nature catalysis

Article

https://doi.org/10.1038/s41929-022-00904-1

Molecular mechanism of topoisomerase poisoning by the peptide antibiotic albicidin

In the format provided by the authors and unedited

Molecular mechanism of topoisomerase poisoning by the peptide antibiotic albicidin

Elizabeth Michalczyk^{†1}, Kay Hommernick^{†2}, Iraj Behroz², Marcel Kulike², Zuzanna Pakosz-Stępień^{1,3}, Lukasz Mazurek^{1,3}, Maria Seidel², Maria Kunert², Karine Santos^{4,5}, Holger von Moeller^{4,5}, Bernhard Loll^{4,5}, John B. Weston², Andi Mainz², Jonathan G. Heddle^{1*}, Roderich D. Süssmuth^{2*} and Dmitry Ghilarov^{1,6*}

¹ Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland

²Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany

³Postgraduate School of Molecular Medicine, Warsaw, Poland

⁴moloX GmbH, Takustr. 6, 14195 Berlin, Germany

⁵Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany

⁶John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK

[†]These authors have contributed equally to this work.

*Correspondence should be addressed to:

dmitry.ghilarov@jic.ac.uk

jonathan.heddle@uj.edu.pl

roderich.suessmuth@tu-berlin.de

TABLE OF CONTENTS

Supplementary Tables	
Supplementary Table 1. Primers used in this study	4
Supplementary Table 2. Plasmids used in this study	6
Supplementary Table 3. DNA gyrase variants characterised in this study	8
Supplementary Table 4. Maximal percent cleavage values for albicidin, Albi-1,	9
Albi-2 and Albi-3 determined for WT E. coli gyrase and selected mutants	
Supplementary Figures	
Supplementary Figure 1. Comparison of Gyr-Mu217-albicidin and 6RKV	10
Supplementary Figure 2. Comparison of CTD orientation in Gyr-Mu217-	11
albicidin and 6RKW	
Supplementary Figure 3. Supercoiling activity assays for gyrase variants	12
Supplementary Figure 4. Albi-1 supercoiling inhibition activity assays for	13
gyrase variants	
Supplementary Figure 5 . Calcium cleavage activity assays for gyrase mutants	14
Supplementary Figure 6. Cleavage activity assays for GyrB ^{K740A} gyrase variant	15
Supplementary Figure 7 Albi-1 cleavage activity assays for gyrase variants	16
Supplementary Figure 8. Albi-2 and Albi-3 cleavage activity assays for gyrase	17
variants	
Supplementary Figure 9. Cleavage assays for AE-series compounds and	18
alkvne-Albi	
Supplementary Figure 10 . SDS-PAGE gel of gyrase proteins used in this study	19
Supplementary Figure 11. Activity of albicidin and Albi-1/2/3 on E. coli	20
topoisomerase IV	_•
Source Data Supplementary Figure 3	21
Source Data Supplementary Figure 10	21
Supplementary Notes	
Supplementary Note 1 Reagents and general information	22
Cappione and general method	~~
Supplementary Methods	
Supplementary Method 1 Standard procedures	24
Supplementary Method 2 Synthesis of photo-Albi	27
Supplementary Method 3. Synthesis of Albi-1	30
Supplementary Method 4 Synthesis of Albi-2	36
Supplementary Method 5. Synthesis of Albi-3	<u>4</u> 3
Supplementary Method 6. Synthesis of alkyne-Albi	46
Supplementary Method 7 Synthesis of $\Delta F_1 \Delta F_2$ and ΔF_3	40 47
Supplementary Method 8 Synthesis of AF-4	51
Supplementary Method 9 Synthesis of AF-5	54
Sunnlementary Method 10 Spectral data	57
	51
Supplementary References	104
ouppiementary Neierences	104

Supplementary Tables

Supplementary	Table 1.	List of	primers	used in	1 the study
---------------	----------	---------	---------	---------	-------------

Primer name	Primer sequence (5' – 3')	Purpose
agilentR68A-for	AGCCTATAAAAAATCTGCCGCTGTCGTTGG TGACGTAATC	Introducing mutation in <i>E. coli gyrA</i> for residue R68
agilentR68A-rev	GATTACGTCACCAACGACAGCGGCAGATTT TTTATAGGCT	Introducing mutation in <i>E. coli gyrA</i> for residue R68
GyrA-K65A-for	ACAAAGCCTATAAAGCCCTGCCCGTGTCGT TG	Introducing mutation in <i>E. coli gyrA</i> for residue K65
GyrA-K65A-rev	CAACGACACGGGCAGAGGCTTTATAGGCTT TGT	Introducing mutation in <i>E. coli gyrA</i> for residue K65
GyrA-A67Q-for	GCCTATAAAAAATCTCAGCGTGTCGTTGGT GAC	Introducing mutation in <i>E. coli gyrA</i> for residue A67
GyrA-A67Q-rev	GTCACCAACGACACGCTGAGATTTTTATA GGC	Introducing mutation in <i>E. coli gyrA</i> for residue A67
GyrA-V70A-for	AAAATCTGCCCGTGTCGCCGGTGACGTAAT CGG	Introducing mutation in <i>E. coli gyrA</i> for residue V70
GyrA-V70A-rev	CCGATTACGTCACCGGCGACACGGGCAGA TTTT	Introducing mutation in <i>E. coli gyrA</i> for residue V70
GyrA-D72K-for	GCCCGTGTCGTTGGTAAAGTAATCGGTAAA TAC	Introducing mutation in <i>E. coli gyrA</i> for residue D72
GyrA-D72K-rev	GTATTTACCGATTACTTTACCAACGACACGG GC	Introducing mutation in <i>E. coli gyrA</i> for residue D72
GyrA-I74M-for	GTCGTTGGTGACGTAATGGGTAAATACCAT CCC	Introducing mutation in <i>E. coli gyrA</i> for residue
GyrA-I74M-rev	GGGATGGTATTTACCCATTACGTCACCAAC GAC	Introducing mutation in <i>E. coli gyrA</i> for residue 174
GyrA-D82N-for	TACCATCCCCATGGTAACTCGGCGGTCTAT GAC	Introducing mutation in <i>E. coli gyrA</i> for residue D82
GyrA-D82N-rev	GTCATAGACCGCCGAGTTACCATGGGGATG GTA	Introducing mutation in <i>E. coli gyrA</i> for residue D82
GyrA-S83L-for no.2	TACCATCCCCATGGTGACCTGGCGGTCTAT GACACGAT	Introducing mutation in <i>E. coli gyrA</i> for residue S83
GyrA-S83L-rev no.2	ACGATCGTGTCATAGACCGCCAGGTCACCA TGGGGAT	Introducing mutation in <i>E. coli gyrA</i> for residue S83

GyrA-M120A-for	GACTCTGCGGCGGCAGCGCGTTATACGGA AATC	Introducing mutation in <i>E. coli gyrA</i> for residue M120
GyrA-M120A-rev	GATTTCCGTATAACGCGCTGCCGCCGCAGA GTC	Introducing mutation in <i>E. coli gyrA</i> for residue M120
GyrB-K447E-for	GCGATTCTGCCGCTGGAGGGTAAAATCCTC AACG	Introducing mutation in <i>E. coli gyrB</i> for residue K447
GyrB-K447E-rev	CGTTGAGGATTTTACCCTCCAGCGGCAGAA TCGC	Introducing mutation in <i>E. coli gyrB</i> for residue K447
GyrB-K447R-for no.2	AGGCGATTCTGCCGCTGCGCGGTAAAATCC TCAA	Introducing mutation in <i>E. coli gyrB</i> for residue K447
GyrB-K447R-rev no.2	CGTTGAGGATTTTACCGCGCAGCGGCAGAA TCGC	Introducing mutation in <i>E. coli gyrB</i> for residue K447
GyrB-K447W-for	GCGATTCTGCCGCTGTGGGGGTAAAATCCTC AACG	Introducing mutation in <i>E. coli gyrB</i> for residue K447
GyrB-K447W-rev	CGTTGAGGATTTTACCCCACAGCGGCAGAA TCGC	Introducing mutation in <i>E. coli gyrB</i> for residue K447
GyrB-E744A-for	TATAAAGGTCTGGGCGCGATGAACCCGGAA CAG	Introducing mutation in <i>E. coli gyrB</i> for residue E744
GyrB-E744A-rev	CTGTTCCGGGTTCATCGCGCCCAGACCTTT ATA	Introducing mutation in <i>E. coli gyrB</i> for residue E744
GyrB-K740A-for	TCCATCCAGCGTTATGCCGGTCTGGGCGA GATG	Introducing mutation in <i>E. coli gyrB</i> for residue K740
GyrB-K740A-rev	CATCTCGCCCAGACCGGCATAACGCTGGAT GGA	Introducing mutation in <i>E. coli gyrB</i> for residue K740
CoIE1-for	GGAGCGAACGACCTACACCGAACTGAGATA CCTACAGCG	Introducing point mutations in <i>E. coli gyrA</i> and <i>E. coli gyrB</i>
ColE1-rev	CGCTGTAGGTATCTCAGTTCGGTGTAGGTC GTTCGCTCC	Introducing point mutations in <i>E. coli gyrA</i> and <i>E. coli gyrB</i>
Mu217_HindIIIBgIIIEc oRV_for	AATAAAGCTTAGATCTGATATCGGAGAAAG AAAGTGAAAGGAAG	Cloning of Mu217 fragment
Mu217_BamHIEcoRV _rev	AATAGGATCCGATATCTTCCTGCGCGTCCT TATATG	Cloning of Mu217 fragment

Supplementary Table 2. List of plasmids used in the study

Name	Backbone	Source	Purpose
pET28b- EcGyrATWS	pET28b(+)	Gift of Dr Valérie Lamour (University of Strasbourg)	Purification of 10xHis- and 2xSTREP-tagged <i>E. coli</i> GyrA
pET28b- EcGyrBTWS	pET28b(+)	Gift of Dr Valérie Lamour (University of Strasbourg)	Purification of 10xHis- and 2xSTREP-tagged <i>E. coli</i> GyrB
pET28b-EcGyrA- R68A-TWS	pET28b(+)	This study	Purification of 10xHis- and 2xSTREP-tagged <i>E. coli</i> GyrA- R68A
pET28b-EcGyrA- K65A-TWS	pET28b(+)	This study	Purification of 10xHis- and 2xSTREP-tagged <i>E. coli</i> GyrA- K65A
pET28b-EcGyrA- A67Q-TWS	pET28b(+)	This study	Purification of 10xHis- and 2xSTREP-tagged <i>E. coli</i> GyrA- A67Q
pET28b-EcGyrA- V70A-TWS	pET28b(+)	This study	Purification of 10xHis- and 2xSTREP-tagged <i>E. coli</i> GyrA- V70A
pET28b-EcGyrA- D72K-TWS	pET28b(+)	This study	Purification of 10xHis- and 2xSTREP-tagged <i>E. coli</i> GyrA- D72K
pET28b-EcGyrA- I74M-TWS	pET28b(+)	This study	Purification of 10xHis- and 2xSTREP-tagged <i>E. coli</i> GyrA- I74M
pET28b-EcGyrA- D82N-TWS	pET28b(+)	This study	Purification of 10xHis- and 2xSTREP-tagged <i>E. coli</i> GyrA- D82N
pET28b-EcGyrA- S83L-TWS	pET28b(+)	This study	Purification of 10xHis- and 2xSTREP-tagged <i>E. coli</i> GyrA- S83L
pET28b-EcGyrA- M120A-TWS	pET28b(+)	This study	Purification of 10xHis- and 2xSTREP-tagged <i>E. coli</i> GyrA- M120A
pET28b-EcGyrB- K447E-TWS	pET28b(+)	This study	Purification of 10xHis- and 2xSTREP-tagged <i>E. coli</i> GyrB- K447E
pET28b-EcGyrB- K447R-TWS	pET28b(+)	This study	Purification of 10xHis- and 2xSTREP-tagged <i>E. coli</i> GyrB- K447R
pET28b-EcGyrB- K447W-TWS	pET28b(+)	This study	Purification of 10xHis- and 2xSTREP-tagged <i>E. coli</i> GyrB- K447W
pET28b-EcGyrB- E774A-TWS	pET28b(+)	This study	Purification of 10xHis- and 2xSTREP-tagged <i>E. coli</i> GyrB- E774A

pET28b-EcGyrB- K740A-TWS	pET28b(+)	This study	Purification of 10xHis- and 2xSTREP-tagged <i>E. coli</i> GyrB- K740A
pUC-8xMuSGS	pUC19	This study	Purification of 217 bp Mu SGS

Mu217 sequence

Underlined is the central fragment represented in Figure 2

5'-

GGAGAAAGAAAGTGAAAGGAAGATAAAACGGGATTCATACACCGTTAAATACCG GTTTAAAAATCCCGTGGCGCGTTTTAAAAAATCTGTGCGG<u>GT**GATT**TT</u>ATGCCT GATTCTGTTTATTGCCTCAGAGCGGCGCTGACGCGTTTTCTGATGGCATCAAAA ATTTCCTGTTCCCCGGTCTTATCCAGCCCCATATAAGGACGCGCAGGAA-3'

Supplementary Table 3. DNA gyrase variants characterised in the	is study
---	----------

Mutation	Observations
GyrA ^{R68A}	Relaxation activity in the presence of ATP
GyrA ^{K65A}	Toxicity
GyrA ^{A67Q}	4-fold less active in supercoiling and cleavage activity when compared to WT gyrase Relaxation activity in the presence of ATP
GyrA ^{V70A}	Activity comparable to WT
GyrA ^{D72K}	Activity comparable to WT
GyrA ^{I74M}	Activity comparable to WT
GyrA ^{D82N}	Naturally occurring mutation No reduced cleavage observed
GyrA ^{S83L}	Naturally occurring mutation (quinolone resistance) Activity comparable to WT
GyrA ^{M120A}	Relaxation activity in the presence of ATP
GyrB ^{K447E}	Naturally occurring mutation (quinolone resistance) Activity comparable to WT
GyrB ^{K447R}	Naturally occurring mutation (quinolone resistance) Activity comparable to WT
GyrB ^{K447W}	Naturally occurring mutation (quinolone resistance) Activity comparable to WT
GyrB ^{E774A}	Not active
GyrB ^{K740A}	Increased cleavage activity in the absence of inhibitor

Supplementary Table 4. Maximal percent cleavage values for albicidin, **Albi-1**, **Albi-2** and **Albi-3** determined for WT *E. coli* gyrase and selected mutants. Values are an average of 3 independent assays carried out for CC₅₀ determination. Severely impaired values are indicated in red.

Compound	Gyrase variant						
(% maximal cleavage)	Gyrase ^{w⊤}	GyrA ^{S83L}	GyrA ^{V70A}	GyrA ^{A67Q}	GyrA ^{I74M}	GyrA ^{M120A}	GyrB ^{K447W}
Albicidin	81±2	68±5	80±2	83±1	40±10	72±3	27±2
Albi-1	73±6	80±14	90±2	96±8	79±5	68±3	83±3
Albi-2	78±2	72±7	58±2	n.d.	n.d.	59±17	59±6
Albi-3	66±4	85±7	63±2	78±6	n.d.	n.d.	69±2

Supplementary Figures

Supplementary Figure 1. Comparison of *E. coli* DNA gyrase cleavage-reunion domain in the pre-open state (PDB: 6RKV) and Gyr-Mu217-albicidin. Tube representation of Gyr-Mu217-albicidin (color scheme as in Figure 1) and overlayed 6RKV (transparent blue). a: side view, b: front view, c: top view. Overall opening of the enzyme consists of movements of TOPRIM insert (downward rotation) and sliding doors movement of GyrA (see view from the bottom, d). The biggest movements are observed near the extremities of the enzyme i.e., 8-10 Å shifts of GyrB insert and GyrA TOWER domains. DNA cleavage leads to the 8 Å movements of DNA ends.

Supplementary Figure 2. Comparison of position of GyrA CTD between *E. coli* DNA gyrase-gepotidacin complex composite map (PDB:6RKW) and Gyr-Mu217albicidin structures. a. CTD (535-875) of 6RKW was rigid-body fit in the Gyr-Mu217-Albi2 map, low-passed to 5 Å (this dataset was selected because of better CTD density). b. Cartoon representations of 6RKW (blue) and CTD from albicidin structures (magenta). Note the ~30 Å shift and 37-° rotation from one side and 35 ° rotation and 20 Å shift from another. Position of the GyrB ATPase domain is also shifted towards the centre to yield a more symmetrical structure, however, this was not modelled.

Supplementary Figure 3. Supercoiling activity assays for gyrase variants. a. Plasmid supercoiling (SC) assay showing the activity of WT gyrase. First lane: relaxed pBR322, subsequent lanes: increasing enzyme concentration (5, 10, 15 nM). Positions of nicked, relaxed and sc DNA are indicated to the left of each gel. b. SC assay showing the activity of GyrA variants (in presence of WT GyrB). First lane: relaxed pBR322, subsequent lanes: increasing enzyme (A₂B₂) concentration (5, 10, 15 nM). *Note: GyrA*^{A67Q} shows increasing enzyme concentration to a higher amount (5, 10, 15, 20, 25, 30 nM). c.SC assay showing the activity of GyrB variants in presence of equal amount of WT GyrA. First lane: relaxed pBR322, subsequent lanes: increasing enzyme (A₂B₂) concentration (5, 10, 15 nM). *Note: GyrB*^{E774A} and GyrB^{K740A} show increasing enzyme concentration to higher amounts (5, 10, 15, 20, 25, 30 nM). There was no activity observed for GyrB^{E774A}. All assays were repeated at least twice and representative gels are shown.

Supplementary Figure 4. Albi-1 supercoiling inhibition activity assays. a. SC assay showing inhibition of WT gyrase by Albi-1. First lane: relaxed pBR322, second lane: effect of 5 µM ciprofloxacin (CFX) on WT gyrase (5 nM) activity, subsequent lanes: effect of increasing **Albi-1** concentration (0.1, 1, 10 µM) on WT gyrase activity. Positions of nicked, relaxed and sc DNA are indicated to the left of each gel. b. SC assay showing the inhibitory activity of Albi-1 against GyrA variants in presence of WT GyrB (concentrations are given for A₂B₂). First lane: relaxed pBR322 with specified variant (GyrA^{R68A}: 5 nM; GyrA^{A67Q}: 30 nM; GyrA^{V70A}: 5 nM; GyrA^{D72K}: 8 nM; GyrA^{I74M}: 5 nM; GyrA^{D82N}: 5 nM; GyrA^{S83L}: 5 nM; GyrA^{M120A}: 5 nM), second lane: effect of 5 µM CFX on specified variant activity, subsequent lanes: effect of increasing Albi-1 concentration (0.1, 1, 10 µM) on specified variant activity. c.SC assay showing the inhibitory activity Albi-1 against GyrB variants in presence of WT GyrA. Concentrations are given for A₂B₂. First lane: relaxed pBR322 with specified variant (GyrB^{K447E}: 5 nM; GyrB^{K447R}: 5 nM; GyrB^{K447W}: 8 nM), second lane: effect of 5 µM CFX on specified variant activity, subsequent lanes: effect of increasing Albi-1 concentration (0.1, 1, 10 µM) on specified variant activity. All assays were repeated at least twice and representative gels are shown.

Supplementary Figure 5. Intrinsic cleavage activity assays for gyrase variants. a. Cleavage activity of WT gyrase. First lane: negatively supercoiled pBR322, subsequent lanes: increasing enzyme (A₂B₂) concentration (10, 20, 40 nM) in the presence of 4 mM CaCl₂. Positions of nicked, linear and supercoiled DNA are indicated to the left of each gel. **b**. Cleavage activity of specified GyrA variants in presence of WT GyrB. First lane: negatively supercoiled, subsequent lanes: increasing enzyme concentration (GyrA^{A67Q}: 100, 200, 300 nM; GyrA^{V70A}, GyrA^{S83L}, GyrA^{M120A}: 15, 25, 50 nM; GyrA^{I74M}: 10, 20, 40 nM) in the presence of 4 mM CaCl₂. **c**. Plasmid cleavage assay showing cleavage activity of GyrB variants in presence of WT GyrA. First lane: negatively supercoiled pBR322, subsequent lanes: increasing enzyme (A₂B₂) concentration (GyrB^{K447W}: 15, 25, 50 nM; GyrB^{K740A}: 5, 10, 15, 20, 25, 30 nM) in the presence of 4 mM CaCl₂. All assays were repeated at least twice and representative gels are shown.

Supplementary Figure 6. Cleavage activity assays for GyrB^{K740A} **variant. a.** Cleavage activity of GyrB^{K740A} in presence of WT GyrA. First lane: negatively supercoiled pBR322, subsequent lanes: effect of increasing enzyme (A₂B₂) concentration (5, 10, 15, 20, 25, 30 nM) in the presence of 4 mM MgCl₂. Positions of nicked, linear and supercoiled DNA are indicated to the left of each gel. **b.** Cleavage activity of GyrB^{K740A} in presence of WT GyrA. First lane: negatively supercoiled pBR322, subsequent lanes: effect of increasing enzyme (A₂B₂) concentration (5, 10, 15, 20, 25, 30 nM) in the presence of 4 mM MgCl₂. Positions of 1, 20, 25, 30 nM) in the presence of 4 mM MgCl₂ and 3 µM CFX. All assays were repeated at least twice and representative gels are shown.

Supplementary Figure 7. Albi-1 cleavage activity assays for gyrase variants. a. Cleavage activity of WT gyrase. First lane: negatively supercoiled pBR322 with 20 nM WT gyrase (here and below all concentrations given for A₂B₂), second lane: effect of 5 µM ciprofloxacin (CFX) on WT gyrase activity, subsequent lanes: effect of increasing Albi-1 concentration (0.1, 1, 10 µM) on WT gyrase activity. Positions of nicked, linear and sc DNA are indicated to the left of each gel. b. Cleavage activity of GyrA variants in presence of WT GyrB and Albi-1. First lane: negatively supercoiled pBR322 with specified variant (GyrA^{R68A}: 20 nM; GyrA^{A67Q}: 100 nM; GyrA^{V70A}: 15 nM; GyrA^{D72K}: 20 nM; GyrA^{I74M}: 20 nM; GyrA^{D82N}: 20 nM; GyrA^{S83L}: 25 nM; GyrA^{M120A}: 25 nM), second lane: effect of 5 µM CFX on specified variant activity, subsequent lanes: effect of increasing Albi-1 concentration (0.1, 1, 10 µM) on specified variant activity. c. Cleavage activity of GyrB variants in presence of WT GyrA and Albi-1. First lane: negatively supercoiled pBR322 with specified variant (GyrBK447E: 25 nM; GyrBK447R: 20 nM; GyrB^{K447W}: 25 nM), second lane: effect of 5 µM CFX on specified variant activity, subsequent lanes: effect of increasing Albi-1 concentration (0.1, 1, 10 µM) on specified variant activity. All assays were repeated at least twice and representative gels are shown.

Supplementary Figure 8. Albi-2 and Albi-3 cleavage activity assays for gyrase variants. a. Cleavage activity of WT gyrase in the presence of Albi-2 or Albi-3. First lane: innate cleavage activity of WT gyrase (20 nM) on negatively supercoiled pBR322; subsequent lanes: effect of increasing compound concentration (0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10 μ M). Positions of nicked, linear and sc DNA are indicated to the left of each gel. b. Cleavage activity of GyrA variants in the presence of Albi-2 or Albi-3 and WT GyrB (concentrations given for A₂B₂). First lane: innate cleavage activity of specified variant (GyrA^{V70A}: 15 nM; GyrA^{S83L}: 25 nM; GyrA^{M120A}: 25 nM; GyrA^{A67Q}: 100 nM) on negatively supercoiled pBR322; subsequent lanes: effect of increasing compound concentration (0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10 μ M). c. Cleavage activity of GyrB^{K447W} in the presence of Albi-2 or Albi-3 and WT GyrB^{K447W} (25 nM) on negatively supercoiled pBR322; subsequent lanes: effect of increasing compound concentration (0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10 μ M). c. Cleavage activity of GyrB^{K447W} in the presence of Albi-2 or Albi-3 and WT GyrA. First lane: innate cleavage activity GyrB^{K447W} (25 nM) on negatively supercoiled pBR322; subsequent lanes: effect of increasing compound concentration (0.001, 0.005, 0.01, 0.05, 0.1, 0.05, 1, 5, 10 μ M). All assays were carried out in triplicates and representative gels are shown.

Supplementary Figure 9. Cleavage assays for AE-series compounds and alkyne-Albi. Cleavage assays with WT gyrase (20 nM) were carried out as described in the *Methods* section, concentrations of tested compounds are indicated. Nicked circular, linear and supercoiled plasmid DNA bands are labelled. All assays were repeated twice and representative gels are shown.

Supplementary Figure 10. SDS-PAGE gel of gyrase proteins used in this study. Three concentrations of GyrA and GyrB proteins were loaded alongside with Thermo PageRuler protein molecular weight marker as indicated. Positions of GyrA and GyrB are indicated.

Supplementary Figure 11. Activity of albicidin and Albi-1/2/3 on *E. coli* topoisomerase IV. a. Plasmid relaxation activity of *E. coli* topo IV in the presence of albicidin, Albi-1, Albi-2 and Albi-3. First lane: negatively supercoiled pBR322; second lane: innate relaxation activity of *E. coli* topo IV (12.5 nM); third lane: effect of 20 μ M CFX; subsequent lanes: effect of increasing compound concentration (0.1, 1, 10, 100 μ M). Note: 100 μ M Albi-3 was omitted from the assay due to solubility issues at the higher concentration. **b.** Cleavage activity of *E. coli* topo IV in the presence of albicidin, Albi-1, Albi-2 and Albi-3. First lane: negatively supercoiled pBR322; second lane: innate cleavage activity of *E. coli* topo IV (15 nM); third lane: effect of 20 μ M CFX; subsequent lanes: effect of increasing compound concentration (0.1, 1, 10, 100 μ M). Note: 100 μ M Albi-3 was omitted from the assay due to solubility issues at the higher concentration of *E. coli* topo IV (15 nM); third lane: effect of 20 μ M CFX; subsequent lanes: effect of increasing compound concentration (0.1, 1, 10, 100 μ M). Note: 100 μ M Albi-3 was omitted from the assay due to solubility issues at the higher concentration. All experiments were carried out in triplicates and representative gels are shown

Source Data Supplementary Figure 3. Uncropped gels for **Supplementary Figure 3C**. Blue boxes indicate parts of the gels displayed in the figure.

Source Data Supplementary Figure 10. Uncropped gel for Supplementary Figure9. Blue boxes indicate parts of the gels displayed in the figure.

Supplementary Notes

Supplementary Note 1. Reagents and general information

Commercially available reagents (Carl Roth GmbH and Co. KG, Karlsruhe, Germany; Sigma-Aldrich, Taufkirchen, Germany; Iris Biotech GmbH, Marktredwitz, Germany; Orpegen, Heidelberg, Germany; ABCR, Karlsruhe, Germany; Alfa Aesar, Karlsruhe, Germany; Merk, Darmstadt, Germany; TCI, Eschborn, Germany; VWR International GmBH, Darmstadt, Germany; Acros, Geel, Belgium) and solvents (Fisher Scientific-Acros, Schwerte, Germany) were used without further purification. Whenever necessary, reactions were carried out under an atmosphere of argon or nitrogen and in dry solvents. HPLC solvents (Fisher Scientific-Acros, Schwerte, Germany) and NMR solvents (Deutero GmbH, Kastellaun, Germany; Sigma-Aldrich, Taufkirchen, Germany) were used without further purification. ¹H and ¹³C NMR spectra were recorded at 298 K using Bruker Avance-II 400 MHz, Bruker Avance-III 500 MHz or Bruker Avance-III 700 MHz instruments (*Bruker*, Karlsruhe, Germany). The chemical shifts are reported in parts per million (ppm) using the residual solvent peak as an internal reference (DMSO- d_6 , CDCl₃). Multiplicity (br. s = broad singlet, s = singlet, d = doublet, dd = doublet of doublet, ddd = doublet of doublets of doublets, t = triplet, q = quartet, m = multiplet, dt = doublet of triplets, dddt = doublet of doublets of doublets of triplets) and coupling constants (J in Hz) are quoted where possible. NMR spectra were analyzed using TopSpin3.1 (Bruker Biospin, Karlsruhe, Germany), the ACD/Spectrus Processor (ACD/Labs, Toronto, Ontario, Canada) or MestReNova (Mestrelab Research S.L., Santiago de Compostela, Spain). 2D NOESY and ROESY spectra were recorded with mixing times of 400 ms and 300 ms, respectively.

HPLC-ESI-HRMS spectra were recorded on a QTrap LTQ XL (*Thermo Fisher Scientific*, Waltham, Massachusetts, USA) with an Agilent 1200 Series HPLC-System (*Agilent Technologies*, Waldbronn, Germany) using a reversed-phase C18 column (Hypersil 100, 150 x 4.6 mm, particle size 5 µm, *Thermo Fisher Scientific*, Waltham, Massachusetts, USA). Eluent A comprised water with 0.1% formic acid; eluent B consisted of methanol with 0.1% formic acid. A flow rate of 3 mL min⁻¹ was used. HRMS spectra were analyzed using Xcalibur (*Thermo Fisher Scientific GmbH*, Bremen, Germany). All biologically tested compounds had a purity of >95%.

Reactions and purifications were monitored by analytical thin layer chromatography (TLC) on aluminium-backed plates coated with *Macherey-Nagel* silica gel (60, F254)

using solvent systems based on ethyl acetate, *n*-hexane, dichloromethane, and methanol. Analysis was performed by visualizing under UV light ($\lambda = 254$ nm), by staining with KMnO₄-solution (KMnO₄ (3 g), K₂CO₃ (20 g, H₂O (300 mL), 5% NaOH_(aq,) (5 mL)) and with ninhydrin-solution (ninhydrin (0.3 g), AcOH (3 mL), *n*-BuOH (100 mL)). Flash chromatography was performed on silica gel (particle size 40-63 µm, *VWR Chemicals*, Darmstadt, Germany) and solvent mixtures based on ethyl acetate, *n*-hexane, dichloromethane, and methanol. Preparative HPLC was carried out on a 1260 Infinity (*Agilent Technologies*, Waldbronn, Germany) system with a polymeric reversed phase column (PLRP-S 100A, 300 x 50 mm, particle size 10 µm, *Agilent Technologies*, Waldbronn, Germany). Eluent A was water with 0.1% trifluoroacetic acid and eluent B was acetonitrile with 0.1% trifluoroacetic acid. A flow rate of 70 mL min⁻¹ was used.

Supplementary Methods

Supplementary Method 1. Standard procedures

Standard Procedure A – Reduction of nitro compounds using zinc

To a solution or suspension of the aromatic nitro compound in either EtOH (abs.) or a mixture of EtOH (abs.) and THF was added AcOH. The resulting mixture was cooled down to 0°C and zinc powder was added carefully in portions. After fading of the exothermic reaction, the ice bath was removed, allowing the reaction mixture to warm up to r.t. Upon completion of the reaction (TLC monitoring), the solids were removed by filtration through a pad of Celite, washed with little EtOAc and THF, and the filtrate was concentrated *in vacuo*. The acidic residue was taken up in EtOAc and carefully washed with saturated aqueous NaHCO₃ (3x) and brine. After drying over anhydrous Na₂SO₄, the solvent was removed under reduced pressure to obtain either the analytically pure product or a crude product that required purification by column chromatography.

Standard Procedure B – Hydrolysis of benzoic esters

To a solution of the benzoic acid ester in a mixture of THF and MeOH was slowly added 3 N KOH_(aq). After complete conversion of the starting material (TLC monitoring), the reaction mixture was acidified to pH ~2 by the addition of 3 N HCl_(aq.). Workup method A: In case a precipitate was formed, it was isolated by filtration through a sintered funnel, washed with little water and dried under high vacuum to obtain the analytically pure product. Workup method B: In case no precipitate was formed, MeOH and THF were evaporated under reduced pressure and the aq. residue was extracted with EtOAc (3x). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure to yield the analytically pure product.

Standard Procedure C – Peptide coupling via benzoyl chloride formation using BTC

Bis(trichloromethyl) carbonate (BTC, triphosgene) was added to a solution of the benzoic acid in dry THF and the solution was cooled down to 0°C. 2,4,6-Collidine was

added dropwise and the resulting suspension was stirred at that temperature for 45 min. Subsequently, a premixed solution of the aniline and DIPEA in dry THF was added dropwise to the suspension and the reaction mixture was stirred for 16 h while warming up to r.t. After removing all volatiles under reduced pressure, the residue was taken up in EtOAc and washed with 1 N HCl_(aq.) (3x), saturated aqueous NaHCO₃ (3x), and brine. The organic layer was dried over anhydrous Na₂SO₄ and concentrated *in vacuo* to obtain the crude product, which was purified by column chromatography on silica gel.

Standard Procedure D – Peptide coupling via mixed anhydride formation using EEDQ

To a solution of the amino acid in dry THF was added EEDQ and the reaction mixture was stirred at r.t. for 15 min. A premixed solution of the tripeptide in dry THF was added slowly and the reaction mixture was stirred at r.t. for 72 h. The organic solvent was evaporated under reduced pressure and the residue was partitioned between EtOAc and 1 N HCl_(aq.). The organic layer was washed with 1 N HCl_(aq.) (2x), brine, dried over anhydr. Na₂SO₄, and concentrated *in vacuo* to afford the crude product, which was purified by column chromatography.

Standard Procedure E – Boc/tBu-deprotection using 4 N HCl in 1,4-dioxane

A solution of the Boc/*t*Bu-protected tetrapeptide in 4 \times HCl in 1,4-dioxane was stirred at r.t. for 1 h. Subsequently, all volatiles were removed under reduced pressure to obtain the crude product, which was taken up in H₂O and little CH₃CN and freezedried to afford the analytically pure desired product without further purification.

Standard Procedure F – Pd-mediated allyl-deprotection

The allyl-protected tetrapeptide was dissolved in dry THF and morpholine was added, followed by either Pd(PPh₃)₄ or Pd(Ph₃)₂Cl₂. The reaction mixture was stirred at r.t. for 16 h under the exclusion of light (aluminum wrap). After removing all volatiles under reduced pressure, the residue was taken up in EtOAc and washed with 1 N HCl_(aq.) (3x) and brine. The organic phase was dried over anhydrous Na₂SO₄ and concentrated *in vacuo* to obtain the crude product, which was purified by column chromatography on silica gel.

Standard Procedure G – Peptide coupling via active ester formation using PCP

The amine and the PCP active ester were dissolved in a mixture of anhydrous DMF and Et₃N was added. The reaction mixture was stirred at r.t. for 16 h under the exclusion of light. All volatiles were removed *in vacuo* and the residue was taken up in a mixture of THF and MeOH (1:1 v/v), and 3 N KOH_(aq) was added dropwise at 0 °C. The ice bath was removed and after 15 min of stirring the suspension was acidified to $pH \approx 2$ by the addition of 3 N HCl_(aq.). The resulting suspension was concentrated under reduced pressure and the crude material was dissolved in DMSO and purified by HPLC (PLRP-S column, CH₃CN in H₂O).

Standard Procedure H – Formation of acid chloride

The carboxylic acid (1.00 eq) was dissolved in SOCI₂. The reaction mixture was stirred at r.t. or reflux. The thionyl chloride was removed *in vacuo* until the residue was dry. The crude product was used in the next reaction without further treatment.

Standard Procedure I – Peptide coupling via active ester formation using acid chloride

The amine (or alcohol) and the acid chloride active ester were dissolved in anhydrous THF and Et_3N or DIPEA was added. The reaction mixture was stirred at r.t. for 16 h. All volatiles were removed *in vacuo*, the residue was taken up in ethyl acetate and washed with 1 N HCl_(aq.) (2x), water (2x) and brine. The organic phase was dried over anhydrous Na₂SO₄ and concentrated *in vacuo* to obtain the crude product, which was purified by column chromatography on silica gel.

Supplementary Method 2. Synthesis of Photo-Albi

Synthesis of AB fragment

Compound 2

Compound **2** was synthesized from carboxylic acid **1** (500 mg, 2.17 mmol) according to standard procedure *H* - r.t., 15 h).

ήB.

= 5

R¹:PCP

Compound 3

Compound **3** was synthesized from acid chloride **2** (540 mg, 2.17 mmol, 1.00 eq.), *p*ABAO*t*Bu (274 mg, 1.81 mmol, 1.00 eq.) and DIPEA (1.14 mL, 6.42 mmol, 3.00 eq.) according to standard procedure *I* - column chromatography: SiO₂, *n*-hexane/EtOAc, 10:3. Compound **3** (631 mg, 80%) was obtained as a light-yellow solid. ¹H NMR (DMSO-d₆, 500 MHz): δ = 10.65 (s, 1 H), 8.08 (d, *J*=8.7 Hz, 2 H), 7.90 (s, 4 H), 7.46 (d, *J*=8.1 Hz, 2 H), 1.55 ppm (s, 9 H) ¹³C NMR (DMSO-d₆, 126 MHz): δ = 165.3, 165.0, 130.4, 129.2, 127.0, 120.0, 80.85, 28.3 ppm ¹⁹F NMR (DMSO-d₆, 471 MHz): δ = -64.44 ppm. HRMS (ESI): m/z calculated for C₂₀H₁₉F₃N₃O₃ (M+H)⁺ 406.1373, found 406.1368.

Compound 4

Compound **4** was synthesized from *t*Bu-ester protected dipeptide **3** (620 mg, 1.53 mmol, 1.00 eq.) with $4 \times HCI$ in dioxane (8 mL) according to *standard procedure E*. Compound **4** (534 mg, quant.) was obtained as colorless solid. HRMS (ESI): m/z calculated for C₁₆H₁₁F₃N₃O₃ (M+H)⁺ 350.0747, found 350.0746.

Compound 5

Compound **5** was synthesized at r.t., 15 h from carboxylic acid **4** (505 mg, 1.45 mmol) according to standard procedure *H*.

Compound 6

Compound **6** was synthesized from acid chloride **5** (532 mg, 1.45 mmol, 1.00 eq.), pentachlorophenol (578 mg, 2.17 mmol, 1.50 eq.) and Et₃N (0.806 mL, 5.78 mmol, 4.00 eq.) according to standard procedure *I* - column chromatography: SiO₂, *n*-hexane/EtOAc, 10:1. Compound **6** (565 mg, 68%) was obtained as a colorless solid. ¹H NMR (DMSO-d⁶, 500 MHz): δ = 10.87 (s, 1 H), 8.20 - 8.24 (m, 2 H), 8.06 - 8.13 (m, 4 H), 7.49 ppm (d, *J*=8.2 Hz, 2 H) HRMS (ESI): m/z calculated for C₂₂H₁₀Cl₅F₃N₃O₃ (M+H)⁺ 597.9082, found 597.9082.

Synthesis of tetrapeptide 10

Compound 8

Compound **8** was synthesized from Boc-propargyl glycine (120 mg, 0.561 mmol, 1.1 eq.), tripeptide **7**¹ (300 mg, 0.510 mmol, 1.00 eq.) and EEDQ (378 mg, 1.53 mmol, 3.00 eq.) according to s*tandard procedure D* - column chromatography: SiO₂, 1-5% MeOH in DCM. Compound **8** (225 mg, 56%) was obtained as a yellow solid. ¹H NMR (DMSO-d₆, 500 MHz): δ = 10.63 (s, 1 H), 10.44 (s, 1 H), 8.31 - 8.41 (m, 2 H), 7.97 - 8.04 (m, 2 H), 7.84 (d, *J*=8.9 Hz, 1 H), 7.87 (d, *J*=8.5 Hz, 1 H), 7.56 (d, *J*=8.9 Hz, 1 H), 7.06 (dd, *J*=8.5, 2.7 Hz, 1 H), 6.25 (s, 2 H), 5.99 - 6.15 (m, 3 H), 5.36 - 5.43 (m, 3 H), 5.22 - 5.31 (m, 3 H), 4.83 (d, *J*=6.3 Hz, 2 H), 4.76 (d, *J*=5.5 Hz, 2 H), 4.54 (d, *J*=5.6 Hz, 2 H), 3.96 (s, 3 H), 3.92 ppm (s, 3 H) ¹³C NMR (DMSO-d₆, 126 MHz): δ = 133.1, 127.0, 120.8, 119.8, 118.6, 118.3, 115.2, 75.6, 75.0, 65.6, 61.5 ppm. HRMS (ESI): m/z calculated for C₄₁H₄₆N₅O₁₁ (M+H)⁺ 784.3188, found 784.3195.

Compound 9

Compound **9** was synthesized from allyl-protected tetrapeptide **8** (200 mg, 255 μ mol, 1.00 eq.), Pd(PPh₃)₄ (118 mg, 102 μ mol, 0.400 eq.) and morpholine (440 μ l, 5.10 mmol, 20.0 eq.) according to *standard procedure F* - column chromatography:

SiO₂, 1-7% MeOH in DCM. Compound **9** (210 mg, 98%) was obtained as a yellow solid. HRMS (ESI): m/z calculated for $C_{41}H_{46}N_5O_{11}$ (M+H)⁺ 664.2249, found 664.2274.

Compound 10

Compound **10** was synthesized from Boc-protected tetrapeptide **9** (210 mg, 316 μ mol, 1.00 eq.) with 4 \times HCl in dioxane (7 mL) according to *standard procedure E*. Compound **10** (178 mg, quant.) was obtained as light-yellow solid. HRMS (ESI): m/z calculated for C₂₇H₂₆N₅O₉ (M+H)⁺ 564.1725, found 564.1722.

Final coupling of Photo-Albi

Photo-Albi was synthesized from PCP-ester **6** (110 mg, 184 μmol, 1.40 eq.), tetrapeptide **10** (74.1 mg, 132 μmol, 1.00 eq.) and Et₃N (92 μl, 0.66 mmol) according to *standard procedure G*. Final derivative **Photo-Albi** (12 mg, 10%) was obtained as a colorless solid. ¹H NMR (DMSO-d₆, 400 MHz): δ = 11.76 (br. s., 1 H), 11.04 (br. s., 1 H), 10.99 (br. s., 1 H), 10.66 (s, 1 H), 10.49 (s, 1 H), 9.00 (br. s., 1 H), 8.86 (d, *J*=7.3 Hz, 1 H), 8.38 (d, *J*=7.0 Hz, 1 H), 8.21 (d, *J*=8.8 Hz, 1 H), 8.10 (d, *J*=8.5 Hz, 2 H), 7.94 - 8.02 (m, 2 H), 7.84 - 7.94 (m, 3 H), 7.75 (s, 1 H), 7.55 (d, *J*=8.5 Hz, 1 H), 7.46 (d, *J*=7.5 Hz, 2 H), 4.76 - 4.90 (m, 1 H), 3.90 (s, 3 H), 3.88 ppm (s, 3 H) ¹³C NMR (DMSO-d₆, 126 MHz): δ = 163.1, 140.1, 133.9, 129.3, 129.0, 129.0, 127.7, 127.1, 126.9, 125.9, 123.5, 120.2, 120.0, 119.7, 110.6, 110.2, 61.0, 60.3, 53.7, 45.7 ¹⁹F NMR (DMSO-d₆, 471 MHz): δ = -64.43 ppm. HRMS (ESI): m/z calculated for C₄₃H₃₄F₃N₈O₁₁ (M+H)⁺ 895.2294, found 895.2303

Supplementary Method 3. Synthesis of Albi-1

Compound 12

Phenol **11**² (1.29 g, 4.62 mmol, 1.00 eq) was dissolved in DMF (40 mL) and successively treated with K₂CO₃ (702 mg, 5.08 mmol, 1.10 eq), *i*PrBr (0.739 mL, 6.01 mmol, 1.30 eq) and KI (7.67 mg, 46.2 µmol, cat.). After stirring at 80 °C for 16 h, the reaction was stopped by the addition of ice water and the aq. solution was extracted with EtOAc (3x). The combined organic phases were washed with brine (5x), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. Purification of the crude product by column chromatography on silica gel (*n*-hexane/EtOAc, 9:1) afforded the title compound **12** (528 mg, 1.64 mmol, 36%) as a yellow oil. ¹H NMR (DMSO-d₆, 400 MHz): δ = 7.70 (d, *J*=8.8 Hz, 1 H), 7.57 (d, *J*=8.5 Hz, 1 H), 5.95 - 6.12 (m, 2 H), 5.22 - 5.47 (m, 3 H), 4.81 (dt, *J*=5.6, 1.3 Hz, 2 H), 4.60 - 4.70 (m, 1 H), 4.53 - 4.60 (m, 2 H), 1.13 - 1.27 ppm (m, 6 H) ¹³C NMR (DMSO-d₆, 101 MHz): δ = 164.0, 151.7, 147.8, 143.8, 133.2, 132.0, 130.4, 124.8, 119.1, 118.7, 118.4, 77.2, 74.7, 65.9, 21.9, 21.9 ppm. HRMS (ESI): m/z calculated for C₁₆H₂₀NO₆ (M+H)⁺ 322.1285, found 322.1282.

Compound 13

Compound **13** was synthesized from ester-protected compound **12** (18.4 g, 57.3 mmol, 1.00 eq.) with 3 N KOH in H₂O (36 mL) according to *standard procedure B*. Compound **13** (14.52 mg, 90%) was obtained as yellow oil. ¹H NMR (DMSO-d₆, 400 MHz): δ = 7.65 (dd, *J*=8.5, 0.8 Hz, 1 H), 7.48 - 7.55 (m, 1 H), 5.97 - 6.11 (m, 1 H), 5.38 (dd, *J*=17.3, 1.3 Hz, 1 H), 5.25 (dd, *J*=10.4, 1.1 Hz, 1 H), 4.60 - 4.72 (m, 1 H), 4.56 (d, *J*=5.5 Hz, 2 H), 1.19 ppm (d, *J*=6.3 Hz, 6 H) ¹³C NMR (DMSO-d₆, 101 MHz):

δ = 166.0, 151.4, 147.3, 143.8, 133.4, 132.1, 124.4, 118.9, 118.1, 77.1, 74.6, 22.0 ppm. HRMS (ESI): m/z calculated for C₁₃H₁₄NO₆ (M-H)⁻ 280.0287, found 280.0826.

Compound 14

Compound **14** was synthesized from benzoic acid **13** (7.84 g, 27.9 mmol, 1.30 eq.), allyl-protected *p*ABA (3.80 g, 21.4 mmol, 1.00 eq.), BTC (2.48 mg, 8.36 mmol, 0.400 eq.), DIPEA (37.4 mL, 215 mmol, 10.0 eq.) and 2,4,6-collidine (29.4 mL, 223 mmol, 10.4 eq.) according to *standard procedure C* - column chromatography: SiO₂, *n*-hexane:EtOAc, 5:1. Compound **14** (5.39 mg, 12.2 mmol, 57%) was obtained as brown oil. ¹H NMR (DMSO-d₆, 400 MHz): δ = 10.78 (s, 1 H), 7.97 - 8.04 (m, 2 H), 7.82 - 7.88 (m, 2 H), 7.73 (d, *J*=8.5 Hz, 1 H), 7.46 (d, *J*=8.5 Hz, 1 H), 5.90 - 6.11 (m, 2 H), 5.25 - 5.45 (m, 3 H), 5.18 (dd, *J*=10.5, 1.8 Hz, 1 H), 4.80 (dt, *J*=5.3, 1.5 Hz, 2 H), 4.64 - 4.73 (m, 1 H), 4.58 - 4.63 (m, 2 H), 1.24 ppm (d, *J*=6.3 Hz, 6 H) ¹³C NMR (DMSO-d₆, 101 MHz): δ = 164.9, 163.9, 149.9, 146.8, 143.4, 143.0, 136.0, 133.1, 132.7, 130.4, 124.6, 123.2, 119.2, 119.1, 118.2, 117.8, 77.2, 74.6, 64.9, 22.0 ppm. HRMS (ESI): m/z calculated for C₂₃H₂₃N₂O₇ (M-H)⁻ 439.1511, found 439.1507.

Compound 15

SnCl₂·2H₂O (22.2 g, 98.3 mmol, 6.00 eq.) was added to a solution of the aromatic nitro compound **14** (5.35 g, 12.1 mmol, 1.00 eq.) in EtOAc (180 mL) and the reaction mixture was stirred at 50 °C for 16 h. The reaction was quenched by the addition of saturated aqueous NaHCO₃, followed by the separation of the two layers and extraction of the aqueous layer with EtOAc (4x). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by column chromatography on silica gel (*n*-hexane/EtOAc, 3:1) afforded the title compound **15** (3.19 g, 8.50 mmol, 70%) as a yellow oil. ¹H NMR (DMSO-d₆, 400 MHz): δ = 10.27 (s, 1 H), 7.95 (d, *J*=8.8 Hz, 2 H), 7.81 (d, *J*=8.8 Hz, 2 H), 7.40 (d, *J*=8.5 Hz, 1 H), 6.56 (d, *J*=8.8 Hz, 1 H), 5.97 - 6.16 (m, 2 H), 5.59 (s, 2 H), 5.35 - 5.51 (m, 2 H), 5.26 (s, 2 H), 4.76 - 4.85 (m, 2 H), 4.62 (d, *J*=5.5 Hz, 2 H), 4.40 - 4.51 (m, 1 H), 1.27 ppm (d, *J*=6.3 Hz, 6 H) ¹³C NMR (DMSO-d₆, 101 MHz): δ = 164.9, 163.9, 150.6, 147.8, 143.6, 135.3, 133.5, 132.8, 130.3, 126.0, 123.6, 118.8, 118.1, 117.7, 114.5, 109.9, 74.4, 73.7, 64.8, 22.2 ppm.

Compound 16

Compound **16** was synthesized from 4-nitropicolinic acid (2.1 g, 13 mmol) according to standard procedure *H* - r.t., 12 h).

Compound 17

Compound **17** was synthesized from acid chloride **16** (3.05 mg, 16.4 mmol, 2.00 eq.) amine **15** (3.36 g, 8.19 mmol, 1.00 eq.) and Et₃N (3.41 mL, 24.6 mmol, 3.00 eq.) according to s*tandard procedure I* - column chromatography: SiO₂, *n*-hexane/EtOAc, 3:1. Compound **17** (4.53 mg, 8.08 mmol, 99%) was obtained as a yellow powder. ¹H NMR (DMSO-d₆, 400 MHz): δ = 10.73 (s, 1 H), 10.56 (s, 1 H), 9.56 (dd, *J*=2.5, 0.5 Hz, 1 H), 8.87 (dd, *J*=8.5, 2.5 Hz, 1 H), 8.41 - 8.46 (m, 1 H), 8.34 (d, *J*=8.5 Hz, 1 H), 7.95 - 8.03 (m, 2 H), 7.87 (d, *J*=8.8 Hz, 2 H), 7.50 (d, *J*=8.5 Hz, 1 H), 5.96 - 6.13 (m, 2 H), 5.35 - 5.48 (m, 2 H), 5.19 - 5.31 (m, 2 H), 4.79 (dt, *J*=5.4, 1.3 Hz, 2 H), 4.65 - 4.73 (m, 1 H), 4.63 (d, *J*=5.8 Hz, 2 H), 1.34 - 1.42 ppm (m, 6 H) ¹³C NMR (DMSO-d₆, 101 MHz): δ = 164.9, 164.3, 159.6, 152.7, 149.2, 146.1, 144.8, 144.3, 143.4, 139.8, 134.7, 134.1, 133.5, 133.1, 132.7, 130.3, 126.6, 125.4, 124.5, 124.2, 123.0, 119.0, 118.0, 117.8, 114.1, 76.5, 74.3, 64.8, 62.0, 22.3 ppm. HRMS (ESI): m/z calculated for C₂₉H₂₉N₄O₈ (M+H)⁺ 561.1980, found 561.1983.

Compound 18

SnCl₂ × 2 H₂O (9.04 g, 40.1 mmol, 5.00 eq.) was added to a solution of the aromatic nitro compound **17** (4.49 g, 8.02 mmol, 1.00 eq.) in EtOAc (120 mL) and the reaction mixture was stirred at 50 °C for 16 h. The reaction was quenched by the addition of saturated aqueous NaHCO₃, followed by the separation of the two layers and extraction of the aqueous layer with EtOAc (4×). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. Purification of the crude product by column chromatography on silica gel (*n*-hexane/EtOAc, 1:2) afforded the title compound **18** (4.04 g, 7.61 mmol, 95%) as an orange solid. ¹H NMR (DMSO-d₆, 400 MHz): δ = 10.53 (d, *J*=17.3 Hz, 2 H), 8.31 - 8.40 (m, 1 H), 7.95 - 8.07 (m, 3 H), 7.87 (d, *J*=8.5 Hz, 3 H), 7.43 - 7.52 (m, 1 H), 6.24 (br. s., 1 H), 6.04 (dddt, *J*=17.2, 10.6, 9.5, 5.3 Hz, 2 H), 5.35 - 5.47 (m, 2 H), 5.16 - 5.32 (m, 2 H), 4.80 (dt, *J*=5.3, 1.5 Hz, 2 H), 4.57 - 4.67 (m, 3 H), 1.35 ppm (d, *J*=6.3 Hz, 6 H) ¹³C NMR (DMSO-d₆, 101 MHz): δ = 164.9, 164.4, 162.1, 149.3, 148.4, 143.5, 139.1, 136.2, 136.1, 134.5, 133.5, 132.7, 130.3, 124.8, 124.6, 124.1, 123.5, 119.3,

119.0, 118.0, 117.8, 113.5, 76.2, 74.2, 64.8, 22.3 ppm. HRMS (ESI): m/z calculated for C₂₉H₃₁N₄O₆ (M+H)⁺ 531.2238, found 531.2240.

Compound 19

Compound **19** was synthesized from Boc/POM-protected azahistidine (1.32 g, 3.55 mmol, 1.2 eq.), tripeptide **18** (1.57 g, 2.96 mmol, 1.00 eq.) and EEDQ (1.46 mg, 5.92 mmol, 2.00 eq.) according to s*tandard procedure D* - column chromatography: SiO₂, 1-5% MeOH in DCM. Compound **19** (1.15 mg, 1.30 mmol, 44%) was obtained as a yellow solid. ¹H NMR (DMSO-d₆, 400 MHz): δ = 10.73 (s, 1 H), 10.68 (s, 1 H), 10.54 (s, 1 H), 8.97 (d, *J*=2.3 Hz, 1 H), 8.36 (d, *J*=8.5 Hz, 1 H), 8.24 - 8.32 (m, 1 H), 8.19 (d, *J*=8.5 Hz, 1 H), 7.94 - 8.05 (m, 3 H), 7.88 (d, *J*=8.8 Hz, 2 H), 7.49 (d, *J*=8.5 Hz, 1 H), 7.31 (d, *J*=7.8 Hz, 1 H), 6.29 (s, 2 H), 5.94 - 6.14 (m, 2 H), 5.34 - 5.48 (m, 2 H), 5.16 - 5.32 (m, 2 H), 1.37 (s, 9 H), 1.07 ppm (s, 6 H) ¹³C NMR (DMSO-d₆, 101 MHz): δ = 176.4, 171.3, 164.9, 164.4, 161.1, 155.3, 149.2, 143.4, 143.3, 143.2, 139.4, 139.4, 138.7, 135.5, 133.5, 132.7, 130.3, 127.1, 125.7, 124.6, 124.2, 124.1, 122.8, 119.0, 118.0, 117.8, 113.8, 78.4, 76.3, 74.3, 69.8, 64.8, 54.9, 38.1, 28.1, 27.6, 26.4, 22.3, 22.3 ppm. HRMS (ESI): m/z calculated for C₄₅H₅₅N₈O₁₁ (M+H)⁺ 883.3985, found 883.3998.

Compound 20

Compound **20** was synthesized from allyl-protected tetrapeptide **19** (1.11 g, 1.25 mmol, 1.00 eq.), Pd(PPh₃)₄ (434 mg, 376 µmol, 0.3 eq.) and morpholine (2.16 mL, 25.1 mmol, 20.0 eq.) according to *standard procedure F* - column chromatography: SiO₂, 10% MeOH in DCM. Compound **20** (851 mg, 2.09 mmol, 84%) was obtained as a yellow solid. ¹H NMR (DMSO-d₆, 400 MHz): δ = 10.86 (s, 1 H), 10.73 (s, 1 H), 8.98 (d, *J*=2.3 Hz, 1 H), 8.30 (dd, *J*=8.7, 2.1 Hz, 1 H), 8.18 (d, *J*=8.8 Hz, 1 H), 8.05 - 8.12 (m, 1 H), 8.01 (s, 1 H), 7.92 - 7.99 (m, 3 H), 7.84 - 7.91 (m, 2 H), 7.30 (d, *J*=7.8 Hz, 1 H), 6.28 (s, 2 H), 4.65 - 4.75 (m, 1 H), 4.39 - 4.51 (m, 1 H), 2.98 - 3.22 (m, 2 H), 1.36 (s, 9 H), 1.07 ppm (s, 6 H) ¹³C NMR (DMSO-d₆, 101 MHz): δ = 176.4, 171.3, 168.6, 166.9, 161.2, 155.3, 143.3, 142.1, 139.4, 138.8, 136.6, 134.0, 130.1, 127.1, 126.1, 124.2, 123.6, 122.8, 120.7, 111.7, 78.4, 74.6, 69.8, 68.5, 55.8, 55.0, 38.1, 32.1, 29.6,

29.0, 28.1, 27.6, 26.4, 22.3, 22.3 ppm. HRMS (ESI): m/z calculated for C₃₉H₄₇N₈O₁₁ (M+H)⁺ 803.3359, found 803.3399.

Compound 21

Compound **21** was synthesized from Boc-protected tetrapeptide **20** (820 mg, 1.02 mmol, 1.00 eq.) with 4 N HCI in dioxane (4 mL) according to *standard procedure E*. Compound **21** (750 mg, 1.00 mmol, quant.) was obtained as light-yellow solid. ¹H NMR (DMSO-d₆, 400 MHz): δ = 12.53 (s, 1 H), 11.87 (s, 1 H), 10.75 (s, 1 H), 10.71 (s, 1 H), 8.98 (d, *J*=2.3 Hz, 1 H), 8.70 (br. s., 2 H), 8.31 (d, *J*=2.5 Hz, 1 H), 8.16 - 8.24 (m, 2 H), 8.07 - 8.13 (m, 1 H), 8.00 - 8.05 (m, 1 H), 7.95 (s, 2 H), 7.85 - 7.92 (m, 2 H), 6.27 (s, 2 H), 4.68 (s, 1 H), 4.50 (br. s., 1 H), 3.40 (d, *J*=6.0 Hz, 2 H), 1.34 (dd, *J*=6.0, 2.3 Hz, 6 H), 1.04 ppm (s, 9 H) ¹³C NMR (DMSO-d₆, 101 MHz): δ = 176.3, 168.7, 167.4, 166.8, 161.1, 154.1, 143.9, 141.9, 140.7, 139.4, 138.1, 136.6, 133.9, 130.1, 127.4, 126.3, 125.0, 123.7, 122.9, 120.8, 111.6, 108.3, 74.7, 69.8, 52.6, 38.1, 26.4, 22.3, 22.3 ppm.

Final coupling of Albi-1

HATU (64.9 mg, 171 µmol, 1.20 eq.) was added to a solution of AB building block **22**³ (45.6 mg, 171 µmol, 1.20 eq.) in anhydrous DMF (2 mL) and the resulting solution was stirred at r.t for 45 min. A solution of tetrapeptide **21** (100 mg, 142 µmol, 1.00 eq.) and DIPEA (0.149 mL) in anhydrous DMF (1 mL) was added dropwise and the reaction mixture was stirred at r.t. for 16 h. All volatiles were removed *in vacuo* and the residue was taken up in a mixture of THF (1 mL) and MeOH (1 mL), and 3 N KOH_(aq.) (1 mL) was added dropwise. After 45 min of stirring, 3 N HCl_(aq.) (1.1 mL) was added and the resulting suspension was evaporated under reduced pressure. The crude material was dissolved in DMSO, centrifuged, and the supernatant purified by HPLC (PLRP-S column, CH₃CN in H₂O). The title compound **Albi-1** (11 mg, 9% over two steps) was obtained as a colorless solid. ¹H NMR (DMSO-d₆, 400 MHz): δ = 12.46 (s, 1 H), 11.01

(s, 1 H), 10.90 (s, 1 H), 10.75 (s, 1 H), 10.62 (s, 1 H), 9.05 (d, *J*=2.3 Hz, 1 H), 8.98 (d, *J*=2.3 Hz, 1 H), 8.89 (d, *J*=7.3 Hz, 1 H), 8.42 (dd, *J*=8.7, 2.4 Hz, 1 H), 8.25 - 8.33 (m, 1 H), 8.13 - 8.22 (m, 3 H), 7.89 - 8.00 (m, 3 H), 7.85 (d, *J*=8.8 Hz, 2 H), 7.54 - 7.67 (m, 1 H), 4.96 - 5.07 (m, 1 H), 4.61 - 4.72 (m, 1 H), 1.34 ppm (dd, *J*=5.8, 4.3 Hz, 6 H) H,C-HSQC NMR (DMSO-d₆, 101 MHz): δ = 140.9, 140.1, 133.2, 130.7, 129.3, 128.4, 128.0, 124.1, 123.3, 123.1, 121.3, 108.7, 75.3, 29.2, 22.7 ppm. HRMS (ESI): m/z calculated for C₄₂H₃₆N₁₁O₉ (M+H)⁺ 838.2692, found 838.2702.

Supplementary Method 4. Synthesis of Albi-2

Compound 24

2,3-Dihydroxybenzoic acid (**23**) (20.0 g, 130 mmol, 1.00 eq.) was dissolved in DMF (200 mL) and cooled down to 0 °C. Et₃N (36.2 mL, 260 mmol, 2.00 eq) was added dropwise followed by acetic anhydride (12.9 mL, 136 mmol, 1.05 eq). The reaction mixture was stirred at r.t. for 5 d. After removing the solvent under reduced pressure, the residue was taken up in EtOAc and washed with brine (3x). The organic phase was dried over anhydrous Na₂SO₄ and concentrated *in vacuo* to afford the pure title compound **24** (18.4 g, 93.8 mmol, 72%) as a light-brown solid. ¹H NMR (DMSO-d₆, 500 MHz): δ = 7.70 (dd, *J*=8.1, 1.2 Hz, 1 H), 7.35 (dd, *J*=7.9, 1.1 Hz, 1 H), 6.93 (t, *J*=7.9 Hz, 1 H), 2.28 ppm (s, 3 H) ¹³C NMR (DMSO-d₆, 126 MHz): δ = 172.2, 168.9, 153.7, 139.2, 129.1, 128.0, 119.0, 115.0, 20.8 ppm.
Benzoic acid **24** (8.50 g, 43.3 mmol, 1.00 eq.) was dissolves in DMF (250 mL) and treated with K₂CO₃ (18.0 g, 130 mmol, 3.00 eq.). The solution was cooled down to 0 °C and allyl bromide (7.49 mL, 86.7 mmol, 2.00 eq.) was added dropwise. After stirring at r.t. for 16 h, the mixture was extracted with EtOAc (3x) and washed with brine (2x). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Purification of the crude product by column chromatography on silica gel (*n*-hexane/EtOAc,8:1) afforded the title compound **25** (11.0 g, 39.8 mmol, 92%) as a colorless oil. ¹H NMR (DMSO-d₆, 500 MHz): δ = 7.64 (dd, *J*=7.9, 1.7 Hz, 1 H), 7.42 (dd, *J*=8.0, 1.8 Hz, 1 H), 7.26 (t, *J*=7.9 Hz, 1 H), 6.01 (dd, *J*=17.2, 8.6 Hz, 2 H), 6.03 (dd, *J*=17.2, 8.7 Hz, 2 H), 5.42 (dd, *J*=17.2, 1.7 Hz, 1 H), 5.19 - 5.38 (m, 4 H), 4.80 (dt, *J*=5.6, 1.5 Hz, 2 H), 4.45 (dt, *J*=5.6, 1.4 Hz, 2 H), 2.30 ppm (s, 3 H) ¹³C NMR (DMSO-d₆, 126 MHz): δ = 169.1, 165.1, 150.3, 145.0, 134.2, 132.8, 128.5, 128.1, 126.8, 124.7, 118.8, 118.1, 75.5, 65.9, 21.0 ppm.

Compound 26

To a solution of the allyl ester **25** (10.0 g, 36.2 mmol, 1.00 eq.) in MeOH (250 mL) was added K₂CO₃ (10.0 g, 72.4 mmol, 2 eq.) and the reaction mixture was stirred at r.t. for 2 d. After removing the solvent under reduced pressure, the residue was taken up in EtOAc, washed with 1 N HCl_(aq.) (2x), brine (3x), and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (*n*-hexane/EtOAc, 8:1) to afford the title compound **26** (7.32 g, 31.3 mmol, 86%) as a yellow oil. ¹H NMR (DMSO-d₆, 500 MHz): δ = 9.69 (s, 1 H), 7.04 - 7.09 (m, 2 H), 6.95 - 7.02 (m, 1 H), 5.98 - 6.14 (m, 1 H), 5.31 (dd, *J*=17.3, 1.6 Hz, 1 H), 5.18 (dd, *J*=10.5, 1.1 Hz, 1 H), 4.50 (d, *J*=5.6 Hz, 2 H), 3.79 ppm (s, 3 H) ¹³C NMR (DMSO-d₆, 126 MHz): δ = 167.0, 151.6, 145.8, 135.0, 126.9, 124.3, 120.5, 117.6, 74.1, 60.2, 52.3, 21.1, 14.5 ppm. HRMS (ESI): *m/z* calculated for C₁₁H₁₃O₄ (M+H)⁺ 209.0808, found 209.0806.

Compound 27

A solution of compound **26** (7.1 g, 34.1 mmol, 1.00 eq.) in acetic anhydride (300 mL) was cooled down to 0 °C and Cu(NO₃)₂·3H₂O (4.94 g, 20.5 mmol, 0.600 eq.) was added in several portions. After stirring at 0 °C for 4 h, the reaction mixture was partitioned between ice water and EtOAc. The aq. phase was extracted with EtOAc

(2x) and the combined organic phases were washed with 3 N HCl_(aq.), dried over Na₂SO₄, and concentrated under reduced pressure. Purification of the crude product by column chromatography on silica gel (*n*-hexane/EtOAc, 9:1) gave the title compound **27** (7.40 g, 29.2 mmol, 86%) as a yellow solid. ¹H NMR (DMSO-d₆, 400 MHz): δ = 10.82 (br. s., 1 H), 7.71 (d, *J*=8.8 Hz, 1 H), 7.21 (d, *J*=8.8 Hz, 1 H), 5.98 - 6.12 (m, 1 H), 5.27 - 5.38 (m, 1 H), 5.15 - 5.27 (m, 1 H), 4.53 (dt, *J*=6.0, 1.3 Hz, 2 H), 3.85 ppm (s, 3 H) ¹³C NMR (DMSO-d₆, 101 MHz): δ = 165.1, 147.7, 146.6, 139.5, 133.5, 130.5, 119.5, 119.1, 118.5, 74.9, 52.5 ppm. HRMS (ESI): *m/z* calculated for C_{11H12}NO₆ (M+H)⁺ 254.0659, found 254.06.

Compound 28

Phenol **27** (1.50 g, 5.92 mmol, 1.00 eq.) was dissolved in DMF (30 mL) and successively treated with Cs₂CO₃ (4.09 g, mmol, 5.00 eq.) and Cbz-protected bromoethane amine (3.21 g, 12.4 mmol, 2.10 eq.). After stirring at 60°C for 16 h, the reaction was stopped by the addition of ice water and the aq. solution was extracted with EtOAc (3x). The combined organic phases were washed with brine (2x), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. Purification of the crude product by column chromatography on silica gel (*n*-hexane/EtOAc, 9:1) afforded the title compound **28** (2.12 g, 4.93 mmol, 83%) as a yellow oil. ¹H NMR (DMSO-d₆, 500 MHz): δ = 7.72 (d, *J*=8.5 Hz, 1 H), 7.57 (s, 1 H), 7.44 (t, *J*=4.5 Hz, 1 H), 7.33 - 7.40 (m, 5 H), 5.96 - 6.10 (m, 1 H), 5.35 (dd, *J*=17.2, 1.4 Hz, 1 H), 5.22 (d, *J*=10.5 Hz, 1 H), 5.04 (s, 2 H), 4.55 (d, *J*=6.0 Hz, 2 H), 4.14 (t, *J*=5.6 Hz, 2 H), 3.86 (s, 3 H), 3.35 - 3.42 ppm (m, 6 H) ¹³C NMR (DMSO-d₆, 126 MHz): δ = 165.2, 156.7, 152.2, 147.0, 146.0, 137.6, 133.6, 131.3, 129.3, 129.1, 128.8, 128.2, 128.2, 125.6, 119.8, 119.3, 75.7, 73.9, 65.8, 53.2 ppm. HRMS (ESI): *m/z* calculated for C₂₁H₂₃N₂O₈ (M+H)⁺ 431.1449, found 431.1436.

Compound 29

To a solution of the benzoic acid ester **28** in a 1:1 mixture of THF and MeOH was slowly added LiOH (419 mg, 9.99 mmol, 10.0 eq.) After complete conversion of the starting material (TLC monitoring), the reaction mixture was acidified to pH ~2 by the addition of 3 N HCl_(aq.). The precipitate was isolated by filtration through a sintered funnel, washed with water and dried under high vacuum to obtain the analytically pure product **29** (340 mg, 0.816 mmol, 82%). ¹H NMR (DMSO-d₆, 500 MHz): δ = 7.69 (d,

J=8.5 Hz, 1 H), 7.54 (d, J=8.5 Hz, 1 H), 7.44 (t, J=5.5 Hz, 1 H), 7.29 - 7.39 (m, 5 H), 5.98 - 6.08 (m, 1 H), 5.35 (d, J=17.1 Hz, 1 H), 5.21 (d, J=10.2 Hz, 1 H), 5.04 (s, 2 H), 4.56 (d, J=5.8 Hz, 2 H), 4.13 (t, J=5.6 Hz, 2 H), 3.35 - 3.43 ppm (m, 2 H) ¹³C NMR (DMSO-d₆, 126 MHz): δ = 166.4, 156.7, 151.9, 146.5, 145.9, 137.6, 133.8, 133.1, 128.8, 128.2, 128.2, 125.3, 119.7, 119.1, 75.6, 73.8, 65.8 ppm. HRMS (ESI): *m/z* calculated for C₂₀H₂₁N₂O₈ (M+H)⁺ 417.1292, found 417.1285.

Compound 30

Compound **30** was synthesized from benzoic acid **29** (780 mg, 1.87 mmol, 1.00 eq.), allyl-protected F building block (1.14 g, 2.06 mmol, 1.10 eq.), BTC (278 mg, 0.937 mmol, 0.500 eq.), DIPEA (2.61 mL, 15.0 mmol, 8.00 eq.) and 2,4,6-collidine (1.49 mL, 11.2 mmol, 6.00 eq.) according to *standard procedure C* - column chromatography: SiO₂, *n*-hexane:EtOAc, 6:1. Compound **30** (834 mg, 1.26 mmol, 67%) was obtained as an orange solid. ¹H NMR (DMSO-d₆, 400 MHz): δ = 10.41 (s, 1 H), 8.19 (d, *J*=8.8 Hz, 1 H), 7.76 - 7.82 (m, 1 H), 7.70 - 7.75 (m, 1 H), 7.57 (d, *J*=8.8 Hz, 1 H), 7.50 (s, 1 H), 7.28 - 7.40 (m, 5 H), 6.85 (s, 1 H), 5.91 - 6.15 (m, 3 H), 5.18 - 5.46 (m, 6 H), 5.05 (s, 2 H), 4.78 (dt, *J*=5.5, 1.4 Hz, 1 H), 4.72 (d, *J*=6.3 Hz, 1 H), 4.53 (d, *J*=5.8 Hz, 1 H), 4.15 - 4.24 (m, 2 H), 3.87 (s, 2 H), 3.42 ppm (d, *J*=5.8 Hz, 2 H) ¹³C NMR (DMSO-d₆, 101 MHz): δ = 170.3, 164.4, 162.3, 156.7, 156.2, 151.2, 150.3, 147.0, 146.2, 145.0, 143.3, 137.1, 135.9, 133.9, 133.5, 132.6, 132.3, 128.3, 127.7, 127.7, 126.0, 124.9, 121.1, 120.8, 120.1, 119.6, 118.1, 117.8, 115.6, 75.5, 74.5, 73.3, 65.4, 65.1, 61.1, 59.7, 50.2, 23.7, 20.7, 20.2, 14.0 ppm. HRMS (ESI): *m/z* calculated for C₃₄H₃₆N₃O₁₁ (M+H)⁺ 662.2344, found 662.2339.

Compound 31

Compound **31** was synthesized from nitro compound **30** (580 mg, 877 µmol, 1.00 eq.) and Zn (5.16 g, 78.9 mmol, 90.0 eq.) according to *standard procedure A*. The title compound **31** (550 mg, 871 mmol, 99%) was obtained as yellow solid. ¹H NMR (DMSO-d₆, 400 MHz): δ = 10.60 (s, 1 H), 8.34 (d, *J*=8.8 Hz, 1 H), 7.48 - 7.68 (m, 3 H), 7.28 - 7.41 (m, 5 H), 6.58 (d, *J*=8.5 Hz, 1 H), 5.95 - 6.16 (m, 3 H), 5.88 (s, 2 H), 5.19 - 5.45 (m, 6 H), 5.06 (s, 2 H), 4.72 - 4.80 (m, 4 H), 4.53 (d, *J*=5.8 Hz, 2 H), 3.94 (t, *J*=5.4 Hz, 2 H), 3.88 (s, 2 H), 3.44 (d, *J*=5.5 Hz, 2 H), 3.32 (s, 1 H), 1.99 ppm (s, 2 H) ¹³C NMR (DMSO-d₆, 101 MHz): δ = 170.3, 164.4, 163.0, 156.3, 151.1, 150.3, 147.4, 142.0, 137.2, 137.1, 136.5, 134.0, 132.8, 132.7, 128.3, 127.7, 127.7, 127.1, 126.3, 120.8,

119.8, 119.3, 118.0, 117.7, 114.3, 113.0, 110.2, 74.7, 74.5, 71.4, 65.3, 65.0, 60.8, 59.7, 20.7, 14.0 ppm. HRMS (ESI): m/z calculated for C₃₄H₃₈N₃O₉ (M+H)⁺ 632.2603, found 632.2610.

Compound 32

Compound **32** was synthesized from acid chloride **16** (400 mg, 2.14 mmol, 2.26 eq.), amine **31** (600 mg, 0.950 mmol, 1.00 eq.) and Et₃N (0.66 mL, 4.8 mmol, 5.00 eq.) according to standard procedure *I* - column chromatography: SiO₂, *n*-hexane/EtOAc, 7:1. Compound **32** (312 mg, 0.399 mmol, 42%) was obtained as orange solid. ¹H NMR (DMSO-d₆, 400 MHz): δ = 10.59 (d, *J*=12.5 Hz, 1 H), 9.08 (d, *J*=2.5 Hz, 1 H), 8.67 (dd, *J*=8.5, 2.5 Hz, 1 H), 8.40 (d, *J*=8.5 Hz, 1 H), 8.26 (d, *J*=8.8 Hz, 2 H), 7.79 (d, *J*=8.5 Hz, 1 H), 7.57 (d, *J*=8.8 Hz, 1 H), 7.20 - 7.38 (m, 6 H), 5.87 - 6.16 (m, 3 H), 5.13 - 5.50 (m, 6 H), 4.90 - 5.02 (m, 2 H), 4.75 - 4.86 (m, 3 H), 4.66 (d, *J*=6.5 Hz, 1 H), 4.51 - 4.58 ppm (m, 2 H) ¹³C NMR (DMSO-d₆, 101 MHz): δ = 170.3, 168.5, 164.3, 147.5, 145.0, 143.6, 136.9, 132.6, 128.3, 127.7, 118.1, 106.0, 74.5, 65.3, 61.0, 59.7, 20.7, 14.1 ppm. HRMS (ESI): *m/z* calculated for C₄₀H₄₀N₅O₁₂ (M+H)⁺ 782.2668, found 782.2691.

Compound 33

Compound **33** was synthesized from nitro compound **32** (700 mg, 895 µmol, 1.00 eq.) and Zn (4.39 g, 67.2 mmol, 75.0 eq.) according to *standard procedure A*. The title compound **33** (642 mg, 854 mmol, 95%) was obtained as yellow solid. ¹H NMR (DMSO-d₆, 400 MHz): δ = 10.62 (s, 1 H), 10.55 (s, 1 H), 8.41 (s, 1 H), 8.33 (d, *J*=8.8 Hz, 1 H), 7.47 - 7.63 (m, 2 H), 7.16 - 7.41 (m, 5 H), 6.27 (s, 1 H), 5.93 - 6.17 (m, 3 H), 5.17 - 5.52 (m, 4 H), 4.72 - 4.87 (m, 2 H), 4.54 (d, *J*=5.8 Hz, 1 H), 4.16 (s, 1 H), 3.84 - 3.99 ppm (m, 2 H). HRMS (ESI): m/z calculated for C₄₀H₄₂N₅O₁₀ (M+H)⁺ 752.2926, found 752.2925.

Compound 34

Compound **34** was synthesized from Boc/POM-protected azahistidine (527 mg, 1.42 mmol, 1.75 eq.), tripeptide **33** (611 mg, 813 mmol, 1.00 eq.) and EEDQ (352 mg, 1.42 mmol, 1.75 eq.) according to s*tandard procedure D* - column chromatography: SiO₂, 1-5% MeOH in DCM. Compound **34** (352 mg, 0.319 mmol, 39%) was obtained as a yellow solid. ¹H NMR (DMSO-d₆, 500 MHz): δ = 10.75 (br. s., 1 H), 10.69 (s, 1 H), 10.61 (s, 1 H), 8.99 (br. s., 1 H), 8.41 (d, *J*=8.9 Hz, 1 H), 8.33 (d, *J*=8.9 Hz, 1 H), 8.18

(d, *J*=8.5 Hz, 1 H), 8.00 (s, 1 H), 7.88 (d, *J*=9.0 Hz, 1 H), 7.58 (d, *J*=8.8 Hz, 1 H), 7.52 (t, *J*=5.3 Hz, 1 H), 7.23 - 7.34 (m, 6 H), 6.29 (s, 2 H), 5.98 - 6.15 (m, 3 H), 5.20 - 5.47 (m, 7 H), 4.97 (s, 2 H), 4.75 - 4.86 (m, 4 H), 4.55 (d, *J*=5.8 Hz, 2 H), 4.40 - 4.50 (m, 1 H), 4.22 (t, *J*=5.2 Hz, 2 H), 3.92 (s, 3 H), 3.54 (d, *J*=5.3 Hz, 2 H), 2.96 - 3.19 (m, 2 H), 1.09 ppm (s, 9 H) ¹³C NMR (DMSO-d₆, 126 MHz): δ = 176.9, 170.8, 164.9, 162.0, 151.6, 143.0, 137.5, 137.0, 134.4, 133.1, 132.9, 128.7, 128.1, 127.6, 126.8, 122.3, 121.1, 120.7, 118.6, 118.3, 115.3, 78.8, 75.6, 75.0, 70.3, 65.8, 65.6, 61.5, 60.2, 28.6, 26.9, 21.2, 14.6 ppm. HRMS (ESI): m/z calculated for C₅₆H₆₆N₉O₁₅ (M+H)⁺ 1104.4673, found 1104.4675.

Compound 35

Compound **35** was synthesized from allyl-protected tetrapeptide **34** (190 mg, 172 µmol, 1.00 eq.), Pd(PPh₃)₄ (79.5 mg, 68.8 µmol, 0.400 eq.) and morpholine (297 µl, 3.44 mmol, 20.0 eq.) according to *standard procedure* F - column chromatography: SiO₂, 1-10% MeOH in DCM. Compound **35** (112 mg, 114 mmol, 66%) was obtained as a yellow solid. ¹H NMR (DMSO-d₆, 400 MHz): δ = 11.77 (br. s., 1 H), 10.82 (br. s., 2 H), 10.55 (s, 1 H), 8.98 (s, 1 H), 8.31 (d, *J*=8.8 Hz, 1 H), 8.16 (d, *J*=8.8 Hz, 1 H), 8.09 (br. s., 1 H), 8.00 (s, 1 H), 7.87 (d, *J*=9.3 Hz, 1 H), 7.53 - 7.75 (m, 2 H), 7.49 (d, *J*=8.8 Hz, 2 H), 7.24 - 7.35 (m, 6 H), 6.28 (s, 2 H), 4.99 (s, 2 H), 4.44 (br. s., 1 H), 4.08 (br. s., 2 H), 3.87 (s, 3 H), 3.54 (d, *J*=4.8 Hz, 2 H), 3.51 (s, 6 H), 1.36 (s, 9 H), 1.08 ppm (s, 9 H). HRMS (ESI): m/z calculated for C₄₇H₅₄N₉O₁₅ (M+H)⁺ 984.3734, found 984.3757.

Compound 36

Compound **36** was synthesized from Boc-protected tetrapeptide **35** (109 mg, 111 μ mol, 1.00 eq.) with 4 \times HCl in dioxane (4 mL) according to *standard procedure E*. Compound **36** (97 mg, 110 μ mol, quant.) was obtained as light-yellow solid. HRMS (ESI): m/z calculated for C₄₂H₄₆N₉O₁₃ (M+H)⁺ 884.3210, found 884.3212.

40

Final coupling of Albi-2

Albi-2 was synthesized from PCP-ester **37** (78.7 mg, 136 μmol, 1.20 eq.), tetrapeptide **36** (97.0 mg, 110 μmol, 1.00 eq.) and Et₃N (115 μl, 659 mmol, 6.00 eq.) according to *standard procedure G*. Final derivative **Albi-2** (4.6 mg, 5% over three steps) was obtained as a colorless solid. ¹H NMR (DMSO-d₆, 700 MHz): δ = 10.85 (br. s., 1 H), 10.53 (br. s., 1 H), 10.44 (br. s., 1 H), 10.13 (br. s., 1 H), 9.47 (br. s., 1 H), 9.03 (br. s., 1 H), 8.82 (br. s., 1 H), 8.77 (d, *J*=7.9 Hz, 1 H), 8.44 - 8.57 (m, 2 H), 8.30 (d, *J*=8.3 Hz, 2 H), 8.16 - 8.25 (m, 2 H), 7.94 (br. s., 7 H), 7.78 - 7.88 (m, 3 H), 7.16 - 7.25 (m, 3 H), 4.94 (br. s., 1 H), 4.17 (br. s., 2 H), 3.95 (br. s., 3 H), 3.90 ppm (br. s., 2 H) ¹³C NMR (DMSO-d₆, 126 MHz): δ =145.2, 139.8, 133.5, 133.3, 132.1, 131.3, 131.0, 129.0, 128.6, 128.5, 127.8, 126.7, 126.5, 126.0, 125.9, 125.8 125.1, 125.0, 123.3, 120.0, 119.8, 119.6, 119.5, 119.5, 109.0, 70.1, 69.7, 64.1, 63.1, 60.4, 60.3, 60.2, 60.2, 54.8, 53.9, 53.5, 52.4, 51.5, 44.1, 42.8, 41.1, 40.2, 40.2, 40.1, 40.0, 39.8, 39.6, 37.9, 34.1, 33.9, 31.7, 30.8, 30.7, 29.3, 29.2, 28.5, 28.4, 27.9, 27.7, 27.7, 27.1, 26.5, 26.4, 24.9, 24.6, 23.0, 22.5, 21.9, 19.8, 18.5, 14.4 ppm. HRMS (ESI): m/z calculated for C₄₆H₄₁N₁₀O₁₂ (M+H)⁺ 925.2900, found 925.2904.

Supplementary Method 5. Synthesis of Albi-3

Compound 39

2-Methylquinoline-6-carboxylic acid (38, 100 mg, 534 µmol, 1.00 eq.) was dissolved in DMF (1 mL) and HOBt (36.1 mg, 267 µmol, 0.50 eq.), HATU (304 mg, 801 µmol, 1.50 eq.) and DIPEA (279 µL, 1.60 mmol, 3.00 eq.) were added and the reaction mixture was stirred for 1 h at room temperature. 4-Methyl-aminobenzoate (121 mg, 801 µmol, 1.50 eq.) was added and the reaction mixture was stirred 18 h at room temperature. The reaction mixture was diluted by EtOAc (30 mL) and the organic layer was washed by a saturated aqueous NaHCO₃ solution (3 × 20 mL) and by a saturated aqueous NaCl solution (1 × 20 mL). The organic layer was dried over MgSO₄, filtered and the solvent was removed under reduced pressure by rotary evaporation. The crude material was purified by flash column chromatography (SiO₂, EtOAc/Hex 1:1) and afforded methyl 4-(2-methylquinoline-6-carboxamido)benzoate (39, 85.0 mg, 267 μ mol, 50%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.71 (s, 3 H) 3.85 (s, 3 H) 7.54 (d, J=8.53 Hz, 1 H) 7.99 (s, 4 H) 8.04 (d, J=8.78 Hz, 1 H) 8.22 (dd, J=8.78, 2.01 Hz, 1 H) 8.42 (d, J=8.53 Hz, 1 H) 8.60 (d, J=1.76 Hz, 1 H) 10.77 (s, 1 H) ¹³C NMR $(DMSO-d_6, 101 \text{ MHz})$: $\delta = 165.8, 165.6, 161.0, 148.5, 143.6, 137.1, 131.5, 130.1,$ 128.4, 128.0, 125.3, 124.4, 123.1, 119.6, 51.9, 38.2, 25.0 ppm. HRMS (ESI): m/z calculated for C₁₉H₁₆N₂O₃ (M+H)⁺ 321.1229, found 321.1234.

Methyl 4-(2-methylquinoline-6-carboxamido)benzoate (**39**, 85.0 mg, 267 μ mol, 1.00 eq.) was dissolved in MeOH/THF (2 mL, 1:1) and 5 M KOH solution (1 mL) was added and the reaction mixture was stirred for 18 h at room temperature. The volatiles were removed under reduced pressure by rotary evaporation and a 3 M HCl solution (2 mL) was added. The precipitated solid was filtered and washed by 1 M HCl solution. After drying at high vacuum 4-(2-methylquinoline-6-carboxamido)benzoic acid (**40**, 81.0 mg, 267 μ mol, 100%) was obtained as brownish solid. HRMS (ESI): m/z calculated for C₁₈H₁₄N₂O₃ (M+H)⁺ 307.1074, found 307.1077.

Final coupling of Albi-3

HATU (67.0 mg, 176 µmol, 1.35 eq.) was added to a solution of AB building block 40 (51.9 mg, 169 µmol, 1.30 eq.) in anhydrous DMF (1 mL) and the resulting solution was stirred at r.t for 45 min. A solution of tetrapeptide **41**¹ (94.0 mg, 130 µmol, 1.00 eq.) and DIPEA (136 µL, 780 µmol, 6.00 eq.) in anhydrous DMF (1 mL) was added dropwise and the reaction mixture was stirred at r.t for 16 h. All volatiles were removed in vacuo and the residue was taken up in a mixture of THF (1 mL) and MeOH (1 mL), and 3 N KOH_(aq.) (1 mL) was added dropwise. After 45 min of stirring, 3 N HCl_(aq.) (1.1 mL) was added and the resulting suspension was evaporated under reduced pressure. The crude material was dissolved in DMSO, centrifuged, and the supernatant purified by HPLC (PLRP-S column, CH₃CN in H₂O). The title compound Albi-3 (13 mg, 9% over two steps) was obtained as a colorless solid. ¹H NMR (DMSO d_{6} , 700 MHz): δ = 11.71 (br. s., 1 H), 11.58 (br. s., 1 H), 11.12 (s, 1 H), 10.86 (s, 1 H), 10.82 (s, 1 H), 10.49 (s, 1 H), 8.94 - 9.01 (m, 1 H), 8.84 (d, J=7.5 Hz, 2 H), 8.77 (s, 1 H), 8.40 (d, J=8.8 Hz, 1 H), 8.34 (dd, J=8.5, 2.1 Hz, 1 H), 8.21 (d, J=8.5 Hz, 1 H), 8.17 (d, J=8.8 Hz, 1 H), 8.11 (d, J=8.8 Hz, 1 H), 8.03 (d, J=9.0 Hz, 1 H), 7.92 - 7.98 (m, 4 H), 7.88 (d, J=9.0 Hz, 1 H), 7.82 (d, J=8.1 Hz, 1 H), 7.72 (br. s., 1 H), 7.59 (d, J=8.8 Hz, 1 H), 4.96 (br. s., 2 H), 3.92 (s, 3 H), 3.88 (s, 3 H), 3.34 (dd, J=14.8, 5.7 Hz, 1 H), 3.28 (dd, J=14.8, 9.3 Hz, 1 H), 2.86 ppm (s, 3 H) H,C-HSQC NMR (DMSO-d₆, 101 MHz): δ =172.4, 171.6, 171.6, 171.6, 171.5, 166.4, 166.4, 165.3, 165.3, 165.2, 163.9, 163.8, 161.8, 160.9, 154.8, 150.0, 143.9, 143.8, 142.3, 140.0, 139.9, 139.9, 139.9, 139.3, 139.2, 138.2, 137.8, 137.7, 137.7, 136.6, 136.6, 136.6, 135.9, 133.6, 130.8, 129.1, 129.0, 127.6, 127.6, 127.6, 126.1, 126.1, 126.1, 124.3, 119.8, 119.8,

119.8, 119.8, 115.9, 115.9, 110.8, 110.8, 110.8, 110.7, 110.7, 110.7, 109.4, 60.6, 60.6, 54.7, 54.6, 39.9, 27.5, 23.4, 23.4 ppm. HRMS (ESI): m/z calculated for $C_{45}H_{38}N_{10}O_{11}$ (M+H)+: 895.2786, found 895.2794.

Supplementary Method 6. Synthesis of alkyne-Albi

Final coupling of alkyne-Albi

HATU (84.5 mg, 222 µmol, 1.4 eq.) was added to a solution of biaryl alkyne 42⁴ (51.0 mg, 275 µmol, 1.3 eq.) in anhydrous DMF (3 mL) and the resulting solution was stirred at r.t for 45 min. A solution of tetrapeptide 41¹ (114 mg, 159 µmol, 1.0 eq.) and DIPEA (0.138 mL) in anhydrous DMF (1 mL) was added dropwise and the reaction mixture was stirred at r.t for 16 h. All volatiles were removed in vacuo and the residue was taken up in a mixture of THF (1 mL) and MeOH (1 mL), and 3 N KOH_(aq.) (1 mL) was added dropwise. After 45 min of stirring, 3 N HCl_(aq.) (1.1 mL) was added and the resulting suspension was evaporated under reduced pressure. The crude material was dissolved in DMSO, centrifuged, and the supernatant purified by HPLC (PLRP-S column, CH₃CN in H₂O). The title compound **alkyne-Albi** (13 mg, 10% over two steps) was obtained as a colorless solid. ¹H NMR (DMSO-d₆, 500 MHz): δ = 11.70 (br. s., 1 H), 11.59 (br. s., 1 H), 11.11 (s, 1 H), 10.86 (s, 1 H), 10.48 (s, 1 H), 9.05 (d, J=7.2 Hz, 1 H), 8.97 (s, 1 H), 8.33 (d, J=8.5 Hz, 1 H), 8.20 (d, J=8.4 Hz, 1 H), 8.11 (d, J=8.9 Hz, 1 H), 7.99 - 8.05 (m, 2 H), 7.96 (d, J=8.1 Hz, 3 H), 7.92 (d, J=8.2 Hz, 3 H), 7.88 (d, J=8.9 Hz, 1 H), 7.78 (d, J=8.2 Hz, 2 H), 7.72 (d, J=8.1 Hz, 3 H), 7.59 (d, J=8.9 Hz, 1 H), 4.91 - 5.00 (m, 1 H), 3.92 (s, 3 H), 3.87 (s, 3 H), 3.24 - 3.37 ppm (m, 2 H) ¹³C NMR (DMSO-d₆, 126 MHz): δ 139.2, 132.4, 132.0, 131.4, 129.1, 127.9, 127.8, 127.0, 126.3, 125.4, 122.7, 110.1, 60.5, 60.0, 54.1, 52.1, 39.4 ppm. HRMS (ESI): m/z calculated for C₄₃H₃₄N₉O₁₀ (M+H)⁺ 836.2423, found 836.2402.

Synthesis of o-Anisidine variations

Compound 44

Compound **44** was synthesized from acid chloride **16** (5.79 g, 31.0 mmol, 1.00 eq.), amine **43** (4.20, 34.1 mmol, 1.10 eq.) and Et₃N (8.65 mL, 62.1 mmol, 2.00 eq.) according to *standard procedure I* - column chromatography: SiO₂, *n*-hexane/EtOAc, 7:1. Compound **44** (8.2 g, 97%) was obtained as a yellow solid. ¹H NMR (500 MHz, DMSO-d₆): δ = 10.36 (s, 1 H), 9.48 (dd, J=2.5, 0.5 Hz, 1 H), 8.83 (dd, J=8.5, 2.6 Hz, 1 H), 8.36 - 8.43 (m, 13 H), 7.12 - 7.23 (m, 14 H), 7.02 (ddd, J=8.2, 5.9, 2.7 Hz, 7 H), 3.95 ppm (s, 3 H) ¹³C NMR (126 MHz, DMSO-d₆): δ = 160.0, 153.7, 149.2, 146.4, 144.6, 134.4, 126.8, 125.4, 123.4, 121.2, 119.8, 111.6, 56.6 ppm. HRMS (ESI): m/z calculated for C_{13H12}N₃O₄ (M+H)⁺ 274.0822, found 274.0830.

Compound 45

A solution of the nitro compound **44** (7.10 g, 26.0 mmol, 1.00 eq) in a mixture of MeOH (75 mL) and THF (75 mL) was purged with N₂ for 5 min, then Pd (10 wt.% on activated carbon, 1.38 g) was added. The resulting suspension was purged with N₂ for 5 min followed by H₂ for 5 min. The reaction mixture was stirred at r.t. under a H₂-atmosphere overnight. The suspension was filtered through a pad of Celite[®] and the filtrate concentrated under reduced pressure to afford the title compound **45** (5.84 g, 20.6 mmol, 79%) as a colorless solid. ¹H NMR (DMSO-d₆, 500 MHz): $\delta = 10.20$ (s, 1

H), 8.44 (dd, *J*=7.9, 1.4 Hz, 1 H), 8.12 (d, *J*=2.6 Hz, 1 H), 7.94 (d, *J*=8.5 Hz, 1 H), 7.30 (d, *J*=7.6 Hz, 1 H), 7.23 (dd, *J*=8.6, 2.7 Hz, 1 H), 7.04 - 7.12 (m, 2 H), 6.94 - 7.00 (m, 1 H), 5.39 (td, *J*=7.0, 4.0 Hz, 1 H), 3.92 ppm (s, 3 H) ¹³C NMR (DMSO-d₆, 126 MHz): δ = 162.4, 148.6, 146.6, 138.6, 135.0, 127.9, 123.9, 123.5, 121.1, 119.8, 118.9, 111.3, 83.9, 66.3, 56.4, 31.5 ppm. HRMS (ESI): m/z calculated for C₁₃H₁₄N₃O₂ (M+H)⁺ 244.1081, found 244.1077.

Compound 46

Compound **46** was synthesized from Boc-protected azahistidine (1.71 g, 4.62 mmol, 1.50 eq.), dipeptide **45** (750 mg, 3.08 mmol, 1.00 eq.) and EEDQ (1.14 g, 4.62 mmol, 1.50 eq.) according to *standard procedure* D - column chromatography: SiO₂, Hexane/EtOAc (1:4). Compound **46** (1.80 g, 98%) was obtained as a yellow solid. ¹H NMR (DMSO-d₆, 500 MHz): δ = 10.70 (s, 1 H), 10.31 (s, 1 H), 8.86 (d, J=2.1 Hz, 1 H), 8.39 - 8.49 (m, 1 H), 8.30 (dd, J=8.5, 2.4 Hz, 1 H), 8.16 (d, J=8.7 Hz, 1 H), 7.99 (s, 1 H), 7.28 (d, J=7.9 Hz, 1 H), 7.07 - 7.18 (m, 2 H), 7.01 (dd, J=7.9, 2.4 Hz, 1 H), 6.28 (s, 2 H), 4.37 - 4.49 (m, 1 H), 3.95 (s, 3 H), 2.99 - 3.19 (m, 2 H), 1.37 (s, 8 H), 1.08 ppm (s, 9 H) ¹³C NMR (DMSO-d₆, 126 MHz): δ = 176.9, 171.7, 161.5, 155.8, 148.9, 144.3, 139.9, 138.9, 127.6, 127.4, 124.7, 124.5, 123.1, 121.1, 119.3, 111.4, 78.9, 70.3, 60.2, 56.5, 55.4, 28.6, 28.1, 26.9 ppm. HRMS (ESI): m/z calculated for C₂₉H₃₈N₇O₇ (M+H)⁺ 596.2827, found 596.2831.

Compound 47

Compound **47** was synthesized from Boc-protected tripeptide **45** (1.65 g, 2.77 mmol, 1.00 eq.) with 4 N HCl in dioxane (40 mL) according to *standard procedure E*. Compound **47** (1.47 g, quant.) was obtained as light-yellow solid. ¹H NMR (DMSO-d₆, 500 MHz): δ = 11.61 (s, 1 H), 10.32 (s, 1 H), 8.91 (dd, J=2.4, 0.5 Hz, 1 H), 8.62 (d, J=4.9 Hz, 3 H), 8.42 - 8.46 (m, 1 H), 8.29 (dd, J=8.6, 2.4 Hz, 1 H), 8.16 - 8.21 (m, 2 H), 7.08 - 7.17 (m, 2 H), 7.01 (ddd, J=8.2, 6.1, 2.5 Hz, 1 H), 6.28 (d, J=1.2 Hz, 2 H), 4.39 - 4.49 (m, 1 H), 3.95 (s, 3 H), 3.57 (s, 2 H), 1.06 ppm (s, 9 H) ¹³C NMR (DMSO-d₆, 126 MHz): δ = 176.8, 167.8, 161.4, 148.9, 145.0, 141.2, 140.0, 138.1, 128.0, 127.4, 125.5, 124.6, 123.2, 121.1, 119.3, 111.5, 70.4, 66.8, 56.5, 53.2, 26.9 ppm HRMS (ESI): m/z calculated for C₂₄H₃₀NrO₅ (M+H)⁺ 496.2303, found 496.2299.

AE-1

HATU (229 mg, 602 µmol, 2.00 eq.) was added to a solution of AB dipeptide 48³ (120 mg, 451 µmol, 1.5 eg.) in anhydrous DMF (3 mL) and the resulting solution was stirred at r.t for 45 min. A solution of tripeptide 47 (160 mg, 301 µmol, 1.0 eg.) and DIPEA (0.524 mL) in anhydrous DMF (1 mL) was added dropwise and the reaction mixture was stirred at r.t for 16 h. All volatiles were removed in vacuo and the residue was taken up in a mixture of THF (1 mL) and MeOH (1 mL), and 3 N KOH_(ag.) (1 mL) was added dropwise. After 45 min of stirring, 3 N HCl_(aq.) (1.1 mL) was added and the resulting suspension was evaporated under reduced pressure. The crude material was dissolved in DMSO, centrifuged, and the supernatant purified by HPLC (PLRP-S column, CH₃CN in H₂O). The title compound **AE-1** (49 mg, 26% over two steps) was obtained as a colourless solid. ¹H NMR (DMSO-d₆, 500 MHz): δ = 10.98 (s, 1 H), 10.85 (s, 1 H), 10.32 (s, 1 H), 9.05 (d, J=2.1 Hz, 1 H), 8.84 - 8.92 (m, 2 H), 8.39 - 8.50 (m, 2 H), 8.26 - 8.34 (m, 1 H), 8.13 - 8.21 (m, 3 H), 8.08 (dd, J=8.4, 2.9 Hz, 3 H), 7.66 (s, 1 H), 7.06 - 7.19 (m, 2 H), 6.94 - 7.06 (m, 1 H), 5.03 (d, J=7.5 Hz, 1 H), 3.95 (s, 3 H), 3.38 ppm (d, J=6.4 Hz, 2 H) 13 C NMR (DMSO-d₆, 126 MHz): δ = 170.7, 165.3, 163.8, 161.5, 158.9, 148.9, 144.8, 144.6, 140.9, 140.0, 138.7, 138.7, 138.5, 133.1, 129.2, 128.3, 127.9, 127.4, 124.6, 123.2, 123.0, 121.1, 119.4, 118.7, 114.8, 111.4, 56.5, 53.9 ppm. HRMS (ESI): m/z calculated for $C_{32}H_{27}N_{10}O_5$ (M+H)⁺ 631.2160, found 631.2155.

AE-2

HATU (229 mg, 602 µmol, 2.00 eq.) was added to a solution of AB dipeptide **48**³ (120 mg, 451 µmol, 1.5 eq.) in anhydrous DMF (3 mL) and the resulting solution was stirred at r.t for 45 min. A solution of tripeptide **47** (160 mg, 301 µmol, 1.0 eq.) and DIPEA (0.524 mL) in anhydrous DMF (1 mL) was added dropwise and the reaction mixture was stirred at r.t for 16 h. All volatiles were removed *in vacuo* and the residue was taken up in a mixture of THF (1 mL) and MeOH (1 mL), and 3 N KOH_(aq.) (1 mL) was added dropwise. After 45 min of stirring, 3 N HCl_(aq.) (1.1 mL) was added and the resulting suspension was evaporated under reduced pressure. The crude material was dissolved in DMSO, centrifuged, and the supernatant purified by HPLC (PLRP-S column, CH₃CN in H₂O). The title compound **AE-2** (64 mg, 34% over two steps) was obtained as a colorless solid. ¹H NMR (DMSO-d₆, 500 MHz): δ = 10.82 (s, 1 H), 10.71 (s, 1 H), 10.32 (s, 1 H), 8.91 (br. s., 1 H), 8.83 (d, J=7.5 Hz, 1 H), 8.44 (d, J=7.9 Hz, 1 H), 8.34 (d, J=8.2 Hz, 1 H), 8.17 (d, J=8.7 Hz, 1 H), 8.10 - 8.15 (m, J=7.8 Hz, 2 H),

8.01 - 8.09 (m, J=7.9 Hz, 2 H), 7.84 - 7.98 (m, 4 H), 7.71 (br. s., 1 H), 7.13 (br. s., 2 H), 7.00 (t, J=6.6 Hz, 1 H), 4.95 (d, J=6.9 Hz, 1 H), 3.95 (s, 3 H), 3.21 - 3.41 ppm (m, 2 H) ¹³C NMR (DMSO-d₆, 126 MHz): δ = 171.5, 166.5, 164.9, 161.5, 148.9, 144.4, 142.2, 139.9, 139.1, 138.9, 133.0, 129.4, 129.1, 128.9, 127.7, 127.4, 124.5, 123.2, 121.1, 120.0, 119.3, 118.7, 114.5, 111.4, 56.5, 54.8 ppm. HRMS (ESI): m/z calculated for C₃₃H₂₈N₉O₅ (M+H)⁺ 630.2208, found 630.2209.

Final coupling of AE-3

AE-3

Compound **AE-3** was synthesized from PCP-ester **50**² (100 mg, 183 µmol, 1.10 eq.), tripeptide **47** (88.6 mg, 167 µmol, 1.00 eq.) and DIPEA (145 µl, 0.833 mmol) according to *standard procedure G*. Final derivative **AE-3** (29 mg, 22%) was obtained as a colorless solid. ¹H NMR (DMSO-d₆, 500 MHz): δ = 10.81 (br. s., 1 H), 10.32 (br. s., 1 H), 10.08 (br. s., 1 H), 9.78 (br. s., 1 H), 8.90 (br. s., 1 H), 8.76 (d, *J*=7.2 Hz, 1 H), 8.44 (d, *J*=7.3 Hz, 1 H), 8.34 (d, *J*=7.9 Hz, 1 H), 8.17 (d, *J*=8.1 Hz, 1 H), 7.77 - 7.92 (m, 4 H), 7.71 (br. s., 1 H), 7.32 - 7.41 (m, *J*=8.1 Hz, 2 H), 7.27 (br. s., 1 H), 7.13 (br. s., 2 H), 7.00 (br. s., 1 H), 6.80 - 6.89 (m, *J*=7.9 Hz, 2 H), 4.94 (d, *J*=6.7 Hz, 1 H), 3.95 (s, 3 H), 3.21 - 3.39 (m, 2 H), 2.12 ppm (br. s., 3 H) ¹³C NMR (DMSO-d₆, 126 MHz): δ = 171.6, 169.3, 166.6, 161.5, 158.0, 148.9, 144.4, 143.0, 139.9, 138.9, 134.3, 131.7, 130.0, 128.7, 128.5, 127.7, 127.4, 127.0, 124.5, 123.2, 121.1, 119.5, 119.3, 115.9, 111.4, 56.5, 54.7, 15.0 ppm. HRMS (ESI): m/z calculated for C₃₅H₃₃N₈O₆ (M+H)⁺ 661.2518, found 661.2521.

Supplementary Method 8. Synthesis of AE-4

Compound 51

Compound **51** was synthesized from acid chloride **16** (2.90 g, 15.6 mmol, 1.00 eq.), amine **50** (2.59 g, 17.1 mmol, 1.10 eq.) and Et₃N (4.33 mL, 31.1 mmol, 2.00 eq.) according to *standard procedure I* - column chromatography: SiO₂, *n*-hexane/EtOAc, 4:6. Compound **51** (2.88 g, 62%) was obtained as a red solid. ¹H NMR (CDCl₃-d, 500 MHz): δ = 10.54 (br. s., 1 H), 9.39 (dd, *J*=2.6, 0.6 Hz, 1 H), 8.60 (dd, *J*=8.5, 2.4 Hz, 1 H), 8.50 (dd, *J*=8.0, 1.6 Hz, 1 H), 8.43 (dd, *J*=8.6, 0.7 Hz, 1 H), 7.00 - 7.06 (m, 1 H), 6.95 (td, *J*=7.7, 1.2 Hz, 1 H), 6.90 (dd, *J*=8.1, 1.4 Hz, 1 H), 4.51 - 4.65 (m, 1 H), 1.53 (s, 1 H), 1.38 - 1.41 (m, 3 H), 1.37 ppm (s, 3 H) ¹³C NMR (CDCl₃-d, 126 MHz): δ = 159.5, 154.8, 147.2, 145.6, 143.9, 132.8, 128.2, 124.7, 122.9, 121.3, 119.9, 113.5, 72.0, 22.2 ppm. HRMS (ESI): m/z calculated for C₁₅H₁₆N₃O₄ (M+H)⁺ 302.1135, found 302.1134.

Compound 52

Compound **52** was synthesized from nitro compound **51** (770 mg, 2.56 mmol, 1.00 eq.) and Zn (8.35 g, 128 mmol, 50.0 eq.) according to *standard procedure A*. The title compound **52** (653 mg, 92%) was obtained as yellow solid. HRMS (ESI): m/z calculated for C₁₅H₁₈N₃O₂ (M+H)⁺ 272.1394, found 272.1395.

Compound 53

Compound **53** was synthesized from Boc-protected azahistidine (751 mg, 2.03 mmol, 1.1 eq.), dipeptide **52** (500 mg, 1.84 mmol, 1.00 eq.) and EEDQ (547 mg, 2.21 mmol, 1.20 eq.) according to standard procedure D - column chromatography: SiO₂, EtOAc/Hexane (2:6). Compound **53** (880 mg, 77%) was obtained as a yellow solid. ¹H NMR (DMSO-d₆, 400 MHz): δ = 10.67 (s, 1 H), 10.47 (s, 1 H), 8.91 (d, *J*=2.3 Hz, 1 H), 8.45 (dd, *J*=8.0, 1.8 Hz, 1 H), 8.25 (dd, *J*=8.7, 2.4 Hz, 1 H), 8.15 (d, *J*=8.5 Hz, 1 H),

8.00 (s, 1 H), 7.29 (d, *J*=7.8 Hz, 1 H), 7.12 - 7.18 (m, 1 H), 7.08 (td, *J*=7.7, 1.6 Hz, 1 H), 6.95 - 7.03 (m, 1 H), 6.28 (s, 3 H), 4.69 (quin, *J*=6.0 Hz, 1 H), 4.43 (d, *J*=6.0 Hz, 1 H), 3.15 (dd, *J*=14.4, 5.6 Hz, 1 H), 3.02 (dd, *J*=14.6, 9.0 Hz, 1 H), 1.33 - 1.40 (m, 18 H), 1.07 ppm (s, 11 H) ¹³C NMR (DMSO-d₆, 101 MHz): δ = 176.9, 171.7, 161.4, 155.8, 146.9, 144.4, 143.7, 139.9, 138.8, 128.9, 127.6, 124.7, 124.3, 123.0, 121.5, 119.2, 114.8, 78.9, 72.0, 70.3, 60.2, 55.4, 28.6, 26.9, 22.4, 14.6 ppm. HRMS (ESI): m/z calculated for C₃₁H₄₂N₇O₇ (M+H)⁺ 624.3140, found 624.3130.

Compound 54

Compound **54** was synthesized from Boc-protected tripeptide **53** (400 mg, 641 μ mol, 1.00 eq.) with 4 N HCl in dioxane (15 mL) according to *standard procedure E*. Compound **54** (322 mg, 96%) was obtained as light-yellow solid. HRMS (ESI): m/z calculated for C₂₆H₃₄N₇O₅ (M+H)⁺ 524.2616, found 524.2594.

Final coupling of AE-4

HATU (136 mg, 357 µmol, 2.00 eq.) was added to a solution of AB dipeptide **22**³ (66.8 mg, 250 µmol, 1.4 eq.) in anhydrous DMF (3 mL) and the resulting solution was stirred at r.t for 45 min. A solution of tripeptide **47** (100 mg, 179 µmol, 1.0 eq.) and DIPEA (0.249 mL) in anhydrous DMF (1 mL) was added dropwise and the reaction mixture was stirred at r.t. for 16 h. All volatiles were removed in vacuo and the residue was taken up in a mixture of THF (1 mL) and MeOH (1 mL), and 3 N KOH_(aq.) (1 mL) was added dropwise. After 45 min of stirring, 3 N HCl_(aq.) (1.1 mL) was added and the resulting suspension was evaporated under reduced pressure. The crude material was dissolved in DMSO, centrifuged, and the supernatant purified by HPLC (PLRP-S column, CH₃CN in H₂O). The title compound **AE-4** (75 mg, 64% over two steps) was obtained as a colorless solid. ¹H NMR (DMSO-d₆, 400 MHz): δ = 11.00 (s, 1 H), 10.84 (s, 1 H), 10.49 (s, 1 H), 9.06 (d, *J*=2.0 Hz, 1 H), 8.85 - 8.97 (m, 2 H), 8.39 - 8.49 (m, 3 H), 8.25 (dd, *J*=8.5, 2.3 Hz, 1 H), 8.16 (d, *J*=8.5 Hz, 3 H), 8.04 - 8.11 (m, 3 H), 7.66

(s, 1 H), 7.10 - 7.17 (m, 1 H), 7.03 - 7.10 (m, 1 H), 6.94 - 7.02 (m, 1 H), 4.96 - 5.09 (m, 1 H), 4.60 - 4.74 (m, 1 H), 3.38 (d, *J*=6.3 Hz, 2 H), 2.88 (s, 1 H), 1.36 ppm (dd, *J*=5.8, 1.3 Hz, 6 H) ¹³C NMR (DMSO-d₆, 101 MHz): δ = 170.7, 165.3, 163.8, 161.4, 146.9, 144.8, 140.8, 140.1, 138.7, 138.5, 133.0, 129.2, 128.9, 128.3, 127.8, 124.3, 123.0, 123.0, 121.5, 119.2, 118.7, 114.8, 72.1, 53.9, 28.0, 22.4 ppm. HRMS (ESI): m/z calculated for C₃₄H₃₁N₁₀O₅ (M+H)⁺ 659.2473, found 659.2478.

Supplementary Method 9. Synthesis of AE-5

Compound 56

Compound **56** was synthesized from acid chloride **16** (2.90 g, 15.6 mmol, 2.00 eq.), amine **55** (1.36 g, 8.55 mmol, 1.10 eq.) and Et₃N (2.17 mL, 2.00 eq.) according to standard procedure *I* - column chromatography: SiO₂, *n*-hexane/EtOAc, 7:1. Compound **56** (2.04 g, 85%) was obtained as a colorless solid. ¹H NMR (DMSO-d₆, 500 MHz): δ = 10.39 (s, 1 H), 9.50 (d, *J*=2.6 Hz, 1 H), 8.84 (dd, *J*=8.5, 2.6 Hz, 1 H), 8.40 (d, *J*=8.5 Hz, 1 H), 8.04 (ddd, *J*=9.2, 5.6, 2.3 Hz, 1 H), 7.18 - 7.31 (m, 1 H), 4.06 ppm (s, 3 H) ¹³C NMR (DMSO-d₆, 126 MHz): δ = 160.7, 153.4, 148.9, 148.8, 147.0, 146.9, 146.5, 144.8, 144.6, 142.8, 142.7, 140.0, 139.9, 134.4, 127.8, 123.6, 116.4, 116.4, 116.3, 116.3, 111.4, 111.2, 62.4, 62.3 ppm. HRMS (ESI): m/z calculated for C₁₃H₁₀F₂N₃O₄ (M+H)⁺ 310.0634, found 310.0629.

Compound 57

Compound **57** was synthesized from nitro compound **56** (700 mg, 2.26 mmol, 1.00 eq.) and Zn (7.40 g, 113 mmol, 50.0 eq.) according to *standard procedure A*. The title compound **57** (620 mg, 98%) was obtained as yellow solid. ¹H NMR (CDCl₃-d, 400 MHz): δ = 10.15 (br. s., 1 H), 8.23 (ddd, J=9.3, 5.5, 2.5 Hz, 1 H), 7.95 - 8.01 (m, 2 H), 7.00 (dd, J=8.4, 2.9 Hz, 1 H), 6.83 (td, J=9.7, 8.3 Hz, 1 H), 4.02 (d, J=2.3 Hz, 4 H), 1.54 ppm (s, 2 H) ¹³C NMR (CDCl₃-d, 101 MHz): δ = 162.8, 145.3, 142.5, 140.2, 135.2, 128.3, 123.6, 121.1, 114.1, 114.0, 113.9, 110.8, 110.6, 61.8 ppm. HRMS (ESI): m/z calculated for C₁₃H₁₂F₂N₃O₂ (M+H)⁺ 280.0892, found 280.0891.

Compound 58

Compound **58** was synthesized from Boc-protected azahistidine (730 mg, 1.97 mmol, 1.10 eq.), dipeptide **57** (500 mg, 1.79 mmol, 1.00 eq.) and EEDQ (509 mg, 2.06 mmol, 1.15 eq.) according to standard procedure D - column chromatography: SiO₂,

Hexane/EtOAc (8:1). Compound **58** (550 mg, 49%) was obtained as a yellow solid. ¹H NMR (DMSO-d₆, 400 MHz): δ = 10.72 (s, 1 H), 10.28 (s, 1 H), 8.89 (d, *J*=2.3 Hz, 1 H), 8.26 - 8.34 (m, 1 H), 8.10 - 8.18 (m, 2 H), 8.00 (s, 2 H), 7.29 (d, *J*=7.8 Hz, 1 H), 7.20 (d, *J*=9.5 Hz, 1 H), 6.29 (s, 2 H), 4.39 - 4.49 (m, 1 H), 4.05 (d, *J*=1.8 Hz, 3 H), 3.16 (dd, *J*=14.6, 5.3 Hz, 1 H), 3.03 (dd, *J*=14.7, 9.2 Hz, 1 H), 1.36 (s, 8 H), 1.08 ppm (s, 9 H) ¹³C NMR (DMSO-d₆, 101 MHz): δ = 176.9, 171.8, 170.8, 161.9, 155.8, 151.0, 148.2, 146.1, 146.0, 145.0, 144.8, 143.9, 143.7, 139.9, 139.2, 139.1, 136.4, 129.9, 129.4, 128.5, 128.5, 127.5, 127.0, 124.7, 123.3, 121.9, 115.2, 111.4, 111.2, 78.9, 70.3, 62.3, 62.3, 60.2, 55.4, 28.6, 28.1, 26.9, 21.2, 14.5 ppm. HRMS (ESI): m/z calculated for C₂₉H₃₈F₂NrO₇ (M+H)⁺ 632.2639, found 632.2635.

Compound 59

Compound **59** was synthesized from Boc-protected tripeptide **58** (320 mg, 507 μ mol, 1.00 eq.) with 4 N HCl in dioxane (20 mL) according to *standard procedure E*. Compound **59** (266 mg, 99%) was obtained as light-yellow solid. HRMS (ESI): m/z calculated for C₂₄H₂₈F₂N₇O₅ (M+H)⁺ 532.2114, found 532.2101.

Final coupling of AE-5

HATU (134 mg, 352 µmol, 2.00 eq.) was added to a solution of AB dipeptide **48**³ (70.3 mg, 264 µmol, 1.5 eq.) in anhydrous DMF (3 mL) and the resulting solution was stirred at r.t for 45 min. A solution of tripeptide **47** (100 mg, 176 µmol, 1.0 eq.) and DIPEA (0.245 mL) in anhydrous DMF (1 mL) was added dropwise and the reaction mixture was stirred at r.t for 16 h. All volatiles were removed in vacuo and the residue was taken up in a mixture of THF (1 mL) and MeOH (1 mL), and 3 N KOH_(aq.) (1 mL) was added dropwise. After 45 min of stirring, 3 N HCl_(aq.) (1.1 mL) was added and the resulting suspension was evaporated under reduced pressure. The crude material was dissolved in DMSO, centrifuged, and the supernatant purified by HPLC (PLRP-S

column, CH₃CN in H₂O). The title compound **AE-5** (33 mg, 28% over two steps) was obtained as a colorless solid. ¹H NMR (DMSO-d₆, 400 MHz): δ = 14.69 (br. s., 1 H), 10.86 (s, 1 H), 10.72 (s, 1 H), 10.29 (s, 1 H), 8.93 (d, *J*=2.0 Hz, 1 H), 8.85 (d, *J*=7.5 Hz, 1 H), 8.29 - 8.38 (m, 1 H), 8.10 - 8.20 (m, 4 H), 8.05 (d, *J*=8.3 Hz, 2 H), 7.84 - 7.98 (m, 4 H), 7.70 (br. s., 1 H), 7.22 (q, *J*=9.4 Hz, 1 H), 4.87 - 5.01 ppm (m, 1 H) ¹³C NMR (DMSO-d₆, 101 MHz): δ = 171.1, 166.0, 164.4, 161.5, 143.4, 141.7, 139.4, 138.6, 132.5, 128.9, 128.6, 128.4, 128.0, 127.1, 122.9, 119.5, 118.3, 114.9, 114.0, 110.9, 110.7, 61.9, 61.8, 54.3 ppm. HRMS (ESI): m/z calculated for C₃₃H₂₆F₂N₉O₅ (M+H)⁺ 666.2019, found 666.2016.

Supplementary Method 10. Spectral data

Photo-Albi

59

¹H-¹³C-HSQC with magnification of relevant sections and annotations of signals (Ar: Aromatic, Me: Methyl, *: DMSO, ** impurity).

¹H-¹³C-HSQC with magnification of relevant sections and annotations of signals (Ar: Aromatic, Me: Methyl, *: DMSO, ** impurity).

¹H-¹³C-HSQC with magnification of relevant sections and annotations of signals (Ar: Aromatic, Me: Methyl, *: DMSO, ** impurity).

¹H-¹³C-HMQC with magnification of relevant sections and annotations of signals (Ar: Aromatic, Me: Methyl, *: DMSO, ** impurity).

alkyne-Albi

¹H Chemical Shift (ppm)

¹H-¹³C-HSQC with magnification of relevant sections and annotations of signals (Ar: Aromatic, Me: Methyl, *: DMSO, ** impurity).

Supplementary References

1. Zborovsky, L. *et al.* Improvement of the antimicrobial potency, pharmacokinetic and pharmacodynamic properties of albicidin by incorporation of nitrogen atoms. *Chem. Sci.* **12**, 14606-14617, doi:10.1039/D1SC04019G (2021).

2. Behroz, I. *et al.* Extensive Structure-Activity Relationship Study of Albicidin's C-Terminal Dipeptidic p-Aminobenzoic Acid Moiety. *Eur. J. Chem.* **25**, 16538-16543, doi:10.1002/chem.201904752 (2019).

3. Moeller, M. *et al.* Scalable Syntheses of Methoxyaspartate and Preparation of the Antibiotic Cystobactamid 861-2 and Highly Potent Derivatives. *Org. Lett.* **21**, 8369-8372, doi:10.1021/acs.orglett.9b03143 (2019).

4. Behroz, I. *et al.* Acetylenic Replacement of Albicidin's Methacrylamide Residue Circumvents Detrimental E/Z Photoisomerization and Preserves Antibacterial Activity. *Eur. J. Chem.* **27**, 9077-9086, doi:10.1002/chem.202100523 (2021)