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1. GitHub code repository of the web application. The web application code, including the code used 

for FSCAV analysis can be accessed at the following link.  

2. Scatter graphs of features used to predict serotonin absolute concentration.  

 

 

Figure C.1: Scatter graphs of cyclic voltammogram features of the serotonin faradaic peak (see Figure 5 of manuscript) for 

a representative post-calibration. (A) Charge vs. concentration for the charge above the baseline of the integration points 

(Pearson’s r = 0.95). (B) Charge vs. concentration for the charge calculated below the baseline of the integration points, which 

commonly has a higher interference from the capacitive peak (Pearson’s r = 0.97). (C) Current vs. concentration for the 

maximum amplitude of the serotonin faradaic peak (Pearson’s r = 0.99). (D) Current vs. concentration for the valley point 

between the faradaic and the capacitive peak. In all cases, the correlation between the feature and serotonin absolute 

concentration in vitro is clear (Pearson’s r = 0.95).  

 

3. Training results of standardised neural network. 

Figure C.2 shows a representative example of the training of the standardized neural networks for the 

last cross validation split with and without the background current charge as input parameter. The 

training loss per epoch show a similar trend in both cases, and the testing predictive error is also 

similar and not statistically significant across all the k-fold dataset splits (n = 5 cross-validation splits, 

RMSE = 3.84 ± 0.24 nM vs.  4.10 ± 0.48 nM, p = 0.6452). Training results of electrode-specific neural 

network models depend on the specific electrode used and are available upon request.  

 

https://github.com/sermeor/The-Analysis-Kid


 

Figure C.2: Training and validation loss and test predictions for standardised neural networks training. (A, C) Root mean 

square error (cost function) progression by iteration of the training and validation datasets for the last k-fold of the 

standardized neural networks training. (B, D) True vs. predicted values of the test dataset for the last k-fold of the 

standardised neural network training. The blue vertical line shows the ideal response, where true values are equal to 

predicted values. In panel A and B, the results are shown for the standardised neural network, while panel C and D show the 

results after the inclusion of the background current charge feature at the input.  

4. ANOVA analyses on the error of the estimate and variability of FSCAV calibration methods. Five 

representative electrodes were used to compare the predictive error and variability in the predictions 

of the linear regression and neural networks for the calibration of FSCAV signals. After training, the 

root mean square error (RMSE) between predictions and true concentrations of serotonin in vitro was 

calculated across the models. 

Table S.1: List of names of groups and indexes of the analysis of variance.  

Group Number 

Linear regression 1 

Single electrode neural network 2 

Pretrained neural network 3 

Standardised neural network 4 

Table S.2: Analysis of variance results for the RMSE of predictions (Figure 3).  



Source Sum sq. d.f. Mean sq. F statistic Prob > F 

Model 102.2995 3 34.0985 12.4015 1.9111e-04 

Error  43.9927 16 2.7495 - - 

Total 36.3537 19 - - - 

Table S.2 shows that a significant effect of the model used for calibration was found in the variability 

of the error of the estimation obtained from in vitro postcalibrations. After that, a Tukey-Kramer post-

hoc multiple comparison test was performed. The full matrix of multiple comparisons p values is 

shown in Table S.3, and p values in bold are reported in the main manuscript. 

Table S.3: Analysis of variance results for the RMSE of predictions (Figure 3). Probabilities in bold text are of interest.  

Tukey-Kramer post-hoc multiple tests 
Pr > |t| for H0: 𝑴𝒆𝒂𝒏 𝑹𝑴𝑺𝑬 (𝒊)  =  𝑴𝒆𝒂𝒏 𝑹𝑴𝑺𝑬 (𝒋) 

i/j 1 2 3 4 

1 - 0.0023 1.6306e-04 0.0029 

2 0.0023 - 0.5449 0.9996 

3 1.6306e-04 0.5449 - 0.4869 

4 0.0029 0.9996 0.4869 - 

As shown in Table S.4, the effects of electrodes and model applied do not have a significant effect on 

the variability (standard deviation of repetitions for same concentration in vitro) of the predictions. 

The reduction of the error of prediction comes from a better fit of the model to the experimental data.  

Table S.4: Two-way analysis of variance results for the standard deviation of predictions for equal concentration. 

Source Sum sq. d.f. Mean sq. F statistic Prob > F 

Electrode 95.4993 3 31.8331 1.7611 0.1643 

Model 25.3395 4 6.3349 0.3505 0.8427 

Interference 21.3619 12 1.7802 0.0985 0.9999 

Error 1.0845e+03 60 18.0758 - - 

Total 1.2268e+03 79 - - - 

 



5. ANOVA analyses on the in vivo basal estimations using linear regressions and the standardised 

neural network model. Five in vivo acquisitions calibrated with electrode-specific linear regressions 

and the standardised neural networks were used to compare the basal predictions of both calibration 

methods. To achieve this, a repeated measurements ANOVA with features of time after treatment 

and calibration model were used.  

Table S.5: List of names of groups for the analysis of variance. 

 

Table S.6: Analysis of variance results for the estimations of absolute concentration of serotonin (Figure 5).  

Source Sum sq. d.f.1 d.f.2 Mean sq. F statistic Prob > F 

Time 3.7487e+04 61 244 614.5550 2.1816 0.000015 

Model 2.0919e+03 1 4 2.0919e+03 0.3644 0.578607 

Interference 1.2479e+04 61 244 204.5806 1.1859 0.185256 

Table S.6 shows that a significant effect of the model used for calibration (linear regression and 

standardised neural network) and the treatment (control, saline and ESCIT (10 mg/kg) administration) 

was found in the basal in vivo estimations of serotonin ambient levels. After that, a Tukey-Kramer 

post-hoc multiple comparison test was performed. An extract of the matrix of paired multiple 

comparisons p values are shown in Table S.7, and p values in bold are reported in the main manuscript. 

 

 

 

Within groups 

Control (0-30 min) 

Saline (30-60 min) 

ESCIT 120 min 

Effects 

Linear Regression 

Neural Network 

Figure C.1: Representative analysis of histamine evoked trace.  
(A) FSCV color plot of HA evoked release in the premammillary nucleus of the posterior hypothalamus of the 
mouse brain. The horizontal dotted line illustrates the extracted current trace at the faradaic potential of 
interest. The vertical dotted line represents the extracted cyclic voltammogram, embedded in the CV. The inset 
white graph shows the extracted trace. (B) Histamine trace after calibration with a factor of 2.825 μM/nA. Blue 
dots represent the maximum and minimum amplitude points detected by the algorithm. Dashed blue line 
represents the exponential fit, also expressed as an equation together with the half-life of the reuptake and SEE. 
(C) Modelled one reuptake kinetics for the HA trace. The root mean squared error was used by the optimization 
algorithm to assess the goodness of fit. The model fitting yielded a ,  and . (D) Release term of the modelled 
differential equation. 

Figure C.3: An example dopamine FSCV data collection in freely-moving rats 
Evoked dopamine release in the nucleus accumbens by stimulation of the ventral tegmental area in a freely 
moving rat. (A) Representative FSCV color plot of the acquisition. The horizontal dotted lines illustrate the 
extracted current traces represented in C at potentials 0.67 V (top) and 0.4 V (bottom). The vertical dotted lines 
represent the cyclic voltammograms shown in C at approximate times 6 s (left) and 8 s (right). Electrical 
stimulation is shown in A and C as a red square mark. Both the color plot and extracted cyclic voltammogram at 



Table S.7: Analysis of variance results for the in vivo predictions of absolute serotonin concentration. Probabilities in bold 

text are of interest. An extraction of the pairwise comparison within and between groups is provided for ease of read (large 

number of groups were compared, including the interactions). All probability values are available upon request.  

Tukey-Kramer post-hoc paired multiple tests 

Pr > |t| for H0: 𝑴𝒆𝒂𝒏 𝒔𝒆𝒓𝒐𝒕𝒐𝒏𝒊𝒏 (𝒊)  =  𝑴𝒆𝒂𝒏 𝒔𝒆𝒓𝒐𝒕𝒐𝒏𝒊𝒏 (𝒋), within groups 

Group i Group j P-value 

Control (0-30 min) Saline (30-60 min) 0.9981 

Control (0-30 min) ESCIT 120 min 0.0124 

Saline (30-60 min) ESCIT 120 min 0.0243 

Pr > |t| for H0: 𝑴𝒆𝒂𝒏 𝒔𝒆𝒓𝒐𝒕𝒐𝒏𝒊𝒏 (𝒊)  =  𝑴𝒆𝒂𝒏 𝒔𝒆𝒓𝒐𝒕𝒐𝒏𝒊𝒏 (𝒋), between groups 

Group i Group j P-value 

Linear Regression Neural Network 0.7200 

Pr > |t| for H0: 𝑴𝒆𝒂𝒏 𝒔𝒆𝒓𝒐𝒕𝒐𝒏𝒊𝒏 (𝒊)  =  𝑴𝒆𝒂𝒏 𝒔𝒆𝒓𝒐𝒕𝒐𝒏𝒊𝒏 (𝒋), interactions 

Group i Group j P-value 

Linear Regression, Control (0-
30 min) 

Neural Network, Control (0-30 
min) 

0.5731 

Linear Regression, Escit 120 
min 

Neural Network, Escit 120 min 0.6841 

Linear Regression, Control (0-
30 min) 

Linear Regression, Escit 120 
min 

0.0314 

Neural Network, Control (0-30 
min) 

Neural Network, Escit 120 min 0.0257 

 

6. Video Tutorial of The Analysis Kid FSCAV Application. A video tutorial of the FSCAV application was 

hosted in YouTube at the following link. The video tutorial intends to show users the main features of 

the FSCAV application, supported files and how to navigate the different features of the application.  

 

https://www.youtube.com/watch?v=8wn4FAnMcAI


7. Experimental and Computational Requirements for The Analysis Kid FSCAV Application. As 

described in the video tutorial, the FSCAV application has 4 different calibration methods available. 

These calibration models are explained in the manuscript (see Computational Methods section). 

Below, we explain the experimental and computational requirements of each of the models. Example 

files, as well as information on supported browsers to run the application are available in the 

homepage.  

Linear regression model 

The linear regression is a generic model; in theory it can be used for any experimental procedure (e.g., 

carbon fibre microelectrode characteristics, solution buffers) and analyte as long as cyclic 

voltammograms have a Faradaic peak correlated to tonic concentration. This model requires an FSCAV 

in vitro post-calibration in the form of background subtracted FSCAV cyclic voltammograms for a range 

of analyte concentrations. The video tutorial mentioned above provides guidance in how to get a 

calibration curve and apply the calibration factors to cyclic voltammograms with unknown 

concentration (e.g., in vivo acquisitions).  

Single electrode neural network 

The single electrode neural network is also a generic model and can effectively be used as the linear 

regression for any experimental paradigm and analyte. As the linear regression, it is electrode specific. 

This means that it is trained with a post-calibration from an electrode. There is, however, one 

difference with respect to the linear regression: the complexity of the model is much higher. This 

means that the NN model is much more susceptible to overfitting when the training set is small. To 

avoid this, the number of repetitions per concentration should be enough (e.g., in our case, 15 

repetitions are obtained for each of the serotonin solutions prepared). The layer size of the neural 

network, number of iterations, learning rate can also be modified to adapt to the needs of the user. 

Gaussian dropout and Gaussian noise can also be configured in the application to avoid overfitting. As 

for the linear regression model, the video tutorial provides a step-by-step guide in how to get started 

by fitting the model and use it to predict other signals. 

Pretrained neural network 

The pretrained neural network, as described in the manuscript, has been pretrained with 140 post-

calibrations of tris-buffered serotonin from different electrodes. After that, it is expected to be finely 

tuned (trained for a limited amount of iterations) with a post-calibration from a particular electrode. 

Since the neural network has been pretrained with specific parameters and signals, there are 

computational and experimental requirements to follow in order to use it. A summary of the main 

specifications required can be found below.   

1. Carbon fibre microelectrodes used in the training dataset are cut to a length of 150 μm and 

coated with electrodeposited Nafion polymer. See the Experimental Section for a full 

description of the fabrication procedure.  

2. Four tris-buffered serotonin solutions (10 nM, 25 nM, 50 nM and 100 nM) were used to 

generate the training dataset. This means that when using this calibration model only 

serotonin can be detected, and the predictive error would be optimal for that range of 

concentrations.  

http://analysis-kid.hashemilab.com/


3. The “Jackson” waveform with a frequency of acquisition of 500 kHz was used to register the 

cyclic voltammograms. This gives cyclic voltammograms of 1100 samples.1 See the 

Experimental Section for more information on the waveform application.  

4. Cyclic voltammograms in the training set are background subtracted with an average (n = 10) 

background voltammogram from the 2 seconds of acquisition before the adsorption period 

(see Experimental Section). Both the cyclic voltammograms for training and prediction used 

with this model should have an analogous background subtraction.  

5. The neural network is pretrained with a learning rate of 0.001 and layer size of 64 nodes. The 

fine-tuning process should then be performed with the same training parameters.  

Standardized neural network 

The standardized neural network is fully trained with the same dataset as the pretrained neural 

network. This means that the required specifications stated above remain necessary for this model. 

Although no post-calibration is needed for this calibration model, it is paramount that the 

experimental procedure followed for the training signals is also followed for the signals uploaded for 

prediction to minimize the error of the predictions.   

 

 

 

 

 

 

 
1 When a different acquisition frequency is used, which results in a lower number of samples, interpolation can 
be used to convert the cyclic voltammograms to 1100 sample time series.  


