁷ . This allows us to account for the correlation between
34 35	216	specificity and sensitivity in a single study. If \geq 5 studies report these numbers for varying thresholds, we
36 37	217	will estimate the pooled ROC curve using the Rutter and Gatsonis HSROC model ³⁸ . All analyses will be
38 39 40	218	implemented with the R statistical language. A <i>p</i> -value <0.05 will be considered statistically significant.
40 41 42	219	Given insufficient data for the pooled estimates, we will only describe the diagnostic performances
43 44	220	(sensitivity, specificity, ROC AUC) narratively. We will present the results of the analyses with forest
45 46	221	plots. We will compare the performance of the computational markers for the diagnosis of epilepsy to the
47 48	222	visual identification of IEDs on EEG. ⁹
49 50	223	We will quantify heterogeneity using the variances of the logit specificity and sensitivity, as well as the
52 53	224	median odds ratio (median OR) ³⁹ . The median OR is a measure of inter-study variance translated on the
54 55	225	OR scale. It corresponds to the increase in the odds of being true positive/negative in a patient/control
56 57	226	going from a study with lower sensitivity/specificity to a study with higher sensitivity/specificity. For
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Z
3
4
5
6
-
7
8
9
10
10
11
12
13
14
15
15
16
17
18
19
20
20
21
22
23
24
27
25
26
27
28
20
29
30
31
32
33
21
54
35
36
37
38
20
39
40
41
42
43
11
44
45
46
47
48
10
49
50
51
52
53
55
54
55
56
57
58
50
27
60

1

227 heterogeneity in the ROC plane, we will compute the area of the 95% prediction ellipse and present the 228 results on a scatterplot in the ROC plane.³⁹ The median OR and the area of the 95% prediction ellipse are 229 easily obtained and interpreted, and take into account the correlation between a single study's specificity 230 and sensitivity in contrast to univariate methods like Cochrane's Q and $I^{237,40}$. We will perform subgroup 231 analysis for the following variables: epilepsy type (focal, generalized), epilepsy etiology (structural vs. 232 non-structural), presence of IEDs, age groups (children (< 18 y.o.), adults (> 18 y.o.)), epilepsy 233 syndromes, extracted marker, and dataset used. We will also perform a subgroup analysis for populations 234 with a higher prevalence of IEDs without epilepsy (cerebral palsy, autism spectrum disorder, attention 235 deficit disorder)⁴¹ and for extra-temporal vs. temporal focal epilepsy. We will assess heterogeneity for all 236 subgroup analyses. We will consider a study as belonging to a particular subgroup if $\geq 80\%$ of the studied 237 population belongs to that subgroup. Sensitivity analysis will be conducted for the main analyses by 238 excluding studies with overall high/unclear risk of bias. 239 Some studies use multiple markers to classify patients with epilepsy from controls (e.g., as input features

for a machine learning algorithm). For each marker that is used in ≥ 2 of such studies, we will evaluate

the number of studies for which these markers were identified as "important" (selected for the

242 classification task or statistically significant in separating the two classes) and the ratio between the

243 number of studies in which this marker was extracted vs. identified as important.

244 Reporting bias for sensitivity and specificity will be evaluated by visual inspection of funnel plots.

- **Patient and public involvement**
 - 246 No patients will be involved for this study.

247 **Discussion**

The interictal EEG is key in informing the diagnosis of epilepsy, solely based on the visual identification
 of interictal spikes.⁴² Despite years of research on computational biomarkers of epilepsy, only these

Page 13 of 41

BMJ Open

י ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
11	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
30	
21	
3Z	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
10	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

250 spikes are currently used in clinical settings.^{1,17,18} This review aims to systematically evaluate the performances of hidden interictal markers of epilepsy on EEG against the clinical diagnosis by a 251 252 physician, describe the data processing pipelines favored by the researchers to classify the EEG for 253 epilepsy diagnosis, and identify the pitfalls that prevent clinical translation of these algorithms. 254 Algorithms have gained growing interest in medicine for their potential to assist diagnosis and guide clinical decision-making.⁴³ EEG analysis is well-suited for this application due to the complex nature of 255 256 the EEG signal. Automated extraction of new epilepsy markers on routine EEG could lead to reduced rate 257 of misdiagnosis, increased availability in areas without access to an expert neurophysiologist, and more 258 efficient clinical trials. Research on automatic analysis of EEG data is thriving, in part assisted by the 259 recent increase in computational capacities.^{44–51} However, automatic analysis of EEG is not mentioned in any of the high-quality clinical practice guidelines systematically reviewed by the ILAE.¹⁷ 260 261 In recent years, increased computational capacities have allowed the development of powerful algorithms 262 that can learn complex representations such as medical images and EEG signals.^{44,52,53} A growing number 263 of algorithms have now been approved by the United States Food and Drug Administration for assisting in the diagnosis of several diseases.⁵⁴ Recent systematic reviews have found that most of the studies on 264 265 automated diagnosis using artificial intelligence have high risk of bias, mostly due to patient selection methodology and absence of validation on external data.^{55–57} Systematic reviews on computer-based 266 267 clinical-decision support systems also highlight the need for more robust patient selection.^{58–63} 268 Translation of technology to clinical practice requires strong evidence based on high quality research. 269 This review is important because it will establish the potential of automatic analysis of EEG as a 270 diagnostic tool for epilepsy, and if evidence to support its use is lacking, it will identify the pitfalls that 271 need to be overcome in future research. Also, by systematically describing current practices that are used 272 by research groups, it will serve as a reference for new researchers in the field. Upon completion of this 273 review, we will have a better understanding of the potential ways that automated analysis of EEG could

be integrated into the clinical workflow; this information will be valuable to anyone designing clinical
studies on clinical-decision support systems for epilepsy.

We anticipate that diagnostic accuracy of automatic analysis of EEG for epilepsy will be hard to estimate because of the high heterogeneity between the different dataset used and between the data processing methodology. We also anticipate high risk of bias in many studies, because of the high volume of "proofof-concept" studies that emphasize computation performances and algorithm development over rigorous diagnostic study methodology. In these cases, we hope to produce recommendations that will assist in bridging the gap between the development of new automated markers and validation in appropriate populations, for ultimate implementation into clinical practice.

283 List of abbreviations

ASM: anti-seizure medication; CI: confidence interval; EEG: electroencephalogram; IED: interictal epileptiform discharge; ILAE: International League Against Epilepsy; ROC AUC: receiver operatingcharacteristic area-under-the-curve.

287 Funding

MRK and DKN report unrestricted educational grants from UCB and Eisai, and research grants for
investigator-initiated studies from UCB and Eisai. Émile Lemoine is supported by a scholarship from the
Canadian Institute of Health Research. Dang Nguyen is supported by the Canada Research Chairs
Program, the Canadian Institutes of Health Research, and Natural Sciences and Engineering Research
Council of Canada.

293 Authors' contributions

EL planned the study, drafted the protocol, reviewed the search strategy, and is the guarantor of the
review. DT, FL, DKN, and EBA participated in the design of the study. JNB, BR, DT, MRK, FL, DKN,

2		
3 4	296	and EBA provided content expertise and critically reviewed the manuscript and the search strategy. BN
5 6 7 8	297	and RP designed the search strategy. All authors read and approved the final manuscript.
9 10 11	298	Competing interests
11 12 13 14	299	None of the authors have any competing interest to declare.
16 17	300	Data sharing statement
18 19 20	301	Data collected for this study will be available upon reasonable request.
20 21 22		
23 24	302	Ethics and dissemination statement
25 26	303	Ethics approval is not required as this is a review of published evidence. Findings will be disseminated
27 28 29 30	304	through publication in a peer-review journal and presentations at conferences related to this field.
31 32 33	305	References
34 35	306	1. Fisher, R. S. et al. ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia 55,
36 37 38	307	475–482 (2014).
39 40	308	2. Ngugi, A. K., Bottomley, C., Kleinschmidt, I., Sander, J. W. & Newton, C. R. Estimation of the
41 42	309	burden of active and life-time epilepsy: a meta-analytic approach. Epilepsia 51, 883–890 (2010).
43 44	310	3. Hauser, W. A. & Beghi, E. First seizure definitions and worldwide incidence and mortality. <i>Epilepsia</i>
45 46	311	49 Suppl 1 , 8–12 (2008).
47 48	312	4. Devinsky, O., Spruill, T., Thurman, D. & Friedman, D. Recognizing and preventing epilepsy-related
49 50	313	mortality: A call for action. Neurology 86, 779-786 (2016).
51 52	314	5. Kwan, P. & Brodie, M. J. Early identification of refractory epilepsy. <i>N Engl J Med</i> 342 , 314–319
53 54	315	(2000).
55 56 57		
58 59		16
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	316	6.	Krumholz, A. et al. Practice Parameter: evaluating an apparent unprovoked first seizure in adults (an
5 6	317		evidence-based review): report of the Quality Standards Subcommittee of the American Academy of
7 8	318		Neurology and the American Epilepsy Society. Neurology 69, 1996–2007 (2007).
9 10	319	7.	Hirtz, D. et al. Practice parameter: evaluating a first nonfebrile seizure in children: report of the
11 12	320		quality standards subcommittee of the American Academy of Neurology, The Child Neurology
13 14	321		Society, and The American Epilepsy Society. Neurology 55, 616–623 (2000).
15 16	322	8.	Pillai, J. & Sperling, M. R. Interictal EEG and the Diagnosis of Epilepsy. <i>Epilepsia</i> 47, 14–22 (2006).
17 18 10	323	9.	Bouma, H. K., Labos, C., Gore, G. C., Wolfson, C. & Keezer, M. R. The diagnostic accuracy of
20 21	324		routine electroencephalography after a first unprovoked seizure. European Journal of Neurology 23,
22 23	325		455–463 (2016).
24 25	326	10.	Tatum, W. O. et al. Clinical utility of EEG in diagnosing and monitoring epilepsy in adults. Clinical
26 27	327		Neurophysiology 129 , 1056–1082 (2018).
28 29	328	11.	Lamberink, H. J. et al. Individualised prediction model of seizure recurrence and long-term outcomes
30 31	329		after withdrawal of antiepileptic drugs in seizure-free patients: a systematic review and individual
32 33	330		participant data meta-analysis. Lancet Neurol 16, 523-531 (2017).
34 35	331	12.	West, S. et al. Surgery for epilepsy. Cochrane Database of Systematic Reviews (2019)
30 37 20	332		doi:10.1002/14651858.CD010541.pub3.
30 39 40	333	13.	Jing, J. et al. Interrater Reliability of Experts in Identifying Interictal Epileptiform Discharges in
41 42	334		Electroencephalograms. JAMA Neurology 77, 49–57 (2020).
43 44	335	14.	Amin, U. & Benbadis, S. R. The Role of EEG in the Erroneous Diagnosis of Epilepsy. J Clin
45 46	336		<i>Neurophysiol</i> 36 , (2019).
47 48	337	15.	Kang, J. Y. & Krauss, G. L. Normal Variants Are Commonly Overread as Interictal Epileptiform
49 50	338		Abnormalities. J Clin Neurophysiol 36, 257–263 (2019).
51 52	339	16.	Smith, D., Defalla, B. A. & Chadwick, D. W. The misdiagnosis of epilepsy and the management of
53 54	340		refractory epilepsy in a specialist clinic. QJM 92, 15-23 (1999).
55 56			
57 58			
60			16 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
3 4	341	17.	Sauro, K. M. et al. The current state of epilepsy guidelines: A systematic review. Epilepsia 57, 13–23
5 6	342		(2016).
7 8	343	18.	Engel Jr, J., Bragin, A. & Staba, R. Nonictal EEG biomarkers for diagnosis and treatment. Epilepsia
9 10	344		<i>Open</i> 3 , 120–126 (2018).
11 12	345	19.	DellaBadia Jr, J., Bell, W. L., Keyes Jr, J. W., Mathews, V. P. & Glazier, S. S. Assessment and cost
13 14	346		comparison of sleep-deprived EEG, MRI and PET in the prediction of surgical treatment for epilepsy.
15 16	347		<i>Seizure</i> 11 , 303–309 (2002).
17 18 10	348	20.	Abdelhady, S., Shokri, H., Fathy, M. & wahid el din, mona M. Evaluation of the direct costs of
19 20 21	349		epilepsy in a sample of Egyptian patients following up in Ain Shams University Hospital. The
21 22 23	350		Egyptian Journal of Neurology, Psychiatry and Neurosurgery 56, 112 (2020).
24 25	351	21.	Velis, D., Plouin, P., Gotman, J., Da Silva, F. L., & members of the ILAE DMC Subcommittee on
26 27	352		Neurophysiology. Recommendations Regarding the Requirements and Applications for Long-term
28 29	353		Recordings in Epilepsy. Epilepsia 48, 379–384 (2007).
30 31	354	22.	Schmidt, H. et al. A computational biomarker of idiopathic generalized epilepsy from resting state
32 33	355		EEG. <i>Epilepsia</i> 57 , e200–e204 (2016).
34 35	356	23.	Lopes, M. A. et al. Revealing epilepsy type using a computational analysis of interictal EEG.
36 37 38	357		Scientific Reports 9, 10169 (2019).
38 39 40	358	24.	Verhoeven, T. et al. Automated diagnosis of temporal lobe epilepsy in the absence of interictal
40 41 42	359		spikes. NeuroImage: Clinical 17, 10–15 (2018).
43 44	360	25.	Ouyang, CS., Yang, RC., Wu, RC., Chiang, CT. & Lin, LC. Determination of Antiepileptic
45 46	361		Drugs Withdrawal Through EEG Hjorth Parameter Analysis. Int. J. Neur. Syst. 30, 2050036 (2020).
47 48	362	26.	Zhang, JH. et al. Personalized prediction model for seizure-free epilepsy with levetiracetam therapy:
49 50	363		a retrospective data analysis using support vector machine. Br J Clin Pharmacol 84, 2615–2624
51 52	364		(2018).
53 54			
55 56			
57 58 50			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	365	27.	Oliva, J. T. & Rosa, J. L. G. Differentiation between Normal and Interictal EEG Using Multitaper
5 6	366		Spectral Classifiers. in 2018 International Joint Conference on Neural Networks (IJCNN) 1-8
7 8	367		(2018). doi:10.1109/IJCNN.2018.8489503.
9 10	368	28.	Pegg, E. J., Taylor, J. R. & Mohanraj, R. Spectral power of interictal EEG in the diagnosis and
11 12	369		prognosis of idiopathic generalized epilepsies. Epilepsy & Behavior 112, 107427 (2020).
13 14	370	29.	Jacob, J. E., Sreelatha, V. V., Iype, T., Nair, G. K. & Yohannan, D. G. Diagnosis of epilepsy from
15 16	371		interictal EEGs based on chaotic and wavelet transformation. Analog Integrated Circuits and Signal
17 18	372		Processing 89, 131–138 (2016).
19 20 21	373	30.	Wahl, B., Cossy-Gantner, A., Germann, S. & Schwalbe, N. R. Artificial intelligence (AI) and global
21 22 23	374		health: how can AI contribute to health in resource-poor settings? BMJ Global Health 3, e000798
23 24 25	375		(2018).
26 27	376	31.	Pitkänen, A. et al. Advances in the development of biomarkers for epilepsy. The Lancet Neurology
28 29	377		15, 843–856 (2016).
30 31	378	32.	McInnes, M. D. F. et al. Preferred Reporting Items for a Systematic Review and Meta-analysis of
32 33	379		Diagnostic Test Accuracy Studies: The PRISMA-DTA Statement. JAMA 319, 388–396 (2018).
34 35	380	33.	November, J. Biomedical computing: Digitizing life in the United States. Biomedical Computing:
36 37	381		Digitizing Life in the United States 1–344 (2012).
38 39	382	34.	Fisher, R. S. et al. Epileptic seizures and epilepsy: definitions proposed by the International League
40 41 42	383		Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46, 470–472
42 43 44	384		(2005).
45 46	385	35.	Supriya, S., Siuly, S., Wang, H. & Zhang, Y. Automated epilepsy detection techniques from
47 48	386		electroencephalogram signals: a review study. Health Information Science and Systems 8, 33 (2020).
49 50	387	36.	Whiting, P. F. et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy
51 52	388		studies. Ann Intern Med 155, 529-536 (2011).
53 54	389	37.	Reitsma, J. B. et al. Bivariate analysis of sensitivity and specificity produces informative summary
55 56	390		measures in diagnostic reviews. Journal of Clinical Epidemiology 58, 982-990 (2005).
57 58			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2				
3 4	391	38.	Rutter, C. M. & Gatsonis, C. A. A hierarchical regression approach to meta-analysis of diagnostic tes	t
5 6 7 8	392		accuracy evaluations. Stat Med 20, 2865–2884 (2001).	
	393	39.	Plana, M. N., Pérez, T. & Zamora, J. New measures improved the reporting of heterogeneity in	
9 10	394		diagnostic test accuracy reviews: a metaepidemiological study. Journal of Clinical Epidemiology	
11 12	395		131 , 101–112 (2021).	
13 14	396	40.	Rücker, G., Schwarzer, G., Carpenter, J. R. & Schumacher, M. Undue reliance on I2 in assessing	
15 16	397		heterogeneity may mislead. BMC Medical Research Methodology 8, 79 (2008).	
17 18 10	398	41.	So, E. L. Interictal Epileptiform Discharges in Persons Without A History of Seizures: What Do They	y
19 20 21	399		Mean? Journal of Clinical Neurophysiology 27, 229–238 (2010).	
21 22 23	400	42.	Smith, S. J. M. EEG in the diagnosis, classification, and management of patients with epilepsy. J	
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	401		Neurol Neurosurg Psychiatry 76, ii2–ii7 (2005).	
	402	43.	Obermeyer, Z. & Emanuel, E. J. Predicting the Future - Big Data, Machine Learning, and Clinical	
	403		Medicine. N Engl J Med 375, 1216–1219 (2016).	
	404	44.	Roy, Y. et al. Deep learning-based electroencephalography analysis: a systematic review. Journal of	
	405		Neural Engineering 16, 051001 (2019).	
	406	45.	Craik, A., He, Y. & Contreras-Vidal, J. L. Deep learning for electroencephalogram (EEG)	
	407		classification tasks: a review. J. Neural Eng. 16, 031001 (2019).	
38 39 40	408	46.	Rasheed, K. et al. Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A	
40 41 42	409		Review. IEEE Rev. Biomed. Eng. 14, 139–155 (2020).	
43 44	410	47.	Gemein, L. A. W. et al. Machine-learning-based diagnostics of EEG pathology. NeuroImage 220,	
45 46	411		117021 (2020).	
47 48	412	48.	Mesraoua, B. et al. Electroencephalography in epilepsy: look for what could be beyond the visual	
49 50	413		inspection. Neurological Sciences 40, 2287–2291 (2019).	
51 52	414	49.	van Diessen, E. et al. Brain Network Organization in Focal Epilepsy: A Systematic Review and	
53 54	415		Meta-Analysis. PLOS ONE 9, e114606 (2014).	
55 56				
57 58				~
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	ł

3 4	416	50.	Faiman, I., Smith, S., Hodsoll, J., Young, A. H. & Shotbolt, P. Resting-state EEG for the diagnosis of
5	417		idiopathic epilepsy and psychogenic nonepileptic seizures: A systematic review. Epilepsy & Behavior
7 8	418		121 , 108047 (2021).
9 10	419	51.	Pegg, E. J., Taylor, J. R., Keller, S. S. & Mohanraj, R. Interictal structural and functional connectivity
11 12	420		in idiopathic generalized epilepsy: A systematic review of graph theoretical studies. Epilepsy &
13 14	421		<i>Behavior</i> 106 , (2020).
15 16	422	52.	Esteva, A. et al. A guide to deep learning in healthcare. Nature Medicine 25, 24–29 (2019).
17 18 10	423	53.	Litjens, G. et al. A survey on deep learning in medical image analysis. Medical Image Analysis 42,
19 20 21	424		60-88 (2017).
21 22 23	425	54.	FDA Cleared AI Algorithms. American College of Radiology Data Science Institute
24 25	426		https://models.acrdsi.org.
26 27	427	55.	Aggarwal, R. et al. Diagnostic accuracy of deep learning in medical imaging: a systematic review
28 29	428		and meta-analysis. npj Digital Medicine 4, 65 (2021).
30 31	429	56.	Liu, X. et al. A comparison of deep learning performance against health-care professionals in
32 33	430		detecting diseases from medical imaging: a systematic review and meta-analysis. The Lancet Digital
34 35	431		Health 1, e271–e297 (2019).
36 37	432	57.	Nagendran, M. et al. Artificial intelligence versus clinicians: systematic review of design, reporting
38 39	433		standards, and claims of deep learning studies. BMJ vol. 368 m689 (2020).
40 41 42	434	58.	Riches, N. et al. The Effectiveness of Electronic Differential Diagnoses (DDX) Generators: A
42 43 44	435		Systematic Review and Meta-Analysis. PLoS One 11, e0148991 (2016).
45 46	436	59.	Bright, T. J. et al. Effect of clinical decision-support systems: a systematic review. Ann Intern Med
47 48	437		157 , 29–43 (2012).
49 50	438	60.	Jaspers, M. W. M., Smeulers, M., Vermeulen, H. & Peute, L. W. Effects of clinical decision-support
51 52	439		systems on practitioner performance and patient outcomes: a synthesis of high-quality systematic
53 54 55 56	440		review findings. J Am Med Inform Assoc 18, 327–334 (2011).
57 58			
59 60			20 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	441	51. Garg, A. X. <i>et al.</i> Effects of computerized clinical decision support systems on practitioner
5 6	442	performance and patient outcomes: a systematic review. JAMA 293, 1223-1238 (2005).
7 8	443	52. Varghese, J., Kleine, M., Gessner, S. I., Sandmann, S. & Dugas, M. Effects of computerized decision
9 10	444	support system implementations on patient outcomes in inpatient care: a systematic review. J Am
11 12	445	Med Inform Assoc 25, 593–602 (2018).
13 14	446	53. Vasey, B. et al. Association of Clinician Diagnostic Performance With Machine Learning–Based
15 16	447	Decision Support Systems: A Systematic Review. JAMA Network Open 4, e211276–e211276 (2021).
$\begin{array}{c} 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 56\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 56\\ 57\\ 58\end{array}$	448	
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Appendix 1: Search strategy

Medline [OVID]

Ovid MEDLINE(R) and Epub Ahead of Print, In-Process, In-Data-Review & Other Non-Indexed Citations, Daily and Versions(R) <1946 to December 13, 2021>

#	Searches	Results
1	exp Electroencephalography/	173584
2	(EEG* or Electroencephalograph* or "electr* encephalograph*" or "brain wave*").tw,kf.	111352
3	1 or 2	201652
4	exp Epilepsy/	118716
5	Epilep*.tw,kf.	152323
6	(seizure* or convulsion* or infantile spasm*).tw,kf.	147989
7	(BCECTS or BECTS).tw,kf.	346
8	(panayiotopoulos adj2 syndrome*).tw,kf.	166
9	((Nodding or dravet or doose or may white or fukhura) adj2 (disease* or syndrome*)).tw,kf.	1407
10	(myoencephalopathy ragged red fiber* disease* or MERRF).tw,kf.	530
11	((Lafora or Unverricht or Landau-Kleffner or Lennox Gastaut) adj2 (disease* or syndrome* or disorder* or seizure*)).tw,kf.	2534
12	or/4-11	244612
13	exp Algorithms/	375058
14	Machine learning.tw,kf.	54804
15	((Deep or hierarchical) adj1 learning).tw,kf.	25347
16	((transfer* or representation* or network*) adj2 learning).tw,kf.	7945
17	((artificial or machine or computer or computational) adj2 intelligence).tw,kf.	19275
18	algorithm*.tw,kf.	299232
19	((data or binary or multiclass or multilabel) adj2 classification).tw,kf.	4758

20	((artificial or computational or computer* or convolutional or connectionist or mathematical) adj2 neur* network*).tw,kf.	28375
21	exp Pattern Recognition, Automated/	26085
22	(Automat* adj2 pattern* adj2 recognition*).tw,kf.	155
23	(Back* propagation* or backpropagation*).tw,kf.	4397
24	exp Bayes Theorem/	40554
25	(Bayes* adj2 (theorem or learning or analysis or approach* or forecast* or method* or prediction*)).tw,kf.	21469
26	(feature* adj2 (detecti* or extracti* or learning* or ranking* or selection*)).tw,kf.	21577
27	(Fuzzy or neurofuzzy).tw,kf.	13240
28	exp Markov chains/	15485
29	(Markov adj2 (model* or chain\$1 or process*)).tw,kf.	21918
30	K nearest neighbor*.tw,kf.	3529
31	(Kernel\$1 adj2 (method* or algorithm* or approach or correlation or estim* or regression or model* or string or tree)).tw,kf.	3950
32	exp Knowledge discovery/	130
33	(Knowledge adj2 discover*).tw,kf.	1589
34	exp Multifactor Dimensionality Reduction/	226
35	Dimensionality reduction*.tw,kf.	3836
36	(predicti* adj2 model*).tw,kf.	79862
37	connectom*.tw,kf.	4980
38	neur* decod*.tw,kf.	361
39	(outlier* adj2 detection*).tw,kf.	893
40	Neural networks, computer/	35265
41	(neural adj2 network*).tw,kf.	70371
42	perceptron*.tw,kf.	3390
43	radial basis function*.tw,kf.	2359
	nondom fornatik try lef	12717

45	recursive feature* elimination*.tw,kf.	688
46	recursive partition*.tw,kf.	2380
47	exp Support Vector Machine/	8553
48	(vector* adj2 (machine* or classifi* or network* or regression)).tw,kf.	22248
49	support vector*.tw,kf.	21483
50	rough set*.tw,kf.	397
51	((automat* or electron* or comput* or information or analytic*) adj2 (processing or reasoning)).tw,kf.	38719
52	(quantitative adj2 analys*).tw,kf.	90324
53	(Peak* adj2 (alpha* or frequenc*)).tw,kf.	5453
54	Entrop*.tw,kf.	45494
55	Lyapunov exponent*.tw,kf.	2179
56	Hjorth*.tw,kf.	184
57	Sub-band energ*.tw,kf.	18
58	exp fourier Analysis/	17272
59	(Fourier* or (cyclic adj2 (analys* or series or transform* or approach*)) or FFT).tw,kf.	87439
60	(Hilbert* adj2 transform*).tw,kf.	1008
61	(dimension* adj2 (fractal* or correlation*)).tw,kf.	8106
62	(Hurst adj2 exponent*).tw,kf.	575
63	exp wavelet analysis/	2541
64	(Wavelet* adj2 (analysis or processing or transform*)).tw,kf.	7248
65	phase locking value*.tw,kf.	311
66	Fisher information*.tw,kf.	870
67	Dynamic network*.tw,kf.	1839
68	Principal component* analys*.tw,kf.	47819
69	Independant component* analys*.tw,kf.	2
70	Functional connectivit*.tw,kf.	22171

1 (gradient* boost* or Adaboost*).tw,kf.	3337
⁷ 2 (QEEG or Quantitative Electroencephalogra*).tw,kf.	1750
⁷ 3 (chaotic feature* or chaos).tw,kf.	9755
/4 comput*.tw,kf.	958508
75 quantitative.tw,kf.	689800
76 or/13-75	2378440
7 (sensitiv* or diagnos* or predict*).mp. or scor*.tw. or observ*.mp.	11325259
78 di.fs.	276082
79 or/77-78	11325259
30 3 and 12 and 76 and 79	599
31 (Animals/ or Models, animal/ or Disease models, animal/) not Humans/	490007
32 ((animal or animals or canine* or cat or cats or dog or dogs or feline or hamster* or lamb or lambs or mice or monkey or monkeys or mouse or murine or pig or pigs or piglet* or porcine or primate* or rabbit* or rats or rat or rodent* or sheep* or veterinar*) not (human* or patient* or women or men)).tw,kf.	331573
33 81 or 82	554272
34 80 not 83	562
35 limit 84 to yr="1961 -Current"	562

EMBASE [OVID]

EM	BASE [OVID]				
Emb	Embase <1974 to 2021 December 13>				
#	Searches	Results			
1	exp electroencephalography/	124495			
2	(EEG* or Electroencephalograph* or "electr* encephalograph*" or "brain wave*").tw,kf.	146325			
3	1 or 2	206929			
4	exp epilepsy/	251058			
5	Epilep*.tw,kf.	214171			
6	(seizure* or convulsion* or infantile spasm*).tw,kf.	216888			
7	(BCECTS or BECTS).tw,kf.	509			

8	(panayiotopoulos adj2 syndrome*).tw,kf.	24
9	((Nodding or dravet or doose or may white or fukhura) adj2 (disease* or syndrome*)).tw,kf.	2324
10	(myoencephalopathy ragged red fiber* disease* or MERRF).tw,kf.	71
11	((Lafora or Unverricht or Landau-Kleffner or Lennox Gastaut) adj2 (disease* or syndrome* or disorder* or seizure*)).tw,kf.	3984
12	or/4-11	371364
13	Machine learning/	49774
14	Machine learning.tw,kf.	6385
15	((Deep or hierarchical) adj1 learning).tw,kf.	2856
16	exp network learning/	88
17	((transfer* or representation* or network*) adj2 learning).tw,kf.	879
18	exp artificial intelligence/	55153
19	((artificial or machine or computer or computational) adj2 intelligence).tw,kf.	2305
20	exp algorithm/	46512
21	algorithm*.tw,kf.	38108
22	((data or binary or multiclass or multilabel) adj2 classification).tw,kf.	608
23	exp artificial neural network/	6282
24	((artificial or computational or computer* or convolutional or connectionist or mathematical) adj2 neur* network*).tw,kf.	3388
25	exp pattern recognition/ or exp automated pattern recognition/	6842
26	(Automat* adj2 pattern* adj2 recognition*).tw,kf.	19
27	exp back propagation/	255
28	(Back* propagation* or backpropagation*).tw,kf.	510
29	exp Bayesian learning/	430
30	(Bayes* adj2 (theorem or learning or analysis or approach* or forecast* or method* or prediction*)).tw,kf.	2411
31	exp Feature detection/ or exp feature extraction/ or exp feature learning/ or exp feature ranking/ or exp feature selection/	3103

Page 27 of 41

32	((feature* or representation) adj2 (detecti* or extracti* or learning* or ranking* or selection*)).tw,kf.	28097
33	exp fuzzy system/	4077
34	(fuzzy or neurofuzzy).tw,kf.	1613
35	exp Markov chain/ or exp Markov state model/	12093
36	(Markov adj2 (model* or chain\$1 or process*)).tw,kf.	29000
37	exp k nearest neighbor/	4553
38	K nearest neighbor*.tw,kf.	4260
39	kernel method/	6720
40	(Kernel\$1 adj2 (method* or algorithm* or approach or correlation or estim* or regression or model* or string or tree)).tw,kf.	4389
41	exp Knowledge discovery/	72
42	(Knowledge adj2 discover*).tw,kf.	1804
43	exp multifactor dimensionality reduction/	864
44	Dimension* reduction*.tw,kf.	708
45	(predicti* adj2 model*).tw,kf.	105404
46	connectom*.tw,kf.	622
47	neur* decod*.tw,kf.	43
48	exp Outlier detection/	47
49	(outlier* adj2 detection*).tw,kf.	101
50	exp artificial neural network/	6282
51	exp Perceptron/	2473
52	perceptron*.tw,kf.	396
53	(neural adj2 network*).tw,kf.	8478
54	exp radial basis function/	942
55	radial bas* function*.tw,kf.	292
56	exp random forest/	1435
57	(random adj2 forest*).tw,kf.	1775

2	
2	
3	
4	
E	
5	
6	
7	
8	
0	
9	
10	
11	
17	
12	
13	
14	
1 7	
15	
16	
17	
10	
18	
19	
20	
20	
21	
22	
23	
د <i>ح</i>	
24	
25	
26	
20	
27	
28	
29	
29	
30	
31	
32	
22	
33	
34	
35	
22	
36	
37	
38	
20	
39	
40	
41	
40	
42	
43	
44	
45	
46	
47	
10	
4ð	
49	
50	
E 1	
51	
52	
53	
EA	
54	
55	
56	
50	
5/	
58	
59	
60	
00	

58	exp recursive feature elimination/	393
59	recursive feature* elimination*.tw,kf.	860
60	exp recursive partitioning/	462
61	recursive partition*.tw,kf.	3567
62	exp relevance vector machine/ or exp support vector machine/	28522
63	(vector* adj2 (machine* or classifi* or network* or regression)).tw,kf.	27021
64	support vector*.tw,kf.	26266
65	exp rough set/	248
66	rough set*.tw,kf.	531
67	exp online analytical processing/	187
68	((automat* or electron* or comput* or information or analytic*) adj2 (processing or reasoning)).tw,kf.	44254
69	Quantitative analysis/	367570
70	(quantitative adj2 analys*).tw,kf.	113093
71	(Peak* adj2 (alpha* or frequenc*)).tw,kf.	6315
72	Entrop*.tw,kf.	43483
73	Lyapunov exponent*.tw,kf.	1600
74	Hjorth*.tw,kf.	264
75	Sub-band energ*.tw,kf.	23
76	exp Fourier analysis/	10056
77	(Fourier* or (cyclic adj2 (analys* or series or transform* or approach*)) or FFT).tw,kf.	89584
78	Hilbert transform/	183
79	(Hilbert* adj2 transform*).tw,kf.	1253
80	(dimension* adj2 (fractal* or correlation*)).tw,kf.	8947
81	(Hurst adj2 exponent*).tw,kf.	555
82	exp wavelet transform/	2217
83	(Wavelet* adj2 (analysis or processing or transform*)).tw,kf.	9182

1	
2	
3	
4	
5	
6	
7	
/ 0	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
∠ I 22	
∠∠ วว	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
2/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
59	
60	

84	phase locking value*.tw,kf.	425
85	Fisher information*.tw,kf.	746
86	Dynamic network*.tw,kf.	1972
87	Principal component* analys*.tw,kf.	58526
88	Independent component* analys*.tw,kf.	7493
89	Functional connectivity/	21903
90	Functional connectivit*.tw,kf.	30389
91	(gradient* boost* or Adaboost*).tw,kf.	4097
92	(QEEG or Quantitative Electroencephalogra*).tw,kf.	2861
93	(chaotic feature* or chaos).tw,kf.	8412
94	comput*.tw,kf.	1156500
95	quantitative.tw,kf.	852081
96	or/13-95	2994032
97	(sensitiv* or diagnos* or predict*).mp. or scor*.tw. or observ*.mp.	14413096
98	di.fs.	3343316
99	or/97-98	14413096
100	3 and 12 and 96 and 99	8362
101	(exp animal/ or animal experiment/ or nonhuman/) not (exp human/ or human experiment/)	6801969
102	(animal or animals or canine* or dog or dogs or feline or hamster* or lamb or lambs or mice or monkey ormonkeys or mouse or murine or pig or pigs or piglet* or porcine or primate* or rabbit* or rats or rat or rodent* or sheep* or veterinar*).ti,kw,dq,jx. not (human* or patient*).mp.	2062187
103	101 or 102	6872024
104	100 not 103	7906
105	limit 104 to yr="1961 -Current"	7890
106	limit 105 to embase	5134
EBM Reviews [OVID]

All EBM Reviews - Cochrane DSR, ACP Journal Club, DARE, CCA, CCTR, CMR, HTA, and NHSEED <executed on December 14>

#	Searches	Results
1	(EEG* or Electroencephalograph* or "electr* encephalograph*" or "brain wave*").tw,kw,sh.	12245
2	Epilep*.tw,kw,sh.	10099
3	(seizure* or convulsion* or infantile spasm*).tw,kw,sh.	11675
4	(BCECTS or BECTS).tw,kw,sh.	31
5	(panayiotopoulos adj2 syndrome*).tw,kw,sh.	5
6	((Nodding or dravet or doose or may white or fukhura) adj2 (disease* or syndrome*)).tw,kw,sh.	413
7	(myoencephalopathy ragged red fiber* disease* or MERRF).tw,kw,sh.	5
8	((Lafora or Unverricht or Landau-Kleffner or Lennox Gastaut) adj2 (disease* or syndrome* or disorder* or seizure*)).tw,kw,sh.	339
9	or/2-8	16595
10	algorithm*.tw,kw.	16401
11	Machine learning.tw,kw,sh.	1918
12	((Deep or hierarchical) adj1 learning).tw,kw,sh.	708
13	((transfer* or representation* or network*) adj2 learning).tw,kw,sh.	691
14	((artificial or machine or computer or computational) adj2 intelligence).tw,kw,sh.	827
15	algorithm*.tw,kw,sh.	18549
16	((data or binary or multiclass or multilabel) adj2 classification).tw,kw,sh.	335
17	((artificial or computational or computer* or connectionist or convolutional or mathematical) adj2 neur* network*).tw,kw,sh.	782
18	(Automat* adj2 pattern* adj2 recognition*).tw,kw,sh.	15
19	(Back* propagation* or backpropagation*).tw,kw,sh.	66
20	(Bayes* adj2 (theorem or learning or analysis or approach* or forecast* or method* or prediction*)).tw,kw,sh.	1841
21	(feature* adj2 (detecti* or extracti* or learning* or ranking* or selection*)).tw,kw,sh.	607

1	
2	
2	
2	
4	
5	
6	
7	
, 0	
ð	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
20	
31	
32	
33	
34	
25	
35	
36	
37	
38	
30	
22	
40	
41	
42	
43	
11	
44	
45	
46	
47	
48	
40	
49	
50	
51	
52	
52	
22	
54	
55	
56	
57	
57	
28	
59	
60	

22 (fuzzy or neurofuzzy).tw,kw,sh.	197
23 (Markov adj2 (model* or chain\$1 or process*)).tw,kw,sh.	4373
24 K nearest neighbor*.tw,kw,sh.	73
25 (Kernel\$1 adj2 (method* or algorithm* or approach or correlation or estim* or regression or model* or string or tree)).tw,kw,sh.	90
26 (Knowledge adj2 discover*).tw,kw,sh.	26
27 Dimensionality reduction*.tw,kw,sh.	73
28 (predicti* adj2 model*).tw,kw,sh.	5378
29 connectom*.tw,kw,sh.	308
30 neur* decod*.tw,kw,sh.	2
31 (outlier* adj2 detection*).tw,kw,sh.	14
32 perceptron*.tw,kw,sh.	76
33 (neural adj2 network*).tw,kw,sh.	1672
34 radial basis function*.tw,kw,sh.	39
35 random forest*.tw,kw,sh.	615
36 recursive feature* elimination*.tw,kw,sh.	30
37 recursive partition*.tw,kw,sh.	282
38 (vector* adj2 (machine* or classifi* or network* or regression)).tw,kw,sh.	555
39 support vector*.tw,kw,sh.	544
40 rough set*.tw,kw,sh.	3
41 ((automat* or electron* or comput* or information or analytic*) adj2 (processing or reasoning)).tw,kw,sh.	7510
42 (quantitative adj2 analys*).tw,kw,sh.	8960
43 (Peak* adj2 (alpha* or frequenc*)).tw,kw,sh.	357
44 Entrop*.tw,kw,sh.	951
45 Lyapunov exponent*.tw,kw,sh.	37
46 Hjorth*.tw,kw,sh.	29
47 Sub-band energ*.tw,kw,sh.	0

48	(Fourier* or (cyclic adj2 (analys* or series or transform* or approach*)) or FFT).tw,kw,sh.	1043
49	(Hilbert* adj2 transform*).tw,kw,sh.	19
50	(dimension* adj2 (fractal* or correlation*)).tw,kw,sh.	18
51	(Hurst adj2 exponent*).tw,kw,sh.	14
52	(Wavelet* adj2 (analysis or processing or transform*)).tw,kw,sh.	12
53	phase locking value*.tw,kw,sh.	1
54	Fisher information*.tw,kw,sh.	,
55	Dynamic network*.tw,kw,sh.	12
56	Principal component* analys*.tw,kw,sh.	1207
57	Independant component* analys*.tw,kw,sh.	(
58	Functional connectivit*.tw,kw,sh.	2220
59	(gradient* boost* or Adaboost*).tw,kw,sh.	168
60	(QEEG or Quantitative Electroencephalogra*).tw,kw,sh.	44
61	(chaotic feature* or chaos).tw,kw,sh.	14
62	comput*.tw,kw,sh.	80820
63	quantitative.tw,kw,sh.	33700
64	or/10-63	14549
65	(sensitiv* or diagnos* or predict*).mp. or scor*.tw. or observ*.mp.	81001
66	di.tw,kw,sh.	1716
67	65 or 66	81139
68	1 and 9 and 64 and 67	35
69	((animal or animals or canine* or cat or cats or dog or dogs or feline or hamster* or lamb or lambs or mice or monkey or monkeys or mouse or murine or pig or pigs or piglet* or porcine or primate* or rabbit* or rats or rat or rodent* or sheep* or veterinar*) not (human* or patient* or women or men)).tw,kw,sh.	514
70	68 not 69	34
71	limit 70 to yr="1961 -Current" [Limit not valid in DARE; records were retained]	32
72	remove duplicates from 71	31

IEEE Xplore

<executed on December 14>

((((((((All Metadata:predicted OR All Metadata:prediction OR All Metadata:predictions OR	2492	
All Metadata:predicting OR All Metadata:predictive OR All Metadata:predictor OR All		
Metadata:predictors OR All Metadata:predicts OR All Metadata:predictability OR All		
Metadata:predictable OR All Metadata:predictably OR All Metadata:predictively OR All		
Metadata:predictiveness))) OR ((All Metadata:sensitivity OR All Metadata:sensitively OR All		
Metadata:sensitiveness OR All Metadata:sensitive OR All Metadata:sensitivities))) OR ((All		
Metadata:diagnose OR All Metadata:diagnosis OR All Metadata:diagnosed OR All		
Metadata:diagnoses OR All Metadata:diagnostic OR All Metadata:diagnosing OR All		
Metadata:diagnosable OR All Metadata:diagnostics OR All Metadata:diagnoseable OR All		
Metadata:diagnostical OR All Metadata:diagnostician OR All Metadata:diagnosticians OR All		
Metadata:diagnostically))) AND ((No Keywords Specified))) AND ((No Keywords		
Specified))) AND ((Index Terms:EEG) OR (Index Terms:Electroencephalograph*) OR (Index		
Terms: "electr* encephalograph*") OR (Index Terms: "brain wave") OR (Index Terms:"brain		
waves"))) OR ((Document Title:EEG) OR (Document Title:Electroencephalograph*) OR		
(Document Title:"electr* encephalograph*") OR (Document Title:"brain wave") OR		
(Document Title:"brain waves"))) AND ((Index Terms:epilep*) OR (Document Title:seizure		
OR Document Title:seizures OR Document Title:convulsion OR Document Title:convulsions		
OR Document Title:"infantile spasm" OR Document Title:"infantile spasms"))		
Google Scholar (using Publish or Perish)		
<executed 21="" december="" on=""></executed>		

Electroencephalogram epilepsy [title], machine learning algorithm* diagnos* [keywords]	32 selected articles out of 32
Electroencephalography epilepsy [title], machine learning algorithm* diagnos* [keywords]	21 selected article out of 21
EEG epilepsy [title], machine learning algorithm* diagnos* [keywords]	433 sur 433

Grey literature

Alberta: Health evidence reviews

https://www.alberta.ca/health-evidence-reviews.aspx

Electroencephalography	0 selected articles out of 1
EEG	0 selected articles out of 3

Canadian Agency for Drug and Technologies in Health

https://www.cadth.ca/search?keywords

Electroencephalography	0 selected articles out of 1
EEG	0 selected articles out of 4

Health Quality Council of Alberta

https://hqca.ca/studies-and-reviews/

Electroencephalography	0 selected articles out of 0
EEG	0 selected articles out of 0

Health Quality Ontario: Health Technology Assessment

Quality Standards - Health Quality Ontario (HQO) (hqontario.ca)

Electroencephalography	1 selected article out of 7
EEG	1 selected article out of 5

INESS

https://www.inesss.qc.ca/en/publications/publications.html?tx_solr%5Bq%5D=EEG

électroencéphalographie	0 selected articles out of 5
EEG	0 selected articles out of 0

McGill University Health Centre (MUHC). Technology Assessment Unit Reports

https://muhc.ca/tau/page/tau-reports

Electroencephalography	0 selected article out of 0
EEG	0 selected articles out of 3

Newfoundland & Labrador Centre For Applied Health Research

http://www.nlcahr.mun.ca/CHRSP/CompletedCHRSP.php

Electroencephalography AND epilepsy	0 selected articles out of 37
Electroencephalogram AND epilepsy	0 selected articles out of 34
EEG AND epilepsy	0 selected articles out of 28

The Ottawa Hospital Research institute: Knowledge Synthesis Group

http://www.ohri.ca/ksgroup/

Electroencephalography	0 selected articles out of 0
Electroencephalogram	0 selected articles out of 0
EEG AND epilepsy	0 selected articles out of 7

Programs for Assessment of Technology in Health

https://www.path-hta.com/research-1

Electroencephalography	0 selected articles out of 0
Electroencephalogram	0 selected articles out of 0
EEG	0 selected articles out of 0

The International Network of Agencies for Health Technology Assessment

Publications - INAHTA

Electroencephalography	0 selected articles out of 1
Electroencephalogram	0 selected articles out of 4
EEG	0 selected articles out of 4

Horizon Scanning

Horizon Scanning - Australia and New Zealand Horizon Scanning Network - Technologies Assessed

Electroencephalography	0 selected articles out of 1
Electroencephalogram	0 selected articles out of 0
EEG	0 selected articles out of 0

Austrian Academy of Sciences

https://www.oeaw.ac.at/en/

Electroencephalography	0 selected articles out of 0
Electroencephalogram	0 selected articles out of 0
EEG	0 selected articles out of 2

Austrian Institute Of Health Technology Assessment

Welcome to Repository of AIHTA GmbH - Repository of AIHTA GmbH (lbg.ac.at)

Electroencephalography	0 selected articles out of 4
Electroencephalogram	0 selected articles out of 0

EEG	0 selected articles out of 2

KCE: Belgian health Knowledge Center

All reports - KCE (fgov.be)

Electroencephalography	0 selected articles out of 1
Electroencephalogram	0 selected articles out of 0
EEG	0 selected articles out of 1
électroencéphalographie	0 selected article out of 1

CEDIT, the Hospital-Based HTA Agency Of AP-HP

Recommendations and Reports | Cedit (aphp.fr)

Electroencephalography	0 selected articles out of 0
Electroencephalogram	0 selected articles out of 0
EEG	0 selected articles out of 1
électroencéphalographie	0 selected article out of 0

Haute Autorité de Santé

Haute Autorité de Santé - Résultat de recherche (has-sante.fr)

EEG	1 selected article out of 218
électroencéphalographie	0 selected article out of 27
	4
Health Information and Quality Autority	
Health Technology Assessments HIQA	

Health Information and Quality Autority

Health Technology Assessments | HIQA

Electroencephalography	0 selected articles out of 0
Electroencephalogram	0 selected articles out of 0
EEG	0 selected articles out of 0

Irish Health Repository

Lenus the Irish Health Repository

Title: Electroencephalography AND epilepsy	1 selected article out of 51
Electroencephalogram	0 selected articles out of 3
Title: EEG AND epilepsy	0 selected articles out of 51

Norwegian Institute of Public Health

Norwegian Institute of Public Health - NIPH (fhi.no)

Electroencephalography	0 selected articles out of 0
Electroencephalogram	0 selected articles out of 0
EEG	0 selected articles out of 3

Swedish Agency for Health Technology Assessment And Assessment Of Social Services

Home (sbu.se)

Electroencephalography	0 selected articles out of 2
Electroencephalogram	0 selected articles out of 2
EEG	0 selected articles out of 4

Healthcare Improvement Scotland

Healthcare Improvement Scotland

Electroencephalography	0 selected articles out of 0
Electroencephalogram	0 selected articles out of 0
EEG	0 selected articles out of 0

National Institute for Health and Care Excellence

NICE | The National Institute for Health and Care Excellence

electroencephalography AND epilepsy	0 selected articles out of 2
Electroencephalogram AND epilepsy	1 selected article out of 5
EEG	0 selected articles out of 9

NIHR Innovation Observatory

Innovation Observatory | Next generation search tools for the next generation. (nihr.ac.uk)

Electroencephalography	1 selected article out of 2
Electroencephalogram	0 selected articles out of 1
EEG	0 selected articles out of 5

National institute for health Research

Research Programmes (nihr.ac.uk)

electroencephalography AND epilepsy	1 selected article out of 67
Electroencephalogram AND epilepsy	0 selected articles out of 67
EEG	0 selected articles out of 67

Agency for Healthcare Research and Quality : Technology Assessment Program Technology Assessment Program | Agency for Healthcare Research and Quality (ahrq.gov)

Electroencephalography AND epilepsy AND diagnosis	0 selected articles out of 1
Electroencephalogram AND epilepsy AND diagnosis	0 selected articles out of 78
EEG AND epilepsy AND diagnosis	0 selected articles out of 83

Agency for Healthcare Research and Quality : Evidence-Based Reports

Search Evidence-Based Reports | Agency for Healthcare Research and Quality (ahrq.gov)

Electroencephalography	0 selected articles out of 0
Electroencephalogram	0 selected articles out of 0
EEG AND epilepsy	0 selected articles out of 4

Google

intitle: Electroencephalography AND epilepsy AND machine learning AND diagnosis	3 selected articles out of 9
intitle: Electroencephalogram AND epilepsy AND machine learning AND diagnosis	0 selected articles out of 9
intitle: EEG AND epilepsy AND machine learning AND diagnosis	1 selected articles out of 9
intitle: Electroencephalography AND epilepsy AND algorithm AND diagnosis	0 selected articles out of 9
intitle: Electroencephalogram AND epilepsy AND algorithm AND diagnosis	0 selected articles out of 9
intitle: EEG AND epilepsy AND algorithm AND diagnosis	0 selected articles out of 9
	4

PRISMA-P 2015 Checklist

This checklist has been adapted for use with protocol submissions to *Systematic Reviews* from Table 3 in Moher D et al: Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. *Systematic Reviews* 2015 **4**:1

Section/tonic #		Chacklist item	Information	Line		
Section/topic	#		Yes	No	number(s)	
ADMINISTRATIVE INFO	ADMINISTRATIVE INFORMATION					
Title						
Identification	1a	Identify the report as a protocol of a systematic review			Title page	
Update	1b	If the protocol is for an update of a previous systematic review, identify as such			NA	
Registration	2	If registered, provide the name of the registry (e.g., PROSPERO) and registration number in the Abstract			24	
Authors						
Contact	За	Provide name, institutional affiliation, and e-mail address of all protocol authors; provide physical mailing address of corresponding author			Title page	
Contributions	3b	Describe contributions of protocol authors and identify the guarantor of the review			265 – 270	
Amendments	4	If the protocol represents an amendment of a previously completed or published protocol, identify as such and list changes; otherwise, state plan for documenting important protocol amendments			NA	
Support						
Sources	5a	Indicate sources of financial or other support for the review			265 – 270	
Sponsor	5b	Provide name for the review funder and/or sponsor			265 – 270	
Role of sponsor/funder	5c	Describe roles of funder(s), sponsor(s), and/or institution(s), if any, in developing the protocol			265 – 270	
INTRODUCTION						
Rationale	6	Describe the rationale for the review in the context of what is already known			29 – 70	
Objectives	7	Provide an explicit statement of the question(s) the review will address with reference to participants, interventions, comparators, and outcomes (PICO)			71 – 75	

Soction/tonio #			Information reported		Line	
Section/topic	#		Yes	No	number(s)	
METHODS						
Eligibility criteria	8	Specify the study characteristics (e.g., PICO, study design, setting, time frame) and report characteristics (e.g., years considered, language, publication status) to be used as criteria for eligibility for the review			82 – 106	
Information sources	9	Describe all intended information sources (e.g., electronic databases, contact with study authors, trial registers, or other grey literature sources) with planned dates of coverage			107 – 116	
Search strategy	10	Present draft of search strategy to be used for at least one electronic database, including planned limits, such that it could be repeated			Арр. 1	
STUDY RECORDS			-	-	-	
Data management	11a	Describe the mechanism(s) that will be used to manage records and data throughout the review			111 – 116	
Selection process	11b	State the process that will be used for selecting studies (e.g., two independent reviewers) through each phase of the review (i.e., screening, eligibility, and inclusion in meta-analysis)			111 – 116	
Data collection process	11c	Describe planned method of extracting data from reports (e.g., piloting forms, done independently, in duplicate), any processes for obtaining and confirming data from investigators			111 – 116	
Data items	12	List and define all variables for which data will be sought (e.g., PICO items, funding sources), any pre-planned data assumptions and simplifications			118 – 154	
Outcomes and prioritization	13	List and define all outcomes for which data will be sought, including prioritization of main and additional outcomes, with rationale			149 – 152	
Risk of bias in individual studies	14	Describe anticipated methods for assessing risk of bias of individual studies, including whether this will be done at the outcome or study level, or both; state how this information will be used in data synthesis			156 – 182	
DATA						
	15a	Describe criteria under which study data will be quantitatively synthesized			184 – 188	
Synthesis	15b	If data are appropriate for quantitative synthesis, describe planned summary measures, methods of handling data, and methods of combining data from studies, including any planned exploration of consistency (e.g., <i>I</i> ² , Kendall's tau)			198 – 221	
-	15c	Describe any proposed additional analyses (e.g., sensitivity or subgroup analyses, meta- regression)			198 – 221	
	15d	If quantitative synthesis is not appropriate, describe the type of summary planned			189 – 196	
Meta-bias(es)	16	Specify any planned assessment of meta-bias(es) (e.g., publication bias across studies, selective			220 – 227	

-	
_	
-	
-	

Section/topic	#	Checklist item	Information reported [Yes No r		Line number(s)
		reporting within studies)			
Confidence in cumulative evidence	17	Describe how the strength of the body of evidence will be assessed (e.g., GRADE)			NA

and the body of evidence will be assessed (e.g., GRADE)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml