Supplementary Material

Resuscitation-promoting factor accelerates enrichment of highly active PCE/PCB-dechlorinating cultures

Running Title: Rpf enhances anaerobic microbial dechlorination

Xiaomei Su^a, Mengqi Xie^a, Zhen Han^a, Yeyuan Xiao^b, Rui Wang^a, Chaofeng Shen^c, Muhammad Zaffar Hashmi^d, Faqian Sun^{a,*}

^a College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China

^b Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China ^c Department of Environmental Engineering, College of Environmental and Resource

Sciences, Zhejiang University, Hangzhou, 310058, China

^dDepartment of Chemistry, COMSATS University, Islamabad, 44000, Pakistan

*Corresponding author: Faqian Sun

Address: Yingbin Road 688#, Jinhua, 321004, China

E-mail: faqian@zju.edu.cn

Tel: +86-579-82282273

Fax: +86-579-82282273

Groups	Removal efficiencies (%) in day 3	Kinetics	simulation
	(E _{3d})	k (d ⁻¹)	R ²
TG1	78.0 ± 0.1	0.428	0.943
CG1	28.1 ± 0.6	0.111	0.971
TG2	73.7 ± 1.7	0.431	0.961
CG2	30.7 ± 1.7	0.134	0.909
TG3	79.1 ± 0.7	0.729	0.918
CG3	56.5 ± 1.1	0.135	0.926

Table S1 PCE removal efficiencies (E_{3d}) and simulation results with apparent first-order reaction kinetics (k and R^2).

Table S2 Retention time, mass, peak intensity and concentration change of final dechlorination products of Aroclor 1260 in TG4 and CG4 after 50 days of incubation. The products were analyzed by gas chromatography-mass spectrometry (GC-MS) based on the standards of Aroclor 1260 and Aroclor 1242.

Product (s)	Retention time	Number of	Mass of	Peak	Change in concentration after 50 d (µM)	
1100000 (5)	(min)	chlorine	derivative	intensity	TG4	CG4
PCB 52	19.375	4	291.92	33993	0.484	0.360
PCB 49	20.676	4	291.92	22161	1.632	0.556
PCB 47	20.707	4	291.92	23309	3.161	0.374
PCB 64	23.659	4	291.92	159578	1.836	0.409
PCB 95	23.713	5	325.88	18089	1.492	0.634
PCB 99	24.894	5	325.88	81178	1.820	0.973
PCB 90/91/101	25.295	5	325.88	26106	3.387	0.804
PCB 110/118	27.889	5	325.88	13291	1.140	0.231
PCB 151	28.767	6	359.84	20244	-0.610	-0.390
PCB 135	29.088	6	359.84	29632	-0.406	-0.355
PCB 149	29.624	6	359.84	18634	-1.207	-1.016
PCB 146	30.936	6	359.84	28955	-1.363	-1.062
PCB 153	31.364	6	359.84	31718	-0.521	-0.484
PCB 141	32.277	6	359.84	27318	-0.347	-0.271
PCB 130	32.947	6	359.84	52297	-1.583	-0.898
PCB 138	33.353	6	359.84	26312	-0.215	-0.314
PCB 178	34.373	7	393.80	17926	-1.575	-0.925
PCB 187	34.580	7	393.80	17073	-0.992	-0.976
PCB 183/185	34.938	7	393.80	18874	-0.371	-0.255
PCB 174	36.264	7	393.80	19114	-0.898	-0.702
PCB 175	36.655	7	393.80	21302	-0.804	-0.642
PCB 172	37.785	7	393.80	18026	-0.255	0.000
PCB 180	38.252	7	393.80	185862	-2.938	-1.758
PCB 156	38.558	6	359.84	24574	-0.269	-0.199
PCB 193	39.135	7	393.80	19253	-1.798	-1.443
PCB 170	40.370	7	393.80	19284	-1.134	-0.750
PCB 198	40.985	8	429.76	14900	-1.425	-1.008
PCB 199	41.368	8	429.76	13333	-0.688	-0.868
PCB 194	45.369	8	429.76	10445	-0.043	-0.188
PCB 206	48.964	9	463.72	8479	-0.392	-0.339

Table S3 Information and quality of Illumina high throughput sequencing data from PCE/PCB-fed cultures with and without Rpf amendment (TGs and CGs) at stage 1 (0.3 mM PCE), stage 2 (0.4 mM PCE), stage 3 (0.5 mM PCE) and stage 4 (26.88 μM Aroclor 1260).

Sample	Raw reads	Clean reads	OTUs	*CleanQ20	*CleanQ30
TG1-1	44386	39036	1279	96.86	90.98
TG1-2	79572	71090	2102	96.77	90.55
TG1-3	107935	97633	1748	97.35	92.10
CG1-1	143743	131264	2482	97.36	92.10
CG1-2	170475	156872	2233	97.65	92.77
CG1-3	30104	25919	1492	96.91	91.10
TG2-1	126419	103077	1672	96.35	89.76
TG2-2	56030	49288	1470	96.89	91.10
TG2-3	87165	77000	1155	96.92	91.17
CG2-1	80851	71458	1678	96.98	91.27
CG2-2	426776	391727	2331	97.15	91.60
CG2-3	65243	57731	1243	97.02	91.29
TG3-1	104528	92465	829	96.64	90.33
TG3-2	200344	173217	1085	96.86	91.07
TG3-3	189482	173673	1097	97.14	91.62
CG3-1	148401	136533	1055	97.28	91.93
CG3-2	38588	34469	552	97.02	91.31
CG3-3	101635	91304	729	96.73	90.52
TG4-1	68253	60638	807	97.12	91.55
TG4-2	200756	188543	658	97.36	91.97
TG4-3	205768	193867	633	97.47	92.27
CG4-1	110293	103988	595	97.52	92.28
CG4-2	367005	339336	1113	97.06	91.03
CG4-3	161820	152697	831	97.54	92.36

*Clean Q20 or Q30: the percentage of bases with a phred value of >20 or 30.

Table S4 Microbial alpha diversity in the PCE/PCB-fed cultures with and without Rpf amendment (TGs and CGs) at stage 1 (0.3 mM PCE), stage 2 (0.4 mM PCE), stage 3 (0.5 mM PCE) and stage 4 (26.88 μ M Aroclor 1260).

Sample	Chao1	Dominance	Equitability	Richness	Simpson	Shannon_2
TG1	2322.75±344.86	0.98±0.01	0.71±0.03	1925.00±250.32	0.024±0.00	7.74±0.23
CG1	2212.10±565.83	0.99±0.01	$0.78{\pm}0.06$	1862.50±523.97	0.010±0.01	8.55±1.04
TG2	1930.10±136.47	0.97±0.01	$0.65 {\pm} 0.05$	1571.00±142.83	0.026±0.01	6.92±0.42
CG2	1774.30±290.62	0.92 ± 0.05	$0.58{\pm}0.07$	1460.50±307.59	0.079±0.05	6.07±0.93
TG3	1473.05±157.76	0.95±0.01	0.55±0.02	1091.00±8.49	$0.044{\pm}0.01$	5.58±0.24
CG3	906.20±103.66	0.92 ± 0.00	0.54±0.26	640.50±125.16	0.081 ± 0.00	5.02±0.85
TG4	998.67±82.47	0.70±0.19	0.36±0.14	699.33±94.08	0.29±0.19	3.46±1.37
CG4	1004.45±139.51	0.56±0.03	0.29±0.00	713.00±166.88	0.44±0.25	2.73±0.14

Cultures	Concentration of Aroclor 1260 (µM)	Incubation time (day)	Dechlorination rate (µM/d)	Cl/ biphenyl	Reference
TG4	26.88	50	1.15	4.24	This study
CG4	26.88	50	0.76	4.96	This study
Sediment microcosm	53.80	120	-	6.19	(1)
WAS	26.88	180	-	6.06	(2)
DS	26.88	180	-	6.26	(2)
DEH10	134.4	400	-	5.3	(3)
DF-1	3.49	120	-	4.1	(4)
BH	268.8	100	-	6.3	(5)
BH+SF1+ DEH10	268.8	100	-	5.6	(5)
BH+o-17+DF-1	268.8	100	-	6.1	(5)
BH+SF1+DEH1 0+ <i>o</i> -17+DF-1	268.8	100	-	5.5	(5)
AD14-PCE	80.65	210	0.20	5.87	(6)
PE	67.2	32		6.04	(7)
PP	67.2	32		6.03	(7)
PS	67.2	32		5.96	(7)

Table S5 Literature reports on the chlorine atoms and removal rate of biphenyl in the final product

 of Aroclor 1260 dechlorination culture.

Parameters	Soil sample	Parameters	Soil sample
Total PCBs (µg/g)	78.64 ± 4.78	OrgC (g/kg)	37.53 ± 2.13
Di-CBs (µg/g)	1.37 ± 0.83	TN (g/kg)	1.08 ± 0.08
Tri-CBs (µg/g)	21.92 ± 0.48	TP (g/kg)	2.45 ± 0.35
Tetra-CBs (µg/g)	8.77 ± 0.83	Cu (mg/kg)	368.91 ± 36.79
Penta-CBs (µg/g)	28.57 ± 1.99	Pb (mg/kg)	281.27 ± 56.25
Hexa-CBs (µg/g)	15.7 ± 0.65	Zn (mg/kg)	387.20 ± 25.93
Hepta-CBs (µg/g)	2.31 ± 0.20	Cd (mg/kg)	33.40 ± 1.90
pH	6.84 ± 0.07	Ni (mg/kg)	77.45 ± 2.69

Table S6 Basic chemical properties of the soil collected from the PCB-contaminated site.

Descrit	Amount (1L)
Reagents	Unit (g)
Trace elements solution A	
FeCl ₂ ·4H ₂ O	1.5
CoCl ₂ ·6H ₂ O	0.19
MnCl ₂ ·4H ₂ O	0.1
ZnCl ₂	0.07
H ₃ BO ₃	0.006
Na ₂ MoO ₄ ·2H ₂ O	0.036
NiCl ₂ ·6H ₂ O	0.024
CuCl ₂ ·2H ₂ O	0.002
Trace elements solution B	
Na ₂ SeO ₃ ·5H ₂ O	0.03
Na ₂ WO ₄ ·2H ₂ O	0.08
Salt solution	
NaCl	1.0
MgCl ₂ ·6H ₂ O	0.5
KH ₂ PO ₄	0.2
NH ₄ Cl	0.3
KCl	0.3
CaCl ₂ ·2H ₂ O	0.015
Vitamin solutions	
D-biotin	0.02
Folic acid	0.02
Pyridoxine hydrochloride	0.1
Riboflavin	0.05
Thiamin hydrochloride	0.05
Nicotinic acid	0.05
DL-calcium pantothenate	0.05
P-aminobenzoic acid	0.05
Thioctic acid	0.05
Vitamin B12	0.01
1, 4-naphthoquinone	0.04
Nicotinamide	0.1
Hemin	0.01
Others	
Resazurin	0.001
NaHCO ₃	2.52

 Table S7. Mineral salts medium compositions used in this study.

	DCD	The number of	Position of	Weight percent
Peak number	PCB congeners	chlorine	substituent	contribution (%)
1	PCB 52	4	2,2',5,5'-	0.288
2	PCB 70	4	2,3',4',5-	0.211
3	PCB 95	5	2,2',3,5',6-	1.803
4	PCB 92	5	2,2',3,5,5'-	0.441
5	PCB 90	5	2,2',3,4',5-	2 402
	PCB 101	5	2,2',4,5,5'-	2.495
6	PCB 87	5	2,2',3,4,5'-	0.806
7	PCB 135	6	2,2',3,3',6,6'-	1.227
8	PCB 110	5	2,3,3',4',6-	1.669
9	PCB 151	6	2,2',3,5,5',6-	2.934
10	PCB 144	6	2,2',3,4,5',6-	1.803
11	PCB 123	5	2,3',4,4',5'-	5 217
	PCB 149	6	2,2',3,4',5',6-	5.217
12	PCB 118	5	2,3',4,4',5-	0.499
13	PCB 114	5	2,3,4,4',5-	0.115
14	PCB 146	6	2,2',3,4',5,5'-	1.285
15	PCB 153	6	2,2',4,4',5,5'-	5.946
16	PCB 105	5	2,3,3',4,4'-	2.551
	PCB 130	6	2,2',3,3',4,6'-	2.331
17	PCB 141	6	2,2',3,4,5,5'-	3.241
18	PCB 179	7	2,2',3,3',5,6,6'-	2.110
19	PCB 176	7	2,2',3,3',4,6,6'-	1.132
20	PCB 138	6	2,2',3,4,4',5'-	
	PCB 163	6	2,3,3',4',5,6-	6.310
	PCB 164	6	2,3,3',4',5',6-	
21	PCB 158	6	2,3,3',4,4',6-	1.323
22	PCB 126	5	3,3',4,4',5-	1.362
23	PCB 178	7	2,2',3,3',5,5',6-	0.422
24	PCB 187	7	2,2',3,4',5,5',6-	4.910
25	PCB 183	7	2,2',3,4,4',5',6-	3.088
26	PCB 128	6	2,2',3,3',4,4'-	0.940
27	PCB 185	7	2,2',3,4,5,5',6-	1.343
28	PCB 174	7	2,2',3,3',4,5,6'-	5.044
29	PCB 177	7	2,2',3,3',4,5',6'-	2.915
30	PCB 171	7	2,2',3,3',4,4',6-	2.014
31	PCB 201	8	2,2',3,3',4,5',6,6'-	0.690
32	PCB 172	7	2,2',3,3',4,5,5'-	1.266
33	PCB 180	7	2,2',3,4,4',5,5'-	9.762
34	PCB 156	6	2,3,3',4,4',5-	0.422
35	PCB 193	7	2,3,3',4',5,5',6-	0.729
36	PCB 200	8	2,2',3,3',4,5,6,6'-	0.153
37	PCB 170	7	2,2',3,3',4,4',5-	5.025
38	PCB 190	7	2,3,3',4,4',5,6-	0.384
39	PCB 198	8	2,2',3,3',4,5,5',6-	3.165
40	PCB 199	8	2,2',3,3',4,5,5',6'-	3.414
41	PCB 203	8	2,2',3,4,4',5,5',6-	0.288
42	PCB 195	8	2,2',3,3',4,4',5,6-	1.688
43	PCB 208	9	2,2',3,3',4,5,5',6,6'-	0.192
44	PCB 194	8	2,2',3,3',4,4',5,5'-	3.126
45	PCB 205	8	2,3,3',4,4',5,5',6-	0.288
46	PCB 206	9	2,2',3,3',4,4',5,5',6-	0.882
Unidentified peaks	-	-	-	3.511

 Table S8 PCB congeners assignment to main peaks in gas chromatography (GC) analysis of Aroclor

 1260.

"-" means not available in references.

Peak number	PCB congeners	The number	Position of	Weight percent
1	PCP /	2	2 21	1 710
2	PCB 7	2	2,2 - 2 <i>A</i> _	1./19
2	PCB 6	2	2,4-	1.025
<u>ј</u>	PCB 8	2	2,5 -	3 765
	PCB 19	2	2,7-	0.734
6	PCB 18	3	2,2,0-	5 338
07	PCB 17	3	2,2,5-	2 854
8	PCB 24	3	2,2,	3 809
0	PCB 16	3	2,3,0-	5.007
9	PCB 32	3	2,2,5-	1.124
10	PCB 26	3	2,4,0-	5 286
10	PCB 25	3	2,5,5-	J.280 4.083
12	PCB 21	3	2,5,4-	4.083
12	PCB 28	3	2,4,5-	12 905
14	DCB 33	3	2, 7, 7 -	5 567
14	PCB 22	3	2,3,4-	0.463
16	PCB 45	<u>л</u>	2,5,7 -	3 301
10	PCB 47	4	2,2,5,0-	1 458
18	DCB 52	4	2,2,5,0-	0.462
10	PCB 40	4	2,2,5,5-	3 665
19	DCB 45	4	2,2,4,5-	5.005
20	PCB 46	4	2,2,5,0-	3.318
21	DCB 40	4	2,2,3,0-	3 18/
21	DCB 37	4	2,2,3,3-	5.104
22	PCB 42	3	2, 1 , 1 -	5.275
	PCB 41	3	2,2,3,4-	
23	PCB 64	<u>л</u>	2,2,5,+-	2.265
24	PCB 40	4	2,3,4,0-	1 209
27	DCB 100		2,2,3,5-	1.207
25	PCB 67	1	2,22,4,42,0-	1.739
26	PCB 74	4	2,3,4,5	4 134
20	PCB 70	4	2,4,4,5	1.04
27	PCB 66	4	2,5,4,5-	1.94
28	PCB 56	4	2,3,4,4-	1.074
29	PCB 60	4	2, 3, 5, 5, 7	2.532
30	PCB 101	-T 5	2,3, 1,1 2 2' 4 5 5'-	0 664
31	PCR 00	5	2,2,7,3,5- 2 2' A A' 5_	0.004
32	PCR 07	5	2,2, , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	1 /102
32	PCR 87	5	2,2,3,4,5-	0.755
34	PCR 85	5	2,2,3, - ,3- 2,2' 3,4 4'-	0.755
35	PCB 110	5	2,2,3,7,7 -	0.704
36	PCR 87	5	2,3,3, - ,0- 2,2'3,3' _	0.04
37	PCB 118	5	2,2,3,5,- 2 3' A A' 5_	0.453
38	DCB 152	5	2,2,4,4,5 2 21 1 1 5 51	0.405
30 midantified master	rud 133	0	2,2,4,4,5,5-	0.938

Table S9 PCB congeners assignment to main peaks in gas chromatography (GC) analysis of Aroclor

 1242.

"-" means not available in references.

Primers	Target	Orientation	Sequence	Temperature	Reference
E 1000	Bacterial 16S rRNA	Formand	ACTCCTACGGGA	50 °C	(0)
EUD338	gene	Forward	GGCAGCAG	58°C	(8)
Eu b51 8	Bacterial 16S rRNA	Dovorso	ATTACCGCGGCT	50 °C	(8)
Eu0518	gene	Reverse	GCTGG	38 C	(8)
F515	Archaeal 16S rRNA	Forward	GTGCCAGCMGC	57 °C	(9)
	gene	Forward	CGCGGTAA		
P 806	Archaeal 16S rRNA	Davarsa	GGACTACVSGGG	57 °C	(0)
1000	gene	Reverse	TATCTAAT	57 C	(\mathcal{I})
DheF	Dehalococcoides16S	Forward	GGTAATACGTAG	58 °C	(6)
DIICF	rRNA gene	Forward	GAAGCAAGCG	58 C	(0)
DhcR	Dehalococcoides16S	Reverse	CCGGTTAAGCCG	58 °C	(6)
Dhck	rRNA gene	Keveise	GGAAATT	30 C	(0)

Table S10 The primer sets of real-time quantitative PCR used in this study

Fig. S1 Cell growth of PCE/PCB-fed cultures with and without Rpf amendment (TGs and CGs) at stage 1 (A, 0.3 mM PCE), stage 2 (B, 0.4 mM PCE), stage 3 (C, 0.5 mM PCE) and stage 4 (D, 26.88 μM Aroclor 1260).

Fig. S2 Pseudo-first-order kinetics for PCE dichlorination in PCE-fed cultures with and without Rpf amendment (TGs and CGs) at stage 1 (0.3 mM PCE, A), stage 2 (0.4 mM PCE, B), stage 3 (0.5 mM PCE, C).

Fig. S3 Chloride ion accumulation in PCE-fed cultures during PCE dechlorination at initial concentrations of 0.3 (A), 0.4 (B) and 0.5 mM (C). The chloride ion in cultures was analyzed by ion chromatography. Calculated values were obtained based on the PCE dechlorination shown in Fig. 2.

Fig. S4 Aroclor 1260 dechlorination in PCB-fed cultures after 50 days of incubation. Dechlorination of Aroclor 1260 in TG4 (A), CG4 (B) and abiotic control (C) analysis by gas chromatography (GC).

Fig. S5 Gas chromatography-mass spectrometry (GC-MS) graphs of PCBs in PCB-fed cultures with and without Rpf amendment (TG4 and CG4) on days 50 of incubation (the abundance on the y-axis is 1.0×10^6 for all samples).

Fig. S6 Rarefaction curves based on observed richness (A), Shannon diversity (B) and Chao1 diversity (C).

Fig. S7 Principal co-ordinates analysis (PCoA) using Bray-Curtis for the microbial community detected in PCE/PCB-fed cultures with and without Rpf amendment (TGs and CGs) from stage 1 to stage 4.

Fig. S8 Krona chart showing the relative abundance and diversity of family *Peptococcaceae* in PCE/PCB-fed cultures with and without Rpf amendment (TGs and CGs) from stage 1 to stage 4. The relative abundance of *Desulfitobacterium dehalogenans* was highlight in Red.

Fig. S9 Krona chart showing the relative abundance and diversity of genera *Desulfitobacterium* and *Desulfonispora* in PCE/PCB-fed cultures with Rpf amendment (TGs) from stage 1 to stage 4.

Fig. S10 Different abundance level of genera in cultures with and without Rpf amendment (TGs and CGs) at stage 2 (A) and stage 3 (B).

Fig. S11 PCB congeners in the standards of Aroclor 1260 (A) and Aroclor 1242 (B) analysis by gas chromatography (GC). The congeners were also listed in Table S8 (Aroclor 1260) and Table S9 (Aroclor 1242).

Fig. S12 Standard curves for bacterial 16S rRNA gene (A), archaeal 16S rRNA gene (B) and *Dehalococcoides*16S rRNA gene (C). Values are averages from three replicate experiments, and error bars represent standard deviations.

Reference

- Xu GF, Lu QH, Yu L, Wang SQ. 2019. Tetrachloroethene primes reductive dechlorination of polychlorinated biphenyls in a river sediment microcosm. Water Res 152:87-95.
- 2. Xu GF, Zhao XJ, Zhao SY, He JZ. 2021. Acceleration of polychlorinated biphenyls remediation in soil via sewage sludge amendment. J Hazard Mater 420:126630.
- Fagervold SK, May HD, Sowers KR. 2007. Microbial reductive dechlorination of aroclor 1260 in Baltimore harbor sediment microcosms is catalyzed by three phylotypes within the phylum *Chloroflexi*. Appl Environ Microbiol 73:3009-3018.
- Payne RB, May HD, Sowers KR. 2011. Enhanced reductive dechlorination of polychlorinated biphenyl impacted sediment by bioaugmentation with a dehalorespiring bacterium. Environ Sci Technol 45:8772-8779.
- Fagervold SK, Watts JEM, May HD, Sowers KR. 2011. Effects of bioaugmentation on indigenous PCB dechlorinating activity in sediment microcosms. Water Res 45:3899-3907.
- Wang SQ, He JZ. 2013. Dechlorination of commercial PCBs and other multiple halogenated compounds by a sediment-free culture containing *Dehalococcoides* and *Dehalobacter*. Environ Sci Technol 47:10526-10534.
- Li XK, Xu Q, Cheng YJ, Chen CL, Shen CF, Zhang CF, Zheng DQ, Zhang DD. 2022.
 Effect of microplastics on microbial dechlorination of a polychlorinated biphenyl mixture (Aroclor 1260). Sci Total Environ 831:154904.
- Correa PA, Lin L, Just CL, Hu D, Hornbuckle KC, Schnoor JL, Van Aken B. 2010. The effects of individual PCB congeners on the soil bacterial community structure and the abundance of biphenyl dioxygenase genes. Environ Int 36:901-906.

 Walters WA, Caporaso JG, Lauber CL, Berg-Lyons D, Fierer N, Knight R. 2011.
 PrimerProspector: de novo design and taxonomic analysis of barcoded polymerase chain reaction primers. Bioinf 27:1159-1161.