

SquiggleKit: supplementary
information

Contents:
Contents:

1. Detailed description of finding 3’ end motif example

2. Comparison to accessible methods with related functions
Table 1: Overview of tool comparisons

3. Extended comparison
BulkVis
Poretools
Picopore
PoRe
HDFView
Japsa
ReadUntil
Tombo/NanoRaw
Nanopolish

4. Standardisation of signal for comparison
Sup. Figure 1: Comparison of raw signal scaling strategies on MotifSeq scoring

5. Benchmarking
System specifications:
Fast5_fetcher speed
Table 2: Fast5_fetcher speed benchmark
Segmenter speed
Table 3: Segmenter speed (default parameters on cDNA sequins)
MotifSeq speed
Table 4: MotifSeq speed in function of k-mer length (default parameters on .tsv files)
Segmenter accuracy
Sup. Figure 2: Segmenter boundary assessment
Table 5: Segmenter Accuracy
MotifSeq accuracy
Sup. Figure 3: MotifSeq scoring benchmark

6. Supplementary References

1. Detailed description of finding 3’ end motif example
Note: The use of Parallel Alignment File (PAF) format over sam format is arbitrary. It does
however only keep reads that aligned, whereas sam includes all reads, thus streamlining
fast5 filtering.

1. Aligning reads with minimap2 with paf output:

$ minimap2 -x ont-map sequin.fa reads.fastq > alignment.paf

2. Filtering paf file for reads of interest, where R2_151 represents a unique identifier for the
transcript group of interest.

$ grep R2_151 alignment.paf > filtered.paf

3. Using a filtered .paf file (generated in 2.) as input for fast5_fetcher:

$ mkdir fast5
$ python fast5_fetcher.py -p filtered.paf -s sequencing_summary.txt
-i name.index -o ./fast5

4. Extract signals from fast5 files to a tab separated values (tsv) file:

$ python SquigglePull.py -rv -p ./fast5/ -f all > signals.tsv

5. Plot signals:

$ python SquigglePlot.py -s signals.tsv --save R2_151.pdf --
save_path ./pics/ --no_show

6. Identify any segments in signals and visualise each one:

$ python segmenter.py -s signals.tsv -v > segments.tsv

7. Motif identification. Fasta format for creating signal from model (in a custom file named
motif.fa for this example):

>my_kmer_name
CATCTATCCAGGGTTAAATT

8. Find the best match to that k-mer in the signal, and visualise it:

$ python MotifSeq.py -s signals.tsv -i motif.fa -v >
signals_kmer.tsv

2. Comparison to accessible methods with related
functions

Table 1: Overview of tool comparisons

Tools

SquiggleKit

fast5_fetcher SquigglePull SquigglePlot Segmenter MotifSeq

BulkVis

Poretools

Picopore

poRe

HDFView

Japsa

ReadUntil

Tombo/NanoRaw

Nanopolish

Legend

Not the same Similar
functionality

Equal
functionality

Extraction and Visualisation:

● Poretools - extract events, not raw (Loman and Quinlan, 2014)
● poRe - extract events, not raw (Watson et al., 2015)
● Nanoraw - raw signal visualisation and comparison, aligns signal to base
● Tombo - raw signal visualisation and comparison, aligns signal to base (Stoiber et al.,

2017)
● HDFView - single file, basic visualisation (http://www.hdfgroup.org/HDF5/)
● BulkVis - bulk fast5 files, real time (Payne et al., 2018)

File Management:

● Picopore - removes data from fast5 files to reduce size (Gigante, 2017)
● Japsa - manages files, streams data and performs base space analysis (Nguyen et

al., 2017)

Analysis:
● ReadUntil - local dynamic programming, real time (Loose et al., 2016)
● Nanopolish - File management, segmentation, aligns signal to base (Loose et al.,

2016; Loman et al., 2015; Loman and Quinlan, 2014)

3. Extended comparison
Comparison

BulkVis

Info BulkVis enables visualization of bulk FAST5 files collected from
Nanopore sequencers.
BulkVis is provided for the visual inspection of challenging or
difficult to sequence samples or where the user wishes to
investigate specific events during a run. In these instances analysis
of a bulk FAST5 file may provide some visual indication of the
underlying issues

Last update September 2018

Links https://academic.oup.com/bioinformatics/advance-
article/doi/10.1093/bioinformatics/bty841/5193712
https://bulkvis.readthedocs.io/en/latest/index.html

Similarities Parses sequencing_summary.txt, .paf, and bulk fast5 files to break
down MinKNOW states: above, adapter, pore, transition,
unblocking, and unclassified. Outputs in a .csv. This is similar to the
adapter stall targeting by segmenter, however the segmenter
algorithm is novel.

It allows for great visualisation and annotation of signals in a bulk
fast5 file. This is similar to SquigglePlot, but are used for different
applications

Differences SquigglePlot and segmenter work with regular fast5 files, or any
signal input, where BulkVis plots bulk fast5 files.

Comments and use It has a specific use case around examining reads using
MinKNOW’s classifications and requires bulk fast5 file.

Comparison
Poretools

Info Poretools provides a wealth of utilities and data exploration tools.

Last update 10 Jul 2017

Links https://github.com/arq5x/poretools

Similarities Poretools contains event data extraction similar to that of
SquigglePull

Differences Poretools extracts event data, which is no longer used as the basis
of basecalling.
Events changed to a static time for sampling and changed in format,
breaking Poretools for the latest data.

Comments and use Poretools was one of the first tools used for generating stats and
getting a feel for nanopore data. It is no longer routinely used, and
does not have support for raw signal data.
If the user is after raw signal data and visualisation, picking
SquigglePull and SquigglePlot would be the superior choice

Comparison
Picopore

Info A tool for reducing the size of Oxford Nanopore Technologies'
datasets without losing information.

Last update 31 Aug 2017

Links http://dx.doi.org/10.12688/f1000research.11022.1
https://github.com/scottgigante/picopore

Similarities Reduction in memory footprint, but by gutting fast5 files of various
information. This is similar to extracting the raw signal with
SquigglePull and gzipping.
The reduction in memory footprint also overlaps with the reasoning
behind fast5_fetcher, downsizing to only mapped fast5 files, or fast5
files of interest

Differences The methodology of memory footprint for storage or use are quite
different, where picopore guts and compresses data, fast5_fetcher
filters and SquigglePull extracts into a different format.

Comments and use Picopore is no longer under active development. Due to
improvements in ONT's native HDF5 compression, lossless and
deep-lossless compression no longer effectively reduce the size of
nanopore files.
With the increase in yields, and lack of methods to compress that
data, both fast5_fetcher and SquigglePull can be of use to reduce

what data you need depending on the kind of analysis you are
trying to undertake.

Comparison
PoRe

Info This package enables organisation and visualisation of MinION
data on the MinION laptop for the novice user.

Last update 31 Aug 2017

Links https://github.com/mw55309/poRe_docs
https://sourceforge.net/projects/rpore/files/
https://github.com/mw55309/poRe_scripts

Similarities poRe contains event data extraction similar to that of SquigglePull

Differences poRe does not extract or visualise raw signal

Comments and use poRe is no longer under development. It works with legacy fast5
files and older basecaller data structures.

Comparison
HDFView

Info HDFView is a visual tool written in Java for browsing and editing
HDF5 files. View a file hierarchy in a tree structure. Create new
files, add or delete groups and datasets. View and modify the
content of a dataset. Add, delete and modify attributes.

Last update updated current 2019

Links http://www.hdfgroup.org/HDF5/

Similarities HDFView allows for basic visualisation of raw signal data, with
overlap with SquigglePlot

Differences SquigglePlot has many more features than HDFView for
visualisation, and can plot many files at once with custom settings,
at high DPI for figures.

Comments and use HDFView is excellent for exploring a fast5 file for information and
structure or visualising one signal.
When working with many signals, or just wanting to look at the
signal directly, SquigglePlot is superior.

Comparison
Japsa

Info Japsa has many packages that do a variety of nanopore data
analysis and data streaming.

Last update update current 2019 - multi package project

Links https://japsa.readthedocs.io/en/latest/index.html
https://www.ncbi.nlm.nih.gov/pubmed/28961965

Similarities Japsa has packages for real time file management and analysis
during sequencing.

Differences Japsa employs many base space sequence analysis methods like
barcode demultiplexing. It does not however do any analysis,
extraction, or visualisation of raw signal

Comments and use Japsa seems to have been built as a pipeline for many real time
analysis methods. It does not have any significant overlap other
than file some file management.

Comparison
ReadUntil

Info ReadUntil has a function, squiggle_search2(), to find if a particular
sequencing matches a selected region or not, using the
coordinates/position of the match. This is specifically designed for
ReadUntil, and the scripts and methods can not be used for general
exploration.
No plotting of raw signal.

Last update 2016

Links https://www.nature.com/articles/nmeth.3930
http://mattloose.github.io/RUscriptsdocs/
https://github.com/mattloose/RUscripts/tree/master/ReadUntil

Similarities ReadUntil takes a reference sequence region and converts it into
the event space using the models for basecalling. It then uses
dynamic programming on the first portion of an incoming read to
test if it matches within the selected region.

Differences MotifSeq is a general method for finding the approximate position of
where a particular sequence motif aligns with the raw signal data.

ReadUntil and MotifSeq do this is similar ways, however while
ReadUntil does the comparisons in event space with streaming
data, MotifSeq does the comparisons in raw signal space.

Comments and use squiggle_search2() from ReadUntil finds if a particular sequence
matches a selected region or not, using the coordinates/position of
the match. This is specifically designed for ReadUntil, and the
scripts and methods can not be used for general exploration as is.

Comparison
Tombo/NanoRaw

Info Nanoraw and tombo operate based on the genome_resquiggle/re-
squiggle method, mapping the raw signal with basecalls and
reference alignment. All visualisation is centred around this method,
and though it has the potential to be general use, it is not
implemented or designed that way.

Last update last updated current in 2019

Links https://www.biorxiv.org/content/biorxiv/early/2017/04/10/094672.full.
pdf
https://nanoporetech.github.io/tombo/tutorials.html
https://nanoraw.readthedocs.io/en/latest/resquiggle.html

Similarities Tombo can visualise raw signal data similar to SquigglePlot.
Tombo can centre the visualisation around a particular motif, and
extract that information with the API to find the signal associated
with the basecalls, similar to MotifSeq.
Tombo can extract the signal data, similar to SquigglePull.

Differences Tombo can visualise multiple squiggles on one plot, and can
associate them with the basecall as well creating a squiggle pileup
plot.
While Tombo focuses on multiple squiggles, SquigglePlot focuses
on one squiggle at a time.
Tombo uses the resquiggle algorithm to match the aligned base
sequence to the raw signal.
MotifSeq converts the sequence motif to a signal using a model,
and uses a local dynamic programming method to identify the
position of the motif.
The signal extraction in SquigglePull is more general than tombo’s
pipeline.

Comments and use Tombo is a fully fledged toolkit for finding differences in signal
space, and exploring the raw signal of a dataset.
Tombo and NanoRaw were designed to find differences in the
signal to identify modifications, and help train models to detect
them.
Fast5_fetcher may be of use for filtering large datasets to be
analysed with tombo
Use of either toolkit would be based on specific goals

Comparison
Nanopolish

Info Nanopolish is a software package for signal-level analysis of Oxford
Nanopore sequencing data. Nanopolish can calculate an improved
consensus sequence for a draft genome assembly, detect base
modifications, call SNPs and indels with respect to a reference
genome and more.

Last update current 2019

Links https://github.com/jts/nanopolish
https://nanopolish.readthedocs.io/en/latest/index.html

Similarities File management, segmentation, aligns signal to base are similar to
fast5_fetcher, segmenter, and MotifSeq respectively.

Differences Nanopolish is aimed at specific problems and the tool is created as
an integrated method of analysis, where SquiggleKit tools can all
work standalone and in a more general way.

Comments and use Nanopolish is best suited to standard methods of analysis.
SquiggleKit is best used for developing tools like nanopolish, or
exploring nanopore signal data.

4. Standardisation of signal for comparison
Many factors can contribute to non-sequence dependent variability in nanopore sequencing
data (temperature, voltage, etc), which can lead to progressive distortion of raw current
values for a single read. The three main types of raw signal distortion are shift, scale, and
drift, which can be mitigated by normalising or standardising raw signal using global
properties of the data. Standardisation is required to compare 2 raw signals against each
other, or a simulated signal from the basecalling model and a raw signal, as implemented in
MotifSeq.

We compared 3 methods for raw signal normalisation: Z-score scaling, Median-Median-
Absolute-Difference scaling (med-MAD), and pico-Ampere scaling.

Z-score scaling is performed using the function z = (x - u) / s, where u and s are the mean
and standard deviation of the signal, respectively. It is more sensitive to any large spikes in
the signal (which are relatively common), thus impacting the overall mean and standard
deviation. One method of offsetting this is to filter large spikes above and below a threshold,
as is done with the --scale_hi/--scale_low flags in MotifSeq, set at 900 and 0 respectively for
DNA.

Alternatively, raw signal can be shifted and scaled by converting to pico ampres, then
scaled. This is done by extracting the digitisation, offset, and range values from the fast5
files, and converting the raw data points using the function pA = (x + offset) *
(range/digitisation). This can be done automatically when the raw signal is extracted using
the --convert flag in SqugglePull. There is no significant difference in MotifSeq scores when
using Z-score or Z-score pA scaling (Supplementary Figure 1C).

MotifSeq can do Z-score or median-absolute-difference scaling, in a similar way, but which
are more or less sensitive to large spikes in the signal. The med-MAD scaling uses the
following function: z = (x - med) / MAD, where med and MAD are the median and Median-
Absolute-Difference of the signal respectively. Med-MAD is more robust at handling noise in
nanopore signals than z-score scaling, where the mean and standard deviation can be
significantly impacted by the occasional spike in current. Med-MAD is used by nanopore
basecalling software for this reason. This is evidenced in Supplementary Figure 1A-B by
slightly lower MotifSeq scores, indicative of lower penalties for outlier spikes in current.

All 3 normalisation methods have been implemented in MotifSeq, which uses med-MAD by
default given the benchmarking results described below (see section 5).

Sup. Figure 1: Comparison of raw signal scaling strategies on MotifSeq scoring
(A-C) Pairwise comparison of MotifSeq scores for all combinations of raw Z-score scaling
(raw z-scaled), raw Z-score scaling with conversion to picoAmperes (z-scaled pA converted),
and median-median-absolute-difference (median-MAD scaled). Scores were generated by
running MotifSeq with 12 different k-mers (D) corresponding to the 3’ end used in the main
example against the raw signals of 10,000 randomly selected cDNA reads, which were
scaled using either of the 3 methods described above.

5. Benchmarking
Benchmarking was carried out to assess speed and accuracy for certain SquiggleKit tools.
Below is a comparison of speed for fast5_fetcher, segmenter, and MotifSeq. Accuracy
benchmarking was performed for Segmenter and MotifSeq. All local benchmarks were
carried out on the same hardware, as described below.

System specifications:
Linux omega-1-31.local 2.6.32-642.3.1.el6.x86_64
x86_64 x86_64 x86_64 GNU/Linux
CPU: AMD Opteron(tm) Processor 6282 SE (only 1 CPU used)
CPU MHz: 2600
Architecture: x86_64
RAM: 32GB
Disk: 400GB NVME
Python version: 2.7.14

Fast5_fetcher speed
By taking a dataset with 7,332,202 single fast5 files, tarballed into groups of 4000, the
average runtime (after 5 replicates) of fast5_fetcher extraction was measured at different
magnitudes (i.e. number of files to extract).

Table 2: Fast5_fetcher speed benchmark

Number of files Size of files Average runtime (s) Reads per Second

1,000 32MB 204.2 4.9

10,000 697MB 1673.8 6.0

100,000 9.7GB 20133.8 5.0

1,000,000 102GB 259546 3.9

Segmenter speed
Segmenter identifies regions of low complexity using a greedy algorithm in a manner similar
to a Markov chain. It processes raw signal as follows:

1. Calculate the median current intensity of the full read;
2. Set thresholds about the median using a fraction of the standard deviation

(parameter --std_scale, default 0.75);
3. For each data point, calculate the difference to the median. Stretches of signal are

returned if at least w (parameter --window, default 150) consecutive data points are
within the standard deviation threshold;

4. Outliers are tolerated (parameter --error, default 5) as are consecutive low complexity
regions within a given boundary (parameter --seg_dist, default 50).

Table 3: Segmenter speed (default parameters on cDNA sequins)

Number of
files

time (s) Reads per
second

Time for gzip
input (s)

Reads per
second (gzip)

103,526 916 ~113 3,430 ~30

MotifSeq speed

Table 4: MotifSeq speed in function of k-mer length (default parameters
on .tsv files)

K-mer length Total time (s) Reads per second Time per read (s)

12 92.13 54.27 0.0184

30 143.82 34.77 0.0288

50 232.05 21.55 0.0464

75 338.47 14.77 0.067

100 402.98 12.41 0.080

256 963.55 5.19 0.193

This is comparable to the speed attained by (Loose et al., 2016) in their speed testing on
“Intel(R) Xeon(R) E5-2690 version 3 central processing units (CPUs) running at 2.60 GHz
(server)” attaining ~0.3 seconds per read for a k-mer length of 256.

Segmenter accuracy
Segmenter is designed to identify low complexity regions in raw nanopore signal above a
given window length. It was designed as a qualitative annotation tool to identify
homopolymer boundaries and polymer translocation stalling. Although it could be used to
find associations between poly-A tail lengths and signal length, this is not the subject of this
toolkit.

Identifying low complexity regions in raw signal is not straightforward to benchmark given the
stochastic nature of single molecule sensing. Consequently, we evaluated the accuracy of
Segmenter by manually inspecting 100 raw cDNA signals using Segmenter’s “-v” argument
(Supplementary Figure 2). Homopolymer boundaries corresponding to poly-A regions in
cDNA reads were visually identified, their position recorded and compared to the those
automatically identified by Segmenter (Table 5).

Sup. Figure 2: Segmenter boundary assessment
Low complexity regions identified by Segmenter were manually inspected (top) to identify
precise boundaries visually using matplotlib functionality. The positions on the x-axis
corresponding to boundary signals (red lines) were recorded and compared to those output
by Segmenter (bottom, blue lines),

Table 5: Segmenter Accuracy

Differences Mean difference Median difference Stdev of difference

Start 2.32 1.0 5.4

End 9.25 3.0 13.7

Length 9.75 3.0 14.7

As can be seen, start accuracy is quite good, with the largest variation in the end position
targeting. A mean length difference of 9.75 data points approximately corresponds to 1
nucleotide worth of signal (~8-11 data points per nucleotide for DNA pore models).

MotifSeq accuracy
We benchmarked MotifSeq accuracy by comparing minimum dynamic programming scores
across positive and negative control datasets, which were generated as follows:
(i) Using a sequin synthetic RNA spike-in control cDNA sequencing run (ENA accession
number PRJEB33439), we randomly selected a sequin isoform from all isoforms with at least
10,000 uniquely mapping reads (minimap2 using the preset “-x map-ont”) and a MAPQ
score of 60 via the resulting .paf file.
(ii) The corresponding reference transcript (available at www.sequin.xyz) was used to
randomly extract k-mers (within 15nt of the transcript extremities) of lengths 12, 30, 50, 75,
and 100 nucleotides.
(iii) For each k-mer, positive and negative control sets were generated by identifying all
reference sequin isoforms with or without the selected k-mer, respectively, using direct
sequence matching.
(iv) A random selection of 5000 cDNA reads were selected that uniquely map to the
reference isoforms for both control sets defined in (iii). We ensure the mapped sequences
overlapped the position of the k-mer identified in the reference sequences. Reads were
selected with fast5_fetcher and raw signals extracted using SquigglePull.
(v) Each k-mer motif was submitted to MotifSeq comparisons across both positive and
negative control datasets (Supplementary Figure 3).

Sup. Figure 3: MotifSeq scoring benchmark
The MotifSeq mean score (sDTW distance) and standard deviation (error bars) for 5000
comparisons against positive (red, top) and negative (green, bottom) controls is plotted for 5
different k-mer sizes in conjunction with (A) z-scaling and (B) med-MAD scaling of raw
signal. A linear regression trend line is fitted to 5 different k-mer sizes with associated slopes
and correlation of determination (R2). (C) Distribution of MotifSeq scores for 50-mers using z-
scaling and (D) med-MAD scaling.

As expected, the separation of true positive scores from true negative scores increases with
k-mer length. The separation further increases when using med-MAD scaling vs z-scaling,
highlighting the improved tolerance of med-MAD scaling for outlier current spikes through
slightly lower scores overall. MotifSeq scores against the negative control appear to be
normally distributed (Supplementary Figure 3C-D, in red or on the right) suggesting that
they can be interpreted as Z-scores to assess the confidence of hits via the background
mean and standard deviation, which can be converted to a probability using the formula:

𝑃(𝑋 < 𝜇) 	= 𝑃(
𝑋 − 𝜇
𝜎 < 	

𝜇+ − 𝜇,
𝜎,

)	
Where 𝝁 is the mean, 𝜇q is the query mean, 𝜇b is the background mean, 𝝈b is background
standard deviation.

Furthermore, the seemingly linear correlation between MotifSeq scores and k-mer lengths
suggests that linear regression can be used to extrapolate background models to a given
motif size (Table 6). Consequently, we incorporated this additional scoring metric into
MotifSeq, which now

 Table 6: Expected background mean and standard deviation by k-mer length

k-mer Mean stdev k-mer Mean stdev

10 19.44 1.65 160 455.16 38.54

15 33.96 2.88 165 469.68 39.77

20 48.49 4.11 170 484.21 41

25 63.01 5.34 175 498.73 42.23

30 77.54 6.57 180 513.26 43.46

35 92.06 7.8 185 527.78 44.69

40 106.58 9.03 190 542.3 45.92

45 121.11 10.26 195 556.83 47.15

50 135.63 11.49 200 571.35 48.38

55 150.16 12.72 205 585.87 49.61

60 164.68 13.95 210 600.4 50.84

65 179.2 15.18 215 614.92 52.07

70 193.73 16.4 220 629.45 53.3

75 208.25 17.63 225 643.97 54.53

80 222.78 18.86 230 658.49 55.76

85 237.3 20.09 235 673.02 56.99

90 251.82 21.32 240 687.54 58.22

95 266.35 22.55 245 702.07 59.45

100 280.87 23.78 250 716.59 60.68

105 295.4 25.01 255 731.11 61.91

110 309.92 26.24 260 745.64 63.14

115 324.44 27.47 265 760.16 64.37

120 338.97 28.7 270 774.69 65.6

125 353.49 29.93 275 789.21 66.83

130 368.02 31.16 280 803.73 68.06

135 382.54 32.39 285 818.26 69.29

140 397.06 33.62 290 832.78 70.52

145 411.59 34.85 295 847.31 71.75

150 426.11 36.08 300 861.83 72.98

155 440.64 37.31
*Median-MAD scaling was used for modelling.

6. Supplementary References
Gigante,S. (2017) Picopore: A tool for reducing the storage size of Oxford Nanopore
Technologies datasets without loss of functionality. F1000Res., 6, 227.
Loman,N.J. et al. (2015) A complete bacterial genome assembled de novo using only
nanopore sequencing data. Nat. Methods, 12, 733.
Loman,N.J. and Quinlan,A.R. (2014) Poretools: a toolkit for analyzing nanopore
sequence data. Bioinformatics, 30, 3399–3401.
Loose,M. et al. (2016) Real-time selective sequencing using nanopore technology. Nat.
Methods, 13, 751.
Nguyen,S.H. et al. (2017) Real-time demultiplexing Nanopore barcoded sequencing
data with npBarcode. Bioinformatics, 33, 3988–3990.
Payne,A. et al. (2018) BulkVis: a graphical viewer for Oxford nanopore bulk FAST5
files. Bioinformatics.
Stoiber, M.H. (2017) De novo Identification of DNA Modifications Enabled by Genome-
Guided Nanopore Signal Processing, bioRxiv, https://doi.org/10.1101/094672 .
Watson,M. et al. (2015) poRe: an R package for the visualization and analysis of
nanopore sequencing data. Bioinformatics, 31, 114–115.

