Article

https://doi.org/10.1038/s41589-022-01147-8

# A small molecule inhibitor prevents gut bacterial genotoxin production

In the format provided by the authors and unedited



#### **Supplementary Information**

#### A small molecule inhibitor prevents gut bacterial genotoxin production

Matthew R. Volpe<sup>1</sup>, José A. Velilla<sup>2</sup>, Martin Daniel-Ivad<sup>1</sup>, Jenny J. Yao<sup>1</sup>, Alessia Stornetta<sup>3</sup>,

Peter W. Villalta<sup>3,4</sup>, Hsin-Che Huang<sup>5</sup>, Daniel A. Bachovchin<sup>5</sup>, Silvia Balbo<sup>3,6</sup>, Rachelle Gaudet<sup>2</sup>, Emily P. Balskus<sup>1,7,8</sup>

#### Affiliations

1 Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street,

Cambridge, MA 02138, USA

2 Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street,

Cambridge, MA 02138, USA

3 Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, USA

4 Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street Southeast, Minneapolis, MN 55455, USA

5 Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA

6 Division of Environmental Health Sciences, School of Public Health, University of Minnesota,

Minneapolis, MN 55455, USA

7 Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, MA

02138, USA

8 To whom correspondence should be addressed (balskus@chemistry.harvard.edu)

Supplementary Table 1– IC50 values of **1-4** measured both *in vitro* and in *E. coli* using a fluorogenic assay, with 95% confidence interval values given in parentheses. All assays were conducted with n = 4 biological replicates and normalized dose-response data were fit to a non-linear three-parameter model.

| Compound | IC <sub>50</sub> measured <i>in vitro</i> | IC <sub>50</sub> measured in <i>E. coli</i> BL21<br>overexpressing ClbP |  |
|----------|-------------------------------------------|-------------------------------------------------------------------------|--|
|          | (95% confidence interval)                 | (95% confidence interval)                                               |  |
| 1        | 40 nM (30 – 54 nM)                        | 5.6 nM (4.0 – 7.9 nM)                                                   |  |
| 2        | 34 nM (22 – 54 nM)                        | 7.2 nM (5.2 – 10.0 nM)                                                  |  |
| 3        | 28 nM (19-40 nM)                          | 18.3 nM (12 – 28 nM)                                                    |  |
| 4        | 69 nM (52 – 92 nM)                        | 27 nM (18 – 38 nM)                                                      |  |

|                                      | WT ClbP bound to 1                |  |
|--------------------------------------|-----------------------------------|--|
| (PDB: 7MDC)                          |                                   |  |
| Data collection                      |                                   |  |
| Space group                          | P 4 <sub>2</sub> 2 <sub>1</sub> 2 |  |
| Cell dimensions                      |                                   |  |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)   | 96.72, 96.72, 183.38              |  |
| $\alpha, \beta, \gamma$ (°)          | 90, 90, 90                        |  |
| Resolution (Å)                       | 45.58 - 2.7 (2.8 - 2.7)           |  |
| Total reflections                    | 269998 (27526)                    |  |
| Unique reflections                   | 24663 (2389)                      |  |
| $I / \sigma I$                       | 8.06 (1.54)                       |  |
| $R_{\rm sym}$ or $R_{\rm merge}$     | 0.2575 (1.887)                    |  |
| R <sub>meas</sub>                    | 0.2702 (1.975)                    |  |
| CC1/2                                | 0.996 (0.534)                     |  |
| Completeness (%)                     | 99.88 (99.92)                     |  |
| Redundancy                           | 10.9 (11.5)                       |  |
| Wilson B-factor                      | 48.5                              |  |
|                                      |                                   |  |
| Refinement                           |                                   |  |
| Resolution (Å)                       | 45.58 - 2.7 (2.8 - 2.7)           |  |
| No. reflections                      | 24644 (2387)                      |  |
| No. reflections in $R_{\text{free}}$ | 1231 (118)                        |  |
| $R_{\rm work} / R_{\rm free}$        | 0.1926 / 0.2359                   |  |
| No. atoms                            | 3635                              |  |
| Protein                              | 3315                              |  |
| Ligand/ion                           | 108                               |  |
| Water                                | 212                               |  |
| B-factors                            |                                   |  |
| Protein                              | 57.74                             |  |
| Ligand/ion                           | 75.99                             |  |
| Water                                | 50.75                             |  |
| R.m.s. deviations                    |                                   |  |
| Bond lengths (Å)                     | 0.007                             |  |
| Bond angles (°)                      | 0.94                              |  |
| Ramachandran plot                    |                                   |  |
| Favored (%)                          | 96.31                             |  |
| Allowed (%)                          | 3.69                              |  |
| Disallowed (%)                       | 0                                 |  |
| Rotamer outliers (%)                 | 2.63                              |  |
| Clashscore                           | 5.71                              |  |

| Supplementary Table 2 - Data collection and refinemen | t statistics (molecular replac | ement) for PDB: 7MDC |
|-------------------------------------------------------|--------------------------------|----------------------|
|                                                       |                                |                      |

Supplementary Table 3 – Minimum inhibitory concentrations (MICs) of compounds against other human-associated bacteria. Chloramphenicol (CAM) was included as a control for antibiotic activity. MICs were determined using a broth dilution assay (data shown in Extended Data Figure 5) and measuring OD600 values after 15 hours of growth compared to a DMSO control. Values reported here are the lowest concentration of compound at which a statistically significant (p < 0.05, one-way ANOVA and Dunnett's multiple comparison test, n = 3 biological replicates) difference in turbidity was observed. " $\leq 6.25$ " indicates that significant growth inhibition was observed even at the lowest concentration tested; ">200" indicates that no significant growth inhibition was observed at any concentration tested.

|                         | MICs by compound $(\mu M)$ |      |      |      |      |
|-------------------------|----------------------------|------|------|------|------|
| Species                 | CAM                        | 1    | 2    | 3    | 4    |
| Escherichia coli NC101  | 25                         | >200 | >200 | >200 | >200 |
| Klebsiella oxytoca      | 6.25                       | >200 | >200 | >200 | >200 |
| Lactobacillus rhamnosus | 25                         | >200 | >200 | >200 | >200 |
| Enterococcus faecalis   | 50                         | >200 | >200 | >200 | >200 |
| Bifidobacterium longum  | 12.5                       | >200 | >200 | >200 | >200 |

Supplementary Table 4 – Complete list of metabolite ions from LC-MS metabolomics experiments with *B. cereus* UW85 which meet selection criteria (*p*-value < 0.02 calculated using one-sided Students T-test, >2 fold change) for being significantly enriched or depleted when cultures were treated with inhibitor **3**. Dashed lines indicating cutoffs are shown in Figure 6.

|          |       | m/z      | Retention Time<br>(min) | Fold Change<br>(log2) | Significance<br>(-log(P)) | Asn Labeling | Annotation            |
|----------|-------|----------|-------------------------|-----------------------|---------------------------|--------------|-----------------------|
|          | tor   | 315.2279 | 23                      | -8.673                | 3.823                     | Y            | N-lauroyl-D-Asn [M+H] |
| es<br>ed | hibi  | 397.2046 | 1.79                    | -5.755                | 4.518                     |              | Zwittermicin          |
| atur     | lt in | 288.1572 | 2.93                    | -2.681                | 4.246                     |              |                       |
| Бп<br>П  | hou   | 202.1793 | 1.48                    | -1.376                | 4.282                     |              |                       |
|          | wit   | 453.7569 | 20.04                   | -1.113                | 5.266                     |              |                       |
|          |       |          |                         |                       |                           |              |                       |
| σω       | itor  | 709.413  | 12                      | 2.826                 | 4.468                     |              |                       |
| ure      | hibi  | 693.4136 | 17.67                   | 6.996                 | 8.891                     | Y            | Prezwittermicin       |
| eat      | h in  | 519.3379 | 20.61                   | 7.151                 | 6.151                     |              |                       |
|          | witl  | 723.4239 | 13.58                   | 7.688                 | 7.001                     |              |                       |

Supplementary Table 5 – Complete list of metabolite ions from LC-MS metabolomics experiments with *B. formosus* ATCC 51669 which meet selection criteria (*p*-value < 0.02 calculated using one-sided Students T-test, >2 fold change) for being significantly enriched or depleted when cultures were treated with inhibitor **3**. Dashed lines indicating cutoffs are shown in Figure 6.

|       | m/z       | Retention Time<br>(min) | Fold Change<br>(log2) | Significance<br>(-log(P)) | Asn Labeling | Annotation          |
|-------|-----------|-------------------------|-----------------------|---------------------------|--------------|---------------------|
|       | 557.3657  | 14.82                   | -7.264                | 6.323                     |              |                     |
|       | 497.772   | 14.91                   | -5.792                | 5.512                     |              |                     |
|       | 423.2214  | 15.01                   | -4.649                | 4.34                      |              |                     |
|       | 401.2387  | 15.1                    | -4.274                | 8.034                     |              |                     |
|       | 719.3721  | 10.68                   | -3.902                | 2.455                     |              |                     |
|       | 309.2064  | 18.64                   | -3.799                | 3.434                     |              |                     |
|       | 286.1752  | 8.05                    | -3.154                | 4.685                     |              |                     |
|       | 901.4569  | 18.38                   | -2.945                | 4.332                     |              |                     |
|       | 615.3674  | 7.87                    | -2.731                | 3.785                     |              |                     |
|       | 245.1845  | 13.03                   | -2.672                | 7.17                      |              |                     |
|       | 323.2211  | 20.68                   | -2.358                | 5.317                     |              |                     |
|       | 925.1407  | 17.2                    | -2.309                | 4.537                     |              |                     |
|       | 617.3192  | 12.29                   | -2.278                | 3.548                     |              |                     |
|       | 925.8082  | 17.24                   | -2.097                | 4.578                     |              |                     |
|       | 295.1645  | 10.8                    | -2.04                 | 8.011                     |              |                     |
|       | 557.3291  | 13.94                   | -1.947                | 6.22                      |              |                     |
|       | 473.2434  | 11.67                   | -1.924                | 2.867                     |              |                     |
|       | 217.1526  | 9.54                    | -1.869                | 5.773                     |              |                     |
|       | 279.3018  | 14.01                   | -1.854                | 7.238                     |              |                     |
|       | 1035.8565 | 18.29                   | -1.835                | 4.359                     |              |                     |
|       | 925.4736  | 17.14                   | -1.8                  | 5.102                     |              |                     |
|       | 620.3097  | 12.91                   | -1.773                | 4.081                     |              |                     |
|       | 334.1734  | 10.12                   | -1.752                | 3.653                     |              |                     |
| itor  | 752.8146  | 16.62                   | -1.698                | 4.496                     |              |                     |
| dih   | 648.284   | 2.91                    | -1.678                | 4.541                     |              |                     |
| ut ir | 452.2468  | 9.16                    | -1.641                | 2.819                     |              |                     |
| tho   | 606.2605  | 9.39                    | -1.639                | 2.496                     |              |                     |
| d vi  | 571.3487  | 16.75                   | -1.608                | 4.958                     |              |                     |
| she   | 751.3652  | 8.41                    | -1.554                | 2.984                     |              |                     |
| inric | 567.7716  | 13.53                   | -1.531                | 5.51                      |              |                     |
| es E  | 720.2029  | 12.49                   | -1.503                | 3.627                     |              |                     |
| ture  | 682.347   | 12.85                   | -1.493                | 4.135                     |              |                     |
| Fea   | 462.2371  | 1.26                    | -1.456                | 4.852                     |              |                     |
|       | 695.8639  | 14.49                   | -1.447                | 3.201                     |              |                     |
|       | 864.4332  | 16.25                   | -1.433                | 5.94                      |              |                     |
|       | 737.4071  | 3.1                     | -1.401                | 5.206                     |              | Edeine A1 [M+H-H2O] |
|       | 863.7636  | 16.14                   | -1.4                  | 6.094                     |              |                     |
|       | 1029.4583 | 16.09                   | -1.368                | 5.33                      |              |                     |
|       | 286.6664  | 8.83                    | -1.367                | 2.598                     |              |                     |

|          | 864.0977  | 16.17 | -1.352 | 5.908 |   |                                  |
|----------|-----------|-------|--------|-------|---|----------------------------------|
|          | 709.3795  | 13.85 | -1.324 | 2.3   |   |                                  |
|          | 523.2924  | 17.29 | -1.285 | 6.888 |   |                                  |
|          | 557.2968  | 21.08 | -1.241 | 3.673 |   |                                  |
|          | 315.2279  | 23    | -1.234 | 6.859 | Y | N-lauroyl-D-Asn [M+H]            |
|          | 757.0251  | 13.59 | -1.231 | 5.233 |   |                                  |
|          | 659.272   | 19.82 | -1.192 | 1.969 |   |                                  |
|          | 562.2742  | 9.95  | -1.18  | 1.716 |   |                                  |
|          | 818.3999  | 12.74 | -1.104 | 3.826 |   |                                  |
|          | 425.1976  | 10.43 | -1.093 | 1.959 |   |                                  |
|          | 1037.5243 | 18.16 | -1.072 | 3.623 |   |                                  |
|          | 889.8591  | 17.93 | -1.034 | 5.089 |   |                                  |
|          | 316.1577  | 12.56 | -1.029 | 5.505 |   |                                  |
|          | 767.3669  | 15.46 | -1.024 | 3.751 |   |                                  |
|          | 681.0241  | 14.36 | -1.02  | 2.864 |   |                                  |
|          | 554.3166  | 11.14 | -1.016 | 3.51  |   |                                  |
|          | 343.2604  | 26.33 | -1.015 | 2.278 | Y | N-myristoyl-D-Asn [M+H]          |
|          | 705 7177  | 14.07 | 1 132  | 2 905 |   |                                  |
|          | 763 3999  | 14.07 | 1.132  | 3 551 |   |                                  |
|          | 820,3508  | 20.88 | 1 286  | 2 234 |   |                                  |
|          | 800.4292  | 18.4  | 1.666  | 2     |   |                                  |
|          | 197.0529  | 1.29  | 1.675  | 4.603 |   |                                  |
|          | 562.2671  | 11.06 | 1.889  | 4.818 |   |                                  |
| <u>ب</u> | 569.7702  | 13.77 | 2.902  | 4.077 |   |                                  |
| bito     | 136.0751  | 3.11  | 2.921  | 5.466 |   |                                  |
| inhi     | 426.2381  | 17.85 | 2.954  | 3.558 |   |                                  |
| ìth      | 1155.5952 | 12.32 | 3.249  | 2.475 | Y | pre(myristoyl)Edeine A1 [M+2K-H] |
| νp       | 392.2535  | 17.48 | 3.415  | 4.528 |   |                                  |
| iche     | 326.668   | 9.74  | 3.74   | 2.317 |   |                                  |
| Enr      | 618.3254  | 12.97 | 4.159  | 5.733 |   |                                  |
| res      | 207.1119  | 12.28 | 4.628  | 6.086 |   |                                  |
| atu      | 1027.5472 | 12.74 | 4.68   | 6.722 | Y |                                  |
| Е        | 765.3966  | 15.66 | 5.432  | 7.875 |   |                                  |
|          | 344.2418  | 12.94 | 6.124  | 5.261 |   |                                  |
|          | 374.6883  | 15.68 | 6.128  | 5.948 |   |                                  |
|          | 1069.3861 | 15.69 | 6.474  | 7.626 | Y |                                  |
|          | 383.2006  | 15.66 | 6.807  | 6.053 |   |                                  |
|          | 1039.0947 | 16.24 | 9.467  | 8.193 | Y |                                  |
|          | 493.3028  | 14.68 | 11.27  | 7.273 |   |                                  |

#### Synthetic procedures

All solvents for synthesis were obtained from Millipore-Sigma unless otherwise noted. All NMR solvents were purchased from Cambridge Isotope Laboratories (Tewksbury, MA). NMR chemical shifts are reported in parts per million downfield from tetramethylsilane using the solvent resonance as internal standard for <sup>1</sup>H (CDCl<sub>3</sub> = 7.26 ppm, DMSO- $d_6$  = 2.50 ppm, CD<sub>2</sub>Cl<sub>2</sub> = 5.32 ppm) and <sup>13</sup>C (CDCl<sub>3</sub> = 77.25 ppm, DMSO- $d_6$  = 39.52 ppm, CD<sub>2</sub>Cl<sub>2</sub> = 54 ppm). Data are reported as follows: chemical shift, integration multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet), coupling constant, integration, and assignment. NMR spectra were collected in the Magnetic Resonance Laboratory in Harvard University Department of Chemistry and Chemical Biology and visualized and processed using MestreNova, version 11.0.2-18153 (Mestrelab Research S.L., Escondido, CA). High-resolution LC-MS (HRMS) analyses of synthetic compounds were performed on an Agilent 6530 Q-TOF Mass Spectrometer fitted with a dual-spray electrospray ionization (ESI) source. The capillary voltage was set to 3.5 kV, the fragmentor voltage to 175 V, the skimmer voltage to 65 V, and the Oct 1 RF to 750 V. The drying gas temperature was maintained at 275 °C with a flow rate of 8 L/min and a nebulizer pressure of 35 psi. A standard calibrant mix was introduced continuously during all experiments via the dual-spray ESI source. Low-resolution mass spectrometry analysis (LRMS) was conducted by direct infusion on an Advion CMS single-quadrupole mass spectrometer in ESI+ mode.

#### **General Procedure A**



Intermediates **6**, **7**, **8**, and **9** were prepared using the procedure described by López and coworkers.<sup>2</sup> Briefly, an oven-dried glass microwave vial was charged with palladium (II) acetate (3.3 mg, 0.015 mmol, 0.01 equiv), sodium acetate (246 mg, 3 mmol, 2.0 equiv,), the corresponding amide (1.5 mmol, 1.0 equiv), and anhydrous toluene (3.75 mL, 0.4 M). Trifluoroacetic acid (574  $\mu$ L, 7.5 mmol, 5.0 equiv) was added and the reaction mixture was stirred for 5 minutes under nitrogen atmosphere at room temperature, and then ethyl propiolate (228  $\mu$ L, 2.25 mmol, 1.5 equiv) was added dropwise. The reaction mixture was then stirred for 5 min and then heated at 80 °C overnight. The reaction mixture was diluted with EtOAc and water was added. The organic layer was separated, and the aqueous layer was extracted with EtOAc

three times. The combined organic layers were washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated *in vacuo*. The residue was dissolved in EtOAc and purified by flash chromatography on silica (0-100% EtOAc in hexanes). In some cases, when left in solution for extended periods of time, these compounds were observed to equilibrate between the *cis* and *trans* isomers. In cases where this was observed, the chromatography was repeated under the same conditions to separate the isomers and use only the *cis* isomer as shown above in the subsequent step. Yields below refer to the final isolated amount of the *cis* isomer.

**6**: Yield: 137 mg (81%, reaction performed on 1 equiv = 0.4 mmol scale). <sup>1</sup>H NMR (400 MHz DMSO-d<sub>6</sub>):  $\delta$  (ppm) = 10.62 (d, J = 11.2 Hz, 1H), 7.81 (dd, J = 14.2, 11.2 Hz, 1H), 5.42 (d, J = 14.1 Hz, 1H), 4.08 (q, J = 7.1 Hz, 2H), 2.26 (t, J = 7.4 Hz, 2H), 1.54 (quint, J = 7.4 Hz, 2H), 1.34 – 1.16 (m, 7H), 0.90 – 0.81 (m, 3H). <sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>)  $\delta$  = 171.9, 168.4, 138.5, 95.9, 60.2, 35.9, 31.2, 24.6, 22.8, 14.7, 14.3. LRMS (ESI): calcd for C<sub>11</sub>H<sub>20</sub>NO<sub>3</sub> [M+H]<sup>+</sup>, *m/z* 214.14; found, *m/z* 214.15.

7: Yield: 165 mg (41%). <sup>1</sup>H NMR (400 MHz DMSO-d<sub>6</sub>):  $\delta$  (ppm) = 11.46 (d, J = 11.1 Hz, 1H), 8.54 (s, 1H), 8.20 – 8.10 (m, 2H), 8.05 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 8.6 Hz, 1H), 7.78 (t, J = 10.6 Hz, 1H), 7.73 – 7.63 (m, 2H), 5.36 (d, J = 8.9 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>)  $\delta$  = 168.7, 163.8, 138.8, 134.9, 132.1, 129.3, 129.1, 129.0, 128.7, 128.5, 127.8, 127.3, 123.2, 97.2, 60.1, 14.1. LRMS (ESI): calcd for C<sub>16</sub>H<sub>16</sub>NO<sub>3</sub> [M+H]<sup>+</sup>, *m/z* 270.11; found, *m/z* 270.11.

**8**: Yield: 121 mg (31%). <sup>1</sup>H NMR (400 MHz DMSO-d<sub>6</sub>):  $\delta$  (ppm) =  $\delta$  10.34 (d, J = 11.6 Hz, 1H), 7.45 (dd, J = 11.6, 9.0 Hz, 1H), 7.32-7.24 (m, 2H), 7.22-7.14 (m, 3H), 5.11 (d, J = 9.0 Hz, 1H), 4.13 (q, J = 7.1 Hz, 2H), 2.59 (dd, J = 8.7, 6.7 Hz, 2H), 2.45 (t, J = 7.4 Hz, 2H), 1.85 (quint, J = 7.5 Hz, 2H), 1.21 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>)  $\delta$  = 171.1, 167.8, 141.4, 128.4, 128.3, 126.1, 125.9, 95.4, 84.2, 59.6, 34.4, 26.2, 14.1. LRMS (ESI): calcd for C<sub>15</sub>H<sub>20</sub>NO<sub>3</sub> [M+H]<sup>+</sup>, *m/z* 262.14; found, *m/z* 262.12.

**9**: Yield: 110 mg (33%). <sup>1</sup>H NMR (400 MHz DMSO-d<sub>6</sub>):  $\delta$  (ppm) = 11.37 (d, J = 11.1 Hz, 1H), 7.89 (dd, J = 7.5, 1.7 Hz, 2H), 7.77 – 7.67 (m, 2H), 7.61 (dd, J = 8.3, 6.8 Hz, 2H), 5.34 (d, J = 8.8 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 1.26 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>)  $\delta$  = 168.8, 163.6, 138.8, 133.2, 131.8, 129.2, 127.3, 97.1, 60.1, 14.1. LRMS (ESI): calcd for C<sub>12</sub>H<sub>14</sub>NO<sub>3</sub> [M+H]<sup>+</sup>, *m/z* 220.10; found, *m/z* 220.12.

#### **General Procedure B**



An oven-dried glass microwave vial or round bottom flask was charged with CuCl (2 mg, 0.02 mmol, 0.1 equiv), B<sub>2</sub>pin<sub>2</sub> (56 mg, 0.22 mmol, 1.1 equiv), and SegPhos (13 mg, 0.022 mmol, 0.11 equiv. (*S*)-SegPhos was used for the preparation of MRV03-037 (1), MRV03-068 (2), MRV03-069 (3), and MRV03-070 (4); (*R*)-SegPhos was used for the preparation of MRV03-095 (5). The vial was evacuated and backfilled with argon three times. Anhydrous THF (0.5 mL) was added followed by KOtBu (650  $\mu$ L, 1 M solution in THF) and the mixture was stirred for 30 minutes at room temperature. A solution of the corresponding intermediate (6-9) in THF was added (1 mL of a 0.2 M solution, 0.2 mmol, 1 equiv), followed by MeOH (32  $\mu$ L, 0.8 mmol, 4 equiv), and the reaction was stirred for 4 hours at room temperature. The reaction was then concentrated *in vacuo*. The residue was taken up in 3:1 hexanes:EtOAc and filterd over a short plug of deactivated (35 wt% H<sub>2</sub>O) silica. The filtrate was concentrated *in vacuo* in a round bottom flask with a stir bar. NaCN (2 mg, 0.04 mmol, 0.2 equiv) was added, followed by a solution of NH<sub>3</sub> in MeOH (7 M, 6 mL). The mixture was stirred at room temperature for 16 hours and then concentrated *in vacuo* and purified by flash chromatography using deactivated silica (35 wt% H<sub>2</sub>O) and eluting with 0-20% MeOH in EtOAc.

MRV03-037 (1): Yield: 31.2 mg (50% over two steps) <sup>1</sup>H NMR (400 MHz CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  (ppm) = 9.02 (s, 1H), 7.53 (s, 1H), 5.78 (s, 1H), 2.76 (t, J = 6.3 Hz, 1H), 2.49 – 2.36 (m, 2H), 2.32 (d, J = 7.6 Hz, 2H), 1.58 (q, J = 7.5 Hz, 2H), 1.35 – 1.22 (m, 4H), 1.19 – 1.09 (m, 12H), 0.92 – 0.81 (m, 3H).j <sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  (ppm) = 179.5, 176.7, 80.7, 42.7 (br)\*, 37.5, 31.7, 31.6, 25.6, 25.4, 25.3, 22.7, 14.2. <sup>11</sup>B NMR (128 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  (ppm) = 14.9 (br s). HRMS (ESI): calcd for C<sub>15</sub>H<sub>30</sub>BN<sub>2</sub>O<sub>4</sub> [M+H]<sup>+</sup>, *m/z* 313.2299; found, *m/z* 313.2230.

\*the broad peak at 42.7 ppm in the <sup>13</sup>C NMR spectrum of **1** corresponds to the carbon which is bound directly to the boron atom. Due to the line broadening effect of the quadrupolar boron nucleus, this signal is only visible after a very large number of scans and is not visible is the <sup>13</sup>C NMR spectra of the other compounds reported here.

MRV03-068 (**2**): Yield: 11 mg (15% over two steps) <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>):  $\delta$  (ppm) = 9.15 (s, 1H), 8.44 (s, 1H), 7.92 – 7.77 (m, 4H), 7.62 – 7.46 (m, 2H), 6.91 (s, 1H), 5.55 (s, 1H), 3.20 – 3.13 (m, 1H), 2.75 – 2.57 (m, 2H), 1.28 (m, 12H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 176.5, 171.9, 135.8, 132.3, 130.4, 129.4, 128.9, 128.8, 127.9, 127.2, 123.6, 123.4, 80.6, 36.7, 25.5, 25.2. <sup>11</sup>B NMR (128 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 14.0 (br s). HRMS (ESI): calcd for C<sub>20</sub>H<sub>26</sub>BN<sub>2</sub>O<sub>4</sub> [M+H]<sup>+</sup>, *m/z* 369.1986; found, *m/z* 369.1987.

MRV03-069 (**3**): Yield: 9.5 mg (13% over two steps) <sup>1</sup>H NMR (400 MHz CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  (ppm) = 8.57 (s, 1H), 7.32 – 7.23 (m, 2H), 7.23 – 7.13 (m, 4H), 5.54 (s, 1H), 2.81 (t, J = 6.4 Hz, 1H), 2.68 – 2.61 (m, 2H), 2.53 – 2.39 (m, 2H), 2.34 (t, J = 7.6 Hz, 2H), 1.97 – 1.82 (m, 2H), 1.20 – 1.11 (m, 12H). <sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  (ppm) = 178.5, 176.2, 141.1, 128.6, 128.5, 126.2, 80.4, 36.8, 34.9, 30.6, 26.7, 25.1, 24.9. <sup>11</sup>B NMR (128 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  (ppm) = 15.4 (br s). HRMS (ESI): calcd for C<sub>19</sub>H<sub>30</sub>BN<sub>2</sub>O<sub>4</sub> [M+H]<sup>+</sup>, *m/z* 361.2299; found, *m/z* 361.2296.

MRV03-070 (4): Yield: 10 mg (16 % over two steps) <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>):  $\delta$  (ppm) =  $\delta$  8.84 (s, 1H), 7.89 – 7.82 (m, 2H), 7.61 – 7.52 (m, 1H), 7.48 – 7.38 (m, 2H), 6.67 (s, 1H), 5.46 (s, 1H), 3.14-3.06 (m, 1H), 2.70 – 2.51 (m, 2H), 1.24 (m, 12H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 

(ppm) = 176.4, 171.8, 133.9, 128.9, 128.4, 126.7, 80.6, 36.5, 25.4, 25.1. <sup>11</sup>B NMR (128 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 16.2 (br s). HRMS (ESI): calcd for C<sub>16</sub>H<sub>24</sub>BN<sub>2</sub>O<sub>4</sub> [M+H]<sup>+</sup>, *m/z* 319.1829; found, *m/z* 319.1832.

MRV03-095 (5): Yield: 12.3 mg (17% over two steps) <sup>1</sup>H NMR (400 MHz CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  (ppm) = 8.48 (s, 1H), 7.36 – 7.23 (m, 2H), 7.23 – 7.13 (m, 3H), 7.02 (s, 1H), 5.48 (s, 1H), 2.81 (t, J = 6.2 Hz, 1H), 2.67 – 2.61 (m, 3H), 2.52 – 2.38 (m, 2H), 2.38 – 2.27 (m, 2H), 2.00 – 1.88 (m, 2H), 1.22 – 1.12 (m, 12H). <sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  (ppm) = 178.5, 176.1, 141.2, 128.7, 128.6, 126.2, 80.4, 36.8, 34.9, 30.8, 26.8, 25.2, 24.9. <sup>11</sup>B NMR (128 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  (ppm) = 15.6 (br s). HRMS (ESI): calcd for C<sub>19</sub>H<sub>30</sub>BN<sub>2</sub>O<sub>4</sub> [M+H]<sup>+</sup>, *m/z* 361.2299; found, 361.2298 *m/z*.



![](_page_13_Figure_0.jpeg)

![](_page_14_Figure_0.jpeg)

![](_page_15_Figure_0.jpeg)

![](_page_16_Figure_0.jpeg)

![](_page_16_Figure_1.jpeg)

<sup>11</sup>B NMR (128 MHz, CD<sub>2</sub>Cl<sub>2</sub>) (borosilicate glass tube)

![](_page_17_Figure_1.jpeg)

![](_page_18_Figure_0.jpeg)

Compound 2: <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>)

![](_page_18_Figure_3.jpeg)

![](_page_18_Figure_4.jpeg)

![](_page_18_Figure_5.jpeg)

<sup>11</sup>B NMR (128 MHz, CDCl<sub>3</sub>) (quartz tube)

![](_page_19_Figure_1.jpeg)

Compound **3**: <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)

![](_page_19_Figure_3.jpeg)

## <sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>)

![](_page_20_Figure_1.jpeg)

![](_page_21_Figure_0.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_22_Figure_1.jpeg)

![](_page_23_Figure_0.jpeg)

### **Supplemental References**

- 1 Wiegand, I., Hilpert, K. & Hancock, R. E. W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. *Nature Protocols* **3**, 163-175, doi:10.1038/nprot.2007.521 (2008).
- López, A., Clark, T. B., Parra, A. & Tortosa, M. Copper-Catalyzed Enantioselective Synthesis of β-Boron β-Amino Esters. *Organic Letters* 19, 6272-6275, doi:10.1021/acs.orglett.7b02784 (2017).