Online Supplemental material

Supplemental Figures and legends

Supplemental Figure 1. Haplotype of HM1 and HM2 families and *GLRA2* variants detected in HM3 family. (A) The haplotype of HM1 and HM2 families shows no founder effect. (B) Co-segregation status of variant c.1021G>A (p.Val341IIe) in HM3 family. □' and 'O' symbols present asymptomatic male and female subjects, respectively; '■' and '●' characters stand for male and female patients, respectively. Samples selected for ES were marked with '*'. '+' stands for wild-type allele and '-' refers to c.1021G>A variant in *GLRA2* gene.

Supplemental Figure 3. Functional assessment of HM-related variants. (A) Immunofluorescent staining of wild type and mutated plasmids overexpressed in HEK293 cells with anti-GlyRa2. (B) Isolation of biotinylated membrane protein of wild-type and mutated GlyRa2. (C) Electrophysiological characteristics of wild-type and mutated GlyRa2.

Supplemental Figure 4. X-inactivation proportion of asymptomatic subject III:9 in HM1 family. The results show no skewed inactivation of X chromosome between subject III:9 and other female patients.

Supplemental tables

Supplemental Table 1. Primers were used in this study.

Primer Name	Primer sequence 5'-3'	Product size	Note	
GLRA2-E1F	CCAACTCCCTTTGCATGGTG	621hp	Amplify GLRA2 exon 1	
GLRA2-E1R	CGTTGGCTGTGAAAATGTGTG	03100		
GLRA2-E2F	GTGACGCGACTCAGGATTTA	COOba	Amplify CLDA2 aven 2	
GLRA2-E2R	TCAGCCACACTCCCACTTAC	0330þ	Ampiliy GLRA2 exon 2	
GLRA2-E3F	ACTCTTCAGGGTAAGTTGCCA	552hn		
GLRA2-E3R	GAGGCGAGCAAAGTTGGAAA	5520b	Ampiny GLAA2 exon 3	
GLRA2-E5F	AAAAGCACTGCCCTGAGTTG	690bp		
GLRA2-E5R	CCCTTCCTGCCAGAATTCCT	9900b	Ampily GLAAZ exon 5	
GLRA2-E5S	GGGGTTGGTCAGTATATAGGGA	—	GLRA2 exon 5 sequencing primer	
GLRA2-E4F	ACTCGGACACCAAAGCTGTA	188hn	Amplify GLRA2 even A	
GLRA2-E4R	GGGACTTCTGACACTCTCCA	40000	Ampiliy GLAZ exon 4	
GLRA2-E6F	TGGCTCCAATGACACAGAGT	459bp	Amplify GLRA2 avon 6	
<i>GLRA2</i> -E6R	TTTGAGCCAAATCAGGTCCG	40000	Ampily GLAAZ EXON 0	
GLRA2-E7F	CGTAGGGTGAACATTTTGTGC	528hn	Amplify GLRA2 even 7	
GLRA2-E7R	TTCCCCATGTTCCCAGATCC	5200p	Ampily GLAZ EXON 7	
GLRA2-E8F	GCGTGTGACTTTCAGTGCTC	601hn	Amplify GLRA2 avon 8	
GLRA2-E8R	GGAGCCCAGTTACTTCCGAA	09100	Ampily GLAZ EXON 6	
GLRA2-E9F	CCTCCCACACCACCAGTTAA	721hn	Amplify GLRA2 even 9	
GLRA2-E9R	TGACCCCGCATATCATGTCT	72100	Ampiny GLAAZ EXON 9	
<i>mGlra2</i> -E2F	AGCAAGTGAGAAAATAAGCATGT	279hn	Amplify GIra2 knockout allele	
<i>mGlra2</i> -E2R	TGCAAGCAAACTCTATCATTGG	27560		
<i>mGlra2</i> -E2Fb	ACTTGGTTGACATTGCTCAGG	110bp	Amplify GIra2 wild type allele	
<i>mGlra2</i> -E2Rb	CAGGGAGGCTGAAATTGTGT	44000		
mSRY-F	GTGACACTTTAGCCCTCCGA	331hn	Amplify sex determine gene	
<i>mSRY</i> -R	TAGTGTTCAGCCCTACAGCC	90 4 00		
ARF	HEX-GCTGTGAAGGTTGCTGTTCCTCAT	288bp	ChrX-inactivation detection	
ARR	TCCAGAATCTGTTCCAGAGCGTGC	20000		

Cytoband	Markers	LOD_Score	Size
	rs7066674	-0.07	
	rs4830891	2.88	
	rs4825340	2.88	
	rs6633421	2.88	
Xp22.2-p11.4			24.7Mb
	rs4332301	1.89	
	rs5971622	0.88	
	rs1801686	0.31	
	rs6609813	-2.07	

Supplemental Table 2. Genome-wide multi-point parameter linkage analysis results of HM1 family.

-	•	-	-
Measurements	Wild type (mm, mean ±SEM)	Knockout (mm, mean ±SEM)	n, p-value
Cornea thickness	0.1259±0.0037	0.1167±0.0037	p=0.049*, n=8pairs
Cornea radius	1.524±0.0370	1.504±0.0251	p=0.6857, n=8pairs
Chamber depth	0.4086±0.0107	0.4174±0.0064	p=0.5422, n=8pairs
Lens thickness	1.821±0.0440	1.804±0.0296	p=0.7580, n=8pairs
Vitreous depth	0.5731±0.0155	0.5793±0.0102	p=0.7618, n=8pairs
Retina thickness	0.1876±0.0051	0.1825±0.0046	p=0.4658, n=8pairs
Axial length	2.929±0.0721	2.913±0.04755	p=0.8609, n=8pairs

Supplemental Table 3. Glra2 knockout mice ocular biometry measured by OCT.

Measurements	Wild-type (µV, mean ±SEM)	Knockout (µV, mean ±SEM)	n, p-value
Photopic 3.0 a wave	8.386±0.7088	7.284±0.7756	p=0.291, n=11pairs
Photopic 3.0 b wave	77.45±5.081	62.61±4.763	p=0.093, n=11pairs
Photopic 3.0 flicker	25.51±1.516	22.48±1.796	p=0.296, n=11pairs

Supplemental Table 5. Nonsynonymous variants on the GLRA2 gene were reported previously and in

the current study.					
No.	Patient_ID	Sex	Variation	Inheritance	Phenotype
1	12724	F	c.16G>C[1]	de novo	Autism.
2	11842	М	c.407A>G[1, 2]	de novo	Autism.
3	Patient 2	М	c.458G>A[2]	de novo	Non-syndromic autism, severe language delay with functional language, mild intellectual disability, generalized tonic-clonic seizures; But his autistic elder sister does not carry the variant.
4	AGP: 6323_3	М	E8-9del[2, 3]	Maternal	Autism, average IQ, language delay, bilateral HM, normal physical exam, no epilepsy; His mother and maternal grandfather are also myopic.
5	S00125- ASD-GT	F	c.1049G>T[4, 5]	Maternal	Autism.
6	M21227	М	c.458G>A ^a	NA	HM.
7	HM1-II:4 HM2-III:5	F	c.539C>Tª	Familial	Among these two families, 18 patients with HM, two heterozygotes with normal phenotype.
8	HM3-111:3	F	c.1021G>Aª	Familial	Two heterozygotes with HM, two heterozygotes with normal phenotype, and two patients without the variant

a, this study; NA, not available

Supplemental references

Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, Stessman HA, 1. Witherspoon KT, Vives L, Patterson KE, Smith JD, Paeper B, Nickerson DA, Dea J, Dong S, Gonzalez LE, Mandell JD, Mane SM, Murtha MT, Sullivan CA, Walker MF, Wagar Z, Wei L, Willsey AJ, Yamrom B, Lee YH, Grabowska E, Dalkic E, Wang Z, Marks S, Andrews P, Leotta A, Kendall J, Hakker I, Rosenbaum J, Ma B, Rodgers L, Troge J, Narzisi G, Yoon S, Schatz MC, Ye K, McCombie WR, Shendure J, Eichler EE, State MW, Wigler M. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515(7526):216-21. Pilorge M, Fassier C, Le Corronc H, Potey A, Bai J, De Gois S, Delaby E, Assouline B, 2. Guinchat V, Devillard F, Delorme R, Nygren G, Rastam M, Meier JC, Otani S, Cheval H, James VM, Topf M, Dear TN, Gillberg C, Leboyer M, Giros B, Gautron S, Hazan J, Harvey RJ, Legendre P, Betancur C. Genetic and functional analyses demonstrate a role for abnormal glycinergic signaling in autism. Mol Psychiatry. 2016;21(7):936-45. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, Conroy J, Magalhaes 3. TR, Correia C, Abrahams BS, Almeida J, Bacchelli E, Bader GD, Bailey AJ, Baird G, Battaglia A, Berney T, Bolshakova N, Bolte S, Bolton PF, Bourgeron T, Brennan S, Brian J, Bryson SE, Carson AR, Casallo G, Casey J, Chung BH, Cochrane L, Corsello C, Crawford EL, Crossett A, Cytrynbaum C, Dawson G, de Jonge M, Delorme R, Drmic I, Duketis E, Duque F, Estes A, Farrar P, Fernandez BA, Folstein SE, Fombonne E, Freitag CM, Gilbert J, Gilberg C, Glessner JT, Goldberg J, Green A, Green J, Guter SJ, Hakonarson H, Heron EA, Hill M, Holt R, Howe JL, Hughes G, Hus V, Igliozzi R, Kim C, Klauck SM, Kolevzon A, Korvatska O, Kustanovich V, Lajonchere CM, Lamb JA, Laskawiec M, Leboyer M, Le Couteur A, Leventhal BL, Lionel AC, Liu XQ, Lord C, Lotspeich L, Lund SC, Maestrini E, Mahoney W, Mantoulan C, Marshall CR, McConachie H, McDougle CJ, McGrath J, McMahon WM, Merikangas A, Migita O, Minshew NJ, Mirza GK, Munson J, Nelson SF, Noakes C, Noor A, Nygren G, Oliveira G, Papanikolaou K, Parr JR, Parrini B, Paton T, Pickles A, Pilorge M, Piven J, Ponting CP, Posey DJ, Poustka A, Poustka F, Prasad A, Ragoussis J, Renshaw K, Rickaby J, Roberts W, Roeder K, Roge B, Rutter ML, Bierut LJ, Rice JP, Salt J, Sansom K, Sato D, Segurado R, Sequeira AF, Senman L, Shah N, Sheffield VC, Soorya L, Sousa I, Stein O, Sykes N, Stoppioni V, Strawbridge C, Tancredi R, Tansey K, Thiruvahindrapduram B, Thompson AP, Thomson S, Tryfon A, Tsiantis J, Van Engeland H, Vincent JB, Volkmar F, Wallace S, Wang K, Wang Z, Wassink TH, Webber C, Weksberg R, Wing K, Wittemeyer K, Wood S, Wu J, Yaspan BL, Zurawiecki D, Zwaigenbaum L, Buxbaum JD, Cantor RM, Cook EH, Coon H, Cuccaro ML, Devlin B, Ennis S, Gallagher L, Geschwind DH, Gill M, Haines JL, Hallmayer J, Miller J, Monaco AP, Nurnberger JI, Jr., Paterson AD, Pericak-Vance MA, Schellenberg GD, Szatmari P, Vicente AM, Vieland VJ, Wijsman EM, Scherer SW, Sutcliffe JS, Betancur C. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010;466(7304):368-72.

4. Piton A, Gauthier J, Hamdan FF, Lafreniere RG, Yang Y, Henrion E, Laurent S, Noreau A, Thibodeau P, Karemera L, Spiegelman D, Kuku F, Duguay J, Destroismaisons L, Jolivet P, Cote M, Lachapelle K, Diallo O, Raymond A, Marineau C, Champagne N, Xiong L, Gaspar C, Riviere JB, Tarabeux J, Cossette P, Krebs MO, Rapoport JL, Addington A, Delisi LE, Mottron L, Joober R, Fombonne E, Drapeau P, Rouleau GA. Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. *Mol Psychiatry*. 2011;16(8):867-80.

5. Zhang Y, Ho TNT, Harvey RJ, Lynch JW, Keramidas A. Structure-function analysis of the GlyR alpha2 subunit autism mutation p.R323L reveals a gain-of-function. *Front Mol Neurosci*. 2017;10:158.