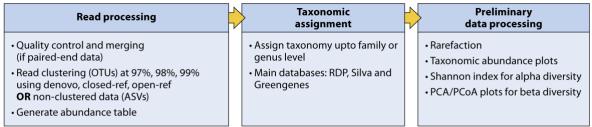
# Supplementary Information

S1: Popular DNA extraction kits and their lysing mechanisms for bacterial cell wall in

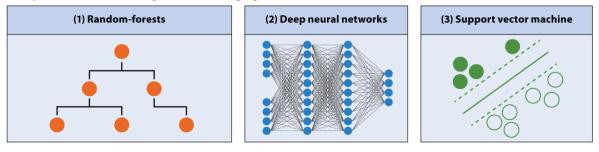

## different body fluid/tissue categories

| DNA<br>extraction kit                               | Lysing mechanism in<br>kit protocol                                           | Modification                                                     | Body fluid/<br>tissue | References |
|-----------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------|------------|
| MoBio<br>PowerSoil kit                              | Mechanical lysing with<br>beat-beating and<br>enzymatic lysis at RT           | Reduce or omit<br>mechanical lysis<br>to prevent<br>overshearing | Fecal<br>samples      | (43)       |
| QIAmp DNA<br>mini kit and<br>QIAmp DNA<br>stool kit | Enzymatic lysis with<br>heat at 70°C for 5 min<br>or increase temp to<br>95°C | Add mechanical<br>bead-beating step<br>with zirconia<br>beads    | Fecal<br>samples      | (41)       |
| Qiagen<br>DNeasy Blood<br>and Tissue kit            | Enzymatic lysis with<br>heat at 56°C for 10 min                               | Only enzymatic<br>lysis and no<br>mechanical lysis               | Vaginal<br>samples    | (42)       |
| MoBio<br>PowerLyser<br>Powersoil kit                | Mechanical lysing with<br>beat-beating and<br>enzymatic lysis at RT           | -                                                                | Fecal<br>samples      | (44)       |

## S2: Bioinformatics pipeline for amplicon sequence data and shotgun data

(A) and (B) depict a basic pipeline and steps involved in processing of amplicon sequence data and shotgun data respectively. (C) Enlists potential options for using machine learning algorithms for making predictions based on amplicon sequence and shotgun data.

### A. Amplicon data




B. Shotgun data

| Read processing   | Taxonomic<br>assignment                                                                                                                                                                                      | Preliminary<br>data processing                       |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| • Quality control | <ul> <li>Assign reads to genomes in a reference database: directly</li> <li>OR assemble reads into contigs and then assign to genomes</li> <li>Assign reads to genes using clade-specific markers</li> </ul> | Functional profiling     Taxonomic abundance profile |

#### C. Predictive modelling

Train prediction classifiers using machine learning algorithms like:

