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Supplementary Figures 

 

Supplementary Figure 1 Alternative evolutionary models of traits. a-d, social 
organization and e-g, longevity. The ER model (equal rates model): all transition rates 
are the same. The IC model (increasing complexity model): the model which allows 
transitions between solitary and pair-living, pair-living and group-living, but not 
between solitary and group-living. The ARD model (all-rates-different model): all 
transition rates are different. The RJ-MCMC model (Reversible-jump MCMC model): 
the model with the highest posterior support that is derived from the data by the 
reversible-jump procedure in Bayes Traits. Social organization and longevity are 
colored as follows: solitary = blue; pair-living = orange; group-living = red; short-
lived state = cyan; long-lived state = purple. Source data are provided as a Source 
Data file. 
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Supplementary Figure 2 The evolutionary pathway of social organization and 
longevity. a The highest posterior support model for the evolution of social 
organization. Arrows depict the likelihood of a transition between states and their 
thickness corresponds to the magnitude of the various rates. Numbers indicate the 
transition rate (mean ± SD) across ten independent runs. b Best supported 
evolutionary model for absolute longevity. Species with a longevity > 26 years were 
classified as long-lived species. c Best supported evolutionary model for relative 
longevity. Relative long-lived species were species whose residual of longevity was 
larger than 1.38 (third quartile value). The residual of longevity for each species was 
calculated using the body mass adjusted residuals with the equation form the AnAge. 
The number of species used in these analyses was n = 974. Social organization and 
longevity are colored as follows: solitary = blue; pair-living = orange; group-living = 
red; short-lived state = cyan; long-lived state = purple. Silhouette images of animals 
are from PhyloPic database (http://phylopic.org/). Source data are provided as a 
Source Data file. 
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Supplementary Figure 3 The effect of taxonomic sampling on the correlated 
models of social organization and absolute longevity. Species sampling include 
95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55% and 50% of 974 species. A species 
was classified as long-lived if its maximum lifespan is > 26 years (a), > 17 years (b) 
or > 35 years (c). In the upper right corner of each plot, bar plots display the 
supporting proportions of the dependent and independent models. Colors code for 
social organization: blue = solitary, orange = pair-living and red = group-living. Dep: 
dependent model; Indep: independent model. Source data are provided as a Source 
Data file. 
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Supplementary Figure 4 Correlated evolution analysis for social organization 
and relative longevity. Evolutionary models for relative longevity and solitary (a); 
pair-living (b); and group-living (c). The transition rates from a short-lived to a long-
lived state were unequal in a-c, showing dependent evolution. Arrows depict the 
likelihood of transition between states and their thickness corresponds to the 
magnitude of the various rates. Numbers indicate the transition rate (mean ± SD) 
across ten independent runs. The number of species used in these analyses was n = 
974. Social organization and longevity are colored as follows: solitary: blue; pair-
living: orange; group-living: red; short-lived state: cyan; long-lived state: purple. 
Silhouette images of animals are from PhyloPic database (http://phylopic.org/). 
Source data are provided as a Source Data file. 
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Supplementary Figure 5 The effect of taxonomic sampling on the correlated 
models of social organization and relative longevity. Species sampling include 
95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55% and 50% of 974 species. A species 
was classified as long-lived if the residual of its maximum lifespan is > 1.38 (a), > 
0.93 (b) or > 1.83 (c). In the upper right corner of each plot, bar plots display the 
supporting proportions of the dependent and independent models. Colors code for 
social organization and longevity: blue = solitary, orange = pair-living and red = 
group-living. Dep: dependent model; Indep: independent model. Source data are 
provided as a Source Data file. 
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Supplementary Figure 6 Correlated evolution analyses for social organization 
and longevity using uni-state sub-datasets. Different sub-datasets were used in 
three different types of models: solitary-pair-living and absolute/relative longevity 
(species: nuni-state = 556); solitary-group-living and absolute/relative longevity 
(species: nuni-state = 859); and pair-living-group-living and absolute/relative longevity 
(species: nuni-state = 433). Evolutionary models for absolute longevity (> 26 years, a, b, 
and c) and relative longevity (residuals > 1.38, d, e, and f). The transition rates from a 
short-lived to a long-lived state were equal in a, c, d, f showing independent 
evolution, but were unequal in b, e showing correlated evolution. Arrows depict the 
likelihood of transition between states, and their thickness corresponds to the 
magnitude of the various rates. Numbers indicate the transition rate (mean ± SD) 
across ten independent runs. Colors code for social organization: blue = solitary, 
orange = pair-living, red = group-living, cyan = short-lived state, and purple = long-
lived state. Silhouette images of animals are from PhyloPic database 
(http://phylopic.org/). Source data are provided as a Source Data file. 
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Supplementary Figure 7 Significant genes whose expression was associated with 
social organization. a Solitary, b Pair-living and c Group-living. Genes are colored: 
blue = downregulate genes; red = upregulated genes; gray = non-significant genes. 
They were generated from MCMCglmm analysis. Genes whose pMCMC < 0.05 and 
|posterior mean| > cut score (see Methods) were identified as significant genes. A 
gene with a positive or negative posterior mean had an up- or down-regulated 
expression, respectively. The number of overlapping genes between solitary, pair-
living and group-living are displayed for upregulated genes (d) downregulated genes 
(e) and upregulated and downregulated genes (f). Blue = solitary, orange = pair-
living, and red = group-living. Source data are provided as a Source Data file. 
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Supplementary Figure 8 Significant genes whose expression was associated with 
longevity. a Model 1-4. Downregulated genes = blue, upregulated genes = red and 
non-significant genes = gray. They were generated from MCMCglmm analysis. 
Genes whose pMCMC < 0.05 and |posterior mean| > cut score (see Methods) were 
identified as significant genes. A gene with a positive or negative posterior mean had 
an up- or down-regulated expression, respectively. b The number of overlapping 
upregulated-, downregulated- or all significant- genes in four models. Model 1 = blue, 
model 2 = yellow, model 3 = red and model 4 = purple. Source data are provided as a 
Source Data file. 
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Supplementary Figure 9 Significant pathways of gene expression related to social 
organization. Polysel method was conducted to detect significant pathways. Post 
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mean of each of 13,402 orthologous genes from MCMCglmm analysis was used to 
calculate SUMSTAT score. The pathway is shown if its P value is less than 0.05 or 
the absolute of the log10 of P value is greater than 1.30. Source data are provided as a 
Source Data file. 
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Supplementary Figure 10 Longevity-related pathways of gene expression were 
identified in four models. M1-M4: model 1 to model 4. Polysel method was 
conducted to detect significant pathways. Post mean of each of 13,402 orthologous 
genes from MCMCglmm analysis was used to calculate SUMSTAT score. The 
pathway is shown if its P value is less than 0.05 or the absolute of the log10 of P 
value is greater than 1.30. Source data are provided as a Source Data file. 
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Supplementary Figure 11 Longevity-related pathways of gene expression were 
detected in each of four models. M1-M4: model 1 to model 4. Polysel method was 
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conducted to detect significant pathways. Post mean of each of 13,402 orthologous 
genes from MCMCglmm analysis was used to calculate SUMSTAT score. The 
pathway is shown if its P value is less than 0.05 or the absolute of the log10 of P 
value is greater than 1.30. Source data are provided as a Source Data file. 
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Supplementary Figure 12 Genes and pathways under selection in social 
organization and longevity. a Pathways under significant intensified or relaxed 
selection in social organization. S: solitary, PL: pair-living, GL: group-living. Polysel 
method was conducted to detect significant pathways. The K value of each of 13402 
orthologous genes from RELAX was used to calculate SUMSTAT score. The 
pathway is shown if its P value is less than 0.01 or the absolute of the log10 of P 
value is greater than two. b The pathways under selection in the long-lived state. 
Polysel with K value was used and the pathway is displayed if its P value is less than 
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0.05 or the absolute of the log10 of P value is greater than 1.3. The genes who 
changed expression significantly and also experienced selection in solitary (c), pair-
living (d) and group-living (e) and longevity (f). Downregulated genes = blue, 
upregulated genes = yellow, intensification genes = red and relaxation genes = purple. 
Source data are provided as a Source Data file. 
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Supplementary Tables 

Supplementary Table 1 Summary of category traits of 974 mammalian species. 
 

Trait Number of species (proportion) 
Social 

organization  
Solitary Pair-living Group-living  

497 (51.03%) 115 (11.81%) 412 (42.30%)  

Activity Nocturnal Diurnal Others  
319 (33.69%) 320 (33.79%) 308 (32.52%)  

Lifestyle Terrestrial Arboreal and 
Semiarboreal Aerial Others 

583 (59.85%) 127 (26.08%) 63 (6.47%) 74 (7.60%) 

Fossoriality 
Subterranean Nonfossorial   

21 (2.16%) 953 (97.84%)   
 
 

Supplementary Table 2 Top ten evolutionary models of social organizations in 
mammals. The data of 974 species with social polymorphism was used to conduct ten 
independent interactions. The top ten models account for 93.31%, 92.92%, 93.28%, 
92.87%, 93.67%, 93.22%, 93.28%, 93.25%, 92.51% and 93.50% of the posterior 
sample for ten runs, respectively. The results of the first three interactions were shown 
here. Rate coefficient qij describes the transition rates between state i and j, where the 
subscripts i and j correspond to two states of three social organizations (0: solitary; 1: 
pair-living; 2: group-living). Z refers to the rate value of zero while 0s and 1s denote 
different non-zero transition rates. Frequency = visits to model in posterior sample of 
500,000 observations. PDF = probability density; CDF = cumulative density. 

Run 1 

Model 
Rate coefficients 

Frequency PDF CDF 
q01 q02 q10 q12 q20 q21 

1 Z 1 0 1 1 1 158956 0.32 0.32 
2 0 1 1 0 1 0 65003 0.13 0.45 
3 1 0 0 1 0 1 49490 0.10 0.55 
4 0 1 1 1 1 0 46001 0.09 0.64 
5 1 0 0 0 0 1 41375 0.08 0.72 
6 Z 0 1 0 0 0 38283 0.08 0.80 
7 1 1 0 1 1 1 27705 0.05 0.85 
8 0 0 1 1 0 0 17787 0.04 0.89 
9 0 1 1 Z 1 0 11703 0.02 0.91 
10 1 1 0 0 1 1 10265 0.02 0.93 
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Run 2 

Model 
Rate coefficients 

Frequency PDF CDF 
q01 q02 q10 q12 q20 q21 

1 Z 1 0 1 1 1 173691 0.35 0.35 
2 0 1 1 0 1 0 55788 0.11 0.46 
3 1 0 0 1 0 1 48895 0.10 0.56 
4 0 1 1 1 1 0 38729 0.07 0.63 
5 1 0 0 0 0 1 37936 0.08 0.71 
6 Z 0 1 0 0 0 37234 0.07 0.78 
7 1 1 0 1 1 1 31060 0.06 0.84 
8 0 0 1 1 0 0 20857 0.05 0.89 
9 1 1 0 0 1 1 10388 0.02 0.91 
10 0 1 1 Z 1 0 10015 0.02 0.93 

 

 

Run 3 

Model 
Rate coefficients 

Frequency PDF CDF 
q01 q02 q10 q12 q20 q21 

1 Z 1 0 1 1 1 160048 0.32 0.32 
2 0 1 1 0 1 0 57631 0.12 0.44 
3 1 0 0 1 0 1 54117 0.10 0.54 
4 1 0 0 0 0 1 44305 0.09 0.63 
5 0 1 1 1 1 0 41199 0.08 0.71 
6 Z 0 1 0 0 0 39550 0.08 0.79 
7 1 1 0 1 1 1 27985 0.06 0.85 
8 0 0 1 1 0 0 20036 0.04 0.89 
9 1 1 0 0 1 1 11183 0.02 0.91 
10 0 1 1 Z 1 0 10352 0.02 0.93 

  



20 
 

Supplementary Table 3 Top five evolutionary models of longevity in mammals. 
The number of species used in these analyses was n = 974. Three of ten independent 
interactions were shown. Rate coefficient q01 describes the transition rates for the 
short-lived state to the long-lived state, while q10 represents the transition rates for 
the long-lived state to the short-lived state (0: short-lived; 1: long-lived). Z refers to 
the rate value of zero while 0s and 1s denote different non-zero transition rates. 
Frequency = visits to model in posterior sample of 500,000 observations. PDF = 
probability density; CDF = cumulative density.  

Run 1 

Absolute lifespan 

Model 
Rate coefficients 

Frequency PDF CDF 
q01 q02 

1 0 1 421873 0.84 0.84 
2 1 0 78116 >0.15 >0.99 
3 0 0 11 <0.01 1.00 
      

Relative lifespan 

Model 
Rate coefficients 

Frequency PDF CDF 
q01 q02 

1 1 0 256682 0.51 0.51 
2 0 1 240716 0.48 0.99 
3 0 0 2602 0.01 1.00 
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Run 2 

Absolute lifespan 

Model 
Rate coefficients 

Frequency PDF CDF 
q01 q02 

1 0 1 371588 0.73176 0.74 
2 1 0 128405 >0.25 >0.99 
3 0 0 7 <0.01 1.00 
      

Relative lifespan 

Model 
Rate coefficients 

Frequency PDF CDF 
q01 q02 

1 1 0 250760 0.50 0.50 
2 0 1 246521 0.49 0.99 
3 0 0 2719 0.01 1.00 

 

 

Run 3 

Absolute lifespan 

Model 
Rate coefficients 

Frequency PDF CDF 
q01 q02 

1 0 1 306174 0.61 0.61 
2 1 0 193819 0.38 >0.99 
3 0 0 7 <0.01 1.00 
      

Relative lifespan 

Model 
Rate coefficients 

Frequency PDF CDF 
q01 q02 

1 1 0 254041 0.51 0.51 
2 0 1 243330 0.48 >0.99 
3 0 0 2629 <0.01 1.00 
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Supplementary Table 4 Comparative phylogenetic analyses of longevity among 
different types of social organization. pMCMC values were calculated using 
MCMCglmm models. They were fitted with longevity as the response variable and 
social organization, adult body mass, activity, lifestyle, and fossoriality as predictor 
variables. Both multi-states (species: n = 947) and uni-state (species: n = 897) of 
social organization were considered in the MCMCglmm models. The significant 
factors are highlighted in bold. The reference categories were solitary for social 
organization, diurnal for activity, terrestrial for lifestyle, and non-fossorial for 
fossoriality. 

Factors using multi-states post.mean 95%CI eff.samp pMCMC 
(Intercept) 0.64 [0.28, 0.98] 1800 <0.0006 *** 
PairLiving 0.10 [0.05, 0.14] 1800 0.0011 ** 

GroupLiving 0.06 [0.03, 0.10] 1957 <0.0006 *** 
Solitary & PairLiving 0.03 [-0.09, 0.14] 1800 0.6578  

PairLiving & GroupLiving 0.06 [0.01, 0.10] 1800 0.0322 * 
Activity_Nocturnal  0.04 [-0.01, 0.07] 1800 0.0822  

Activity_Others 0.05 [0.02, 0.08] 1800 0.0011 ** 
Lifestyle_Aerial 0.16 [-0.17, 0.48] 1548 0.3244  

Lifestyle_Arboreal 0.02 [-0.04, 0.08] 1957 0.5133  
Lifestyle_Semiarboreal 0.03 [-0.02, 0.08] 1800 0.2878  

Lifestyle_Freshwater -0.10 [-0.30, 0.11] 1800 0.3367  
Lifestyle_Marine -0.06 [-0.22, 0.10] 1551 0.5033  

Lifestyle_Terrestrial & Marine -0.01 [-0.10, 0.09] 1800 0.8467  
Fossoriality_Subterranean 0.10 [-0.01, 0.21] 1800 0.0667  

log10(AdultBodyMass) 0.15 [0.12, 0.17] 1800 <0.0006 *** 
Species Number 947     

Factors using uni-state post.mean 95%CI eff.samp pMCMC 
(Intercept) 0.64 [0.29, 1.03] 1663 0.0011 ** 
PairLiving 0.10 [0.06, 0.15] 1979 <0.0006 *** 

GroupLiving 0.06 [0.03, 0.09] 1800 0.0011 ** 
Activity_Nocturnal  0.03 [-0.01, 0.07] 1842 0.1167  

Activity_Others 0.05 [0.02, 0.08] 2357 0.0056 ** 
Lifestyle_Aerial 0.16 [-0.17, 0.47] 1800 0.3267  

Lifestyle_Arboreal 0.02 [-0.04, 0.08] 1800 0.5722  
Lifestyle_Semiarboreal 0.03 [-0.02, 0.08] 1800 0.2467  

Lifestyle_Freshwater -0.10 [-0.31, 0.11] 1800 0.3511  
Lifestyle_Marine -0.06 [-0.22, 0.09] 1800 0.4544  

Lifestyle_Terrestrial & Marine -0.01 [-0.10, 0.10] 1800 0.8511  
Fossoriality_Subterranean 0.09 [-0.04, 0.21] 1800 0.1389  

log10(AdultBodyMass) 0.15 [0.12, 0.17] 1800 <0.0006 *** 
Species Number 897     
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Supplementary Table 5 Top ten models of correlated evolution of solitary and 
longevity in mammals. The data of 974 species with social polymorphism was used 
to conduct ten independent interactions. The top ten models account for 99.59%, 
99.61%, 99.58%, 99.62%, 99.53%, 99.54%, 99.59%, 99.61%, 99.65% and 99.57% of 
the posterior sample for ten runs, respectively. The results of three interactions were 
shown here. Rate coefficient qij describes the transition rates between state: 1 = short-
lived/non-solitary; 2 = long-lived/non-solitary, 3 = short-lived/solitary, 4 = long-
lived/solitary. That is, for example, q12 describes the transition rate from the short-
lived state to the long-lived state in non-solitary. Z refers to the rate value of zero 
while 0s and 1s denote different non-zero transition rates. Frequency = visits to model 
in posterior sample of 500,000 observations. PDF = probability density; CDF = 
cumulative density.  

Run 1 for absolute longevity (> 26 years) 

Model 
Rate coefficients Frequency PDF CDF 

q12 q13 q21 q24 q31 q34 q42 q43    
1 1 1 1 1 1 0 1 1 430730 0.86 0.86 
2 0 0 0 0 0 1 0 0 39873 0.08 0.94 
3 1 1 1 1 1 0 1 0 12875 0.03 0.97 
4 1 1 1 0 1 0 1 1 4647 0.01 0.98 
5 0 0 0 1 0 1 0 0 4336 0.01 0.99 
6 0 0 0 0 0 1 0 1 3487 <0.007  
7 0 0 0 1 0 1 0 1 1089 <0.003  
8 1 1 1 0 1 0 1 0 457 <0.001  
9 2 1 1 2 2 0 1 2 283 <0.001  
10 1 2 2 1 1 0 2 1 282 <0.001  

 

Run 1 for relative longevity (residuals > 1.38) 

Model 
Rate coefficients 

Frequency PDF CDF 
q12 q13 q21 q24 q31 q34 q42 q43 

1 1 1 1 0 1 0 1 1 246299 0.49 0.49 
2 0 0 0 1 0 1 0 0 222148 0.45 0.94 
3 1 0 0 1 1 1 0 0 5989 0.01 0.95 
4 1 1 1 0 1 0 0 1 4149 <0.01 >0.95 
5 0 0 0 1 0 1 1 0 3558 <0.01 0.96 
6 0 1 1 0 0 0 1 1 3264 <0.01 0.97 
7 1 0 0 1 1 1 1 0 1897 <0.01 >0.97 
8 1 0 0 1 0 1 0 0 1233 <0.01 <0.98 
9 1 1 1 1 1 0 1 1 1160 <0.01 <0.98 
10 0 1 1 0 0 0 0 1 1072 <0.01 >0.98 
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Run 2 for absolute longevity (> 26 years) 

Model 
Rate coefficients 

Frequency PDF CDF 
q12 q13 q21 q24 q31 q34 q42 q43 

1 1 1 1 1 1 0 1 1 429406 0.86 0.86 
2 0 0 0 0 0 1 0 0 41023 0.08 0.94 
3 1 1 1 1 1 0 1 0 16821 0.03 0.97 
4 0 0 0 0 0 1 0 1 5979 0.01 0.98 
5 0 0 0 1 0 1 0 0 2364 0.01 0.99 
6 1 1 1 0 1 0 1 1 1752 <0.004  
7 1 2 2 1 1 0 2 1 268 <0.001  
8 2 1 1 2 2 0 1 2 265 <0.001  
9 1 1 1 1 1 0 1 Z 260 <0.001  
10 2 1 1 2 2 0 1 1 134 <0.001   

 

Run 2 for relative longevity (residuals > 1.38) 

Model 
Rate coefficients 

Frequency PDF CDF 
q12 q13 q21 q24 q31 q34 q42 q43 

1 1 1 1 0 1 0 1 1 235471 0.47 0.47 
2 0 0 0 1 0 1 0 0 229460 0.46 0.93 
3 1 0 0 1 1 1 0 0 6901 0.01 0.94 
4 1 1 1 0 1 0 0 1 4796 0.01 0.95 
5 0 0 0 1 0 1 1 0 4268 0.01 0.96 
6 0 1 1 0 0 0 1 1 3776 0.01 0.97 
7 1 0 0 1 0 1 0 0 1834 <0.01 <0.98 
8 1 0 0 1 1 1 1 0 1829 <0.01 <0.98 
9 0 1 1 0 0 0 0 1 1668 <0.01 >0.98 
10 0 0 0 0 0 1 0 0 1321 <0.01 <0.99 
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Run 3 for absolute longevity (> 26 years) 

Model 
Rate coefficients 

Frequency PDF CDF 
q12 q13 q21 q24 q31 q34 q42 q43 

1 1 1 1 1 1 0 1 1 429152 0.86 0.86 
2 0 0 0 0 0 1 0 0 40364 0.08 0.94 
3 1 1 1 1 1 0 1 0 15949 0.03 0.97 
4 0 0 0 0 0 1 0 1 5551 0.01 0.98 
5 1 1 1 0 1 0 1 1 3289 0.01 0.99 
6 0 0 0 1 0 1 0 0 2069 <0.005  
7 0 0 0 1 0 1 0 1 439 <0.001  
8 1 1 1 0 1 0 1 0 313 <0.001  
9 1 2 2 1 1 0 2 1 295 <0.001  
10 2 1 1 2 2 0 1 2 258 <0.001   

 

Run 3 for relative longevity (residuals > 1.38) 

Model 
Rate coefficients 

Frequency PDF CDF 
q12 q13 q21 q24 q31 q34 q42 q43 

1 1 1 1 0 1 0 1 1 243882 0.49 0.49 
2 0 0 0 1 0 1 0 0 222481 0.44 0.93 
3 1 0 0 1 1 1 0 0 5184 0.01 0.94 
4 1 1 1 0 1 0 0 1 4949 0.01 0.95 
5 0 0 0 1 0 1 1 0 4646 0.01 0.96 
6 0 1 1 0 0 0 1 1 3946 0.01 0.97 
7 1 0 0 1 1 1 1 0 2533 <0.01 <0.98 
8 0 1 1 0 0 0 0 1 1719 <0.01 <0.98 
9 0 0 0 0 0 1 0 0 1611 <0.01 >0.98 
10 1 0 0 1 0 1 0 0 1423 <0.01 >0.98 
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Supplementary Table 6 Top ten models of correlated evolution of group-living 
and longevity in mammals. The data of 974 species with social polymorphism was 
used to conduct ten independent interactions. The top ten models account for 99.98%, 
99.98 %, 99.99%, 99.98%, 99.99%, 99.99%, 99.98%, 99.98%, 99.99% and 99.99% of 
the posterior sample for ten runs, respectively. The results of the first three 
interactions were shown here. Rate coefficient qij describes the transition rates 
between state: 1 = short-lived/non-group-living; 2 = long-lived/non-group-living, 3 = 
short-lived/group-living, 4 = long-lived/group-living. That is, for example, q12 

describes the transition rate from the short-lived state to the long-lived state in non-
group-living. Z refers to the rate value of zero while 0s and 1s denote different non-
zero transition rates. Frequency = visits to model in posterior sample of 500,000 
observations. PDF = probability density; CDF = cumulative density. 

Run 1 for absolute longevity (> 26 years) 

Model 
Rate coefficients 

Frequency PDF CDF 
q12 q13 q21 q24 q31 q34 q42 q43 

1 0 1 1 1 1 1 1 1 488016 0.97 0.97 
2 1 0 0 0 0 0 0 0 11731 0.02 0.99 
3 0 1 1 1 1 1 0 1 121 <0.001  
4 0 2 1 1 1 2 2 1 11 <0.001  
5 0 2 2 1 1 2 2 1 9 <0.001  
6 0 1 2 1 2 1 1 2 8 <0.001  
7 0 1 2 2 2 2 2 2 8 <0.001  
8 0 1 2 2 2 1 2 2 7 <0.001  
9 0 2 1 2 1 2 2 1 6 <0.001  
10 0 1 2 2 2 1 1 2 5 <0.001   

 

Run 1 for relative longevity (residuals > 1.38) 

Model 
Rate coefficients 

Frequency PDF CDF 
q12 q13 q21 q24 q31 q34 q42 q43 

1 0 1 1 1 1 1 1 1 406562 0.81 0.81 
2 1 0 0 0 0 0 0 0 67726 0.14 0.95 
3 1 0 0 0 0 0 1 0 12822 0.02 0.97 
4 0 1 1 1 1 1 0 1 7110 0.01 0.98 
5 0 0 1 1 1 0 0 1 2665 0.01 0.99 
6 1 1 0 0 0 1 1 0 1162 <0.01 >0.99 
7 0 0 1 0 1 0 0 1 624 <0.01  
8 1 1 0 1 0 1 1 0 240 <0.001  
9 0 1 1 0 1 1 0 1 152 <0.001  
10 0 0 1 1 1 1 0 1 142 <0.001   
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Run 2 for absolute longevity (> 26 years) 

Model 
Rate coefficients 

Frequency PDF CDF 
q12 q13 q21 q24 q31 q34 q42 q43 

1 0 1 1 1 1 1 1 1 491265 0.98 0.98 
2 1 0 0 0 0 0 0 0 8367 0.01 0.99 
3 1 0 0 0 0 0 1 0 146 <0.001  
4 0 1 1 1 1 1 0 1 65 <0.001  
5 1 0 1 0 0 0 0 0 17 <0.001  
6 0 2 1 2 1 2 2 1 14 <0.001  
7 0 1 0 1 1 1 1 1 12 <0.001  
8 0 1 2 1 2 1 1 2 12 <0.001  
9 0 2 1 1 1 2 2 1 8 <0.001  
10 0 1 2 1 2 1 2 2 6 <0.001  

 

Run 2 for relative longevity (residuals > 1.38) 

Model 
Rate coefficients 

Frequency PDF CDF 
q12 q13 q21 q24 q31 q34 q42 q43 

1 0 1 1 1 1 1 1 1 385618 0.77 0.77 
2 1 0 0 0 0 0 0 0 86249 0.17 0.94 
3 1 0 0 0 0 0 1 0 11689 0.02 0.96 
4 0 1 1 1 1 1 0 1 11075 0.02 0.98 
5 0 0 1 1 1 0 0 1 2511 <0.01 >0.99 
6 1 1 0 0 0 1 1 0 943 <0.01  
7 0 0 1 0 1 0 0 1 550 <0.01  
8 0 1 0 1 1 1 0 1 328 <0.001  
9 1 1 0 1 0 1 1 0 205 <0.001  
10 1 0 0 1 0 0 1 0 94 <0.001  
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Run 3 for absolute longevity (> 26 years) 

Model 
Rate coefficients 

Frequency PDF CDF 
q12 q13 q21 q24 q31 q34 q42 q43 

1 0 1 1 1 1 1 1 1 499851 0.99 0.99 
2 0 1 2 1 2 1 1 2 18 <0.001  
3 0 2 1 2 1 2 2 1 17 <0.001  
4 0 1 2 2 2 1 1 2 8 <0.001  
5 0 2 1 1 1 2 2 1 7 <0.001  
6 0 2 1 1 1 2 1 1 6 <0.001  
7 0 2 1 2 1 1 2 1 6 <0.001  
8 0 1 1 2 2 1 1 2 5 <0.001  
9 0 1 1 2 2 1 2 2 5 <0.001  
10 0 2 1 2 1 2 1 1 5 <0.001  

 

Run 3 for relative longevity (residuals > 1.38) 

Model 
Rate coefficients 

Frequency PDF CDF 
q12 q13 q21 q24 q31 q34 q42 q43 

1 0 1 1 1 1 1 1 1 401162 0.80 0.80 
2 1 0 0 0 0 0 0 0 69870 0.14 0.94 
3 1 0 0 0 0 0 1 0 12830 0.03 0.97 
4 0 1 1 1 1 1 0 1 10595 0.02 0.99 
5 0 0 1 1 1 0 0 1 2273 <0.01 >0.99 
6 1 1 0 0 0 1 1 0 953 <0.01  
7 0 1 1 0 1 1 0 1 714 <0.01  
8 0 0 1 0 1 0 0 1 521 <0.01  
9 0 1 0 1 1 1 0 1 228 <0.001  
10 1 1 0 1 0 1 1 0 112 <0.001  
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Supplementary Table 7 Likelihoods of dependent and independent models 
estimated for the correlated evolution of social organization and longevity using 
a different phylogenetic tree. The number of species used in these analyses was n = 
974. The phylogenetic tree was from Upham et al., 2019. Absolute long-lived species 
were categorized using three cut-offs: longevity > 26 years or longevity > 17 years or 
longevity > 35 years. Relative long-lived species were classified using the body mass 
adjusted residuals: longevity > 1.38, longevity > 0.93 or longevity > 1.83.  

 
Social states Longevity states Mean likelihood of model 

Log BF 
Correlated 
evolution (no/yes) (no/yes) Dependent Independent 

Solitary Absolute long-lived (> 26 years) -800.83 -801.99 2.32 Yes 
Pair living Absolute long-lived (> 26 years) -661.14 -654.56 -13.16 No 
Group living Absolute long-lived (> 26 years) -783.89 -784.15 0.52 No 
Solitary Absolute long-lived (> 17 years) -822.98 -832.67 19.38 Yes 
Pair living Absolute long-lived (> 17 years) -697.75 -692.53 -10.44 No 
Group living Absolute long-lived (> 17 years) -814.53 -816.04 3.02 Yes 
Solitary Absolute long-lived (> 35 years) -702.69 -702.61 -0.16 No 
Pair living Absolute long-lived (> 35 years) -540.00 -544.49 8.98 Yes 
Group living Absolute long-lived (> 35 years) -677.66 -686.79 18.26 Yes 
Solitary Relative long-lived (Residuals > 1.38) -770.82 -782.61 23.58 Yes 
Pair living Relative long-lived (Residuals > 1.38) -644.20 -638.00 -12.40 No 
Group living Relative long-lived (Residuals > 1.38) -759.20 -766.00 13.60 Yes 
Solitary Relative long-lived (Residuals > 0.93) -924.18 -925.33 2.30 Yes 
Pair living Relative long-lived (Residuals > 0.93) -798.96 -793.29 -11.34 No 
Group living Relative long-lived (Residuals > 0.93) -911.33 -913.20 3.74 Yes 
Solitary Relative long-lived (Residuals > 1.83) -718.98 -735.46 32.96 Yes 
Pair living Relative long-lived (Residuals > 1.83) -581.79 -575.57 -12.44 No 
Group living Relative long-lived (Residuals > 1.83) -704.43 -718.62 28.38 Yes 
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Supplementary Table 8 Likelihoods of dependent and independent models 
estimated for the correlated evolution of social organization and longevity using 
uni-state sub-datasets. Different sub-datasets were used in three different types of 
models: solitary-pair-living models and absolute/relative longevity (species: nuni-state = 
556); solitary-group-living and absolute/relative longevity (species: nuni-state = 859); 
and pair-living-group-living and absolute/relative longevity (species: nuni-state = 433). 
Absolute long-lived species were categorized using three cut-offs: longevity > 26 
years or longevity > 17 years, or longevity > 35 years. Relative long-lived species 
were classified using the body mass adjusted residuals: longevity > 1.38, longevity > 
0.93, or longevity > 1.83. 

Social states 
Longevity states Mean likelihood of model Log 

BF 
Correlated 
evolution (no/yes) Dependent Independent 

Solitary-Pair living Absolute long-lived (> 26 years) -321.69 -319.14 -5.10 No 
Solitary-Pair living Absolute long-lived (> 17 years) -390.85 -388.36 -4.98 No 
Solitary-Pair living Absolute long-lived (> 35 years) -257.15 -253.87 -6.56 No 
Solitary-Pair living Relative long-lived (Residuals > 1.38) -310.37 -307.53 -5.68 No 
Solitary-Pair living Relative long-lived (Residuals > 0.93) -470.67 -465.67 -10.00 No 
Solitary-Pair living Relative long-lived (Residuals > 1.83) -247.90 -244.75 -6.30 No 
Solitary-Group living Absolute long-lived (> 26 years) -659.99 -662.76 5.54 Yes 
Solitary-Group living Absolute long-lived (> 17 years) -680.46 -684.07 7.22 Yes 
Solitary-Group living Absolute long-lived (> 35 years) -582.55 -590.02 14.94 Yes 
Solitary-Group living Relative long-lived (Residuals > 1.38) -630.77 -637.55 13.56 Yes 
Solitary-Group living Relative long-lived (Residuals > 0.93) -760.14 -758.94 -2.40 No 
Solitary-Group living Relative long-lived (Residuals > 1.83) -565.70 -577.48 23.56 Yes 
Pair living-Group living Absolute long-lived (> 26 years) -336.12 -332.15 -7.94 No 
Pair living-Group living Absolute long-lived (> 17 years) -296.14 -292.67 -6.94 No 
Pair living-Group living Absolute long-lived (> 35 years) -288.54 -286.74 -3.60 No 
Pair living-Group living Relative long-lived (Residuals > 1.38) -305.64 -302.86 -5.56 No 
Pair living-Group living Relative long-lived (Residuals > 0.93) -334.66 -331.36 -6.60 No 
Pair living-Group living Relative long-lived (Residuals > 1.83) -300.82 -296.67 -8.30 No 
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Supplementary Table 9 Summary of category traits of 94 mammalian species 
used in the transcriptomic analyses. 

Trait Number of species (proportion) 

Social organization  Solitary Pair-living Group-living 
26 (27.66%) 11 (11.70%) 65 (69.15%) 

Activity Nocturnal Diurnal Others 
54 (57.45%) 21 (22.34%) 19 (20.21%) 

Diet Carnivore Herbivore Omnivore 
50 (53.19%) 23 (24.47%) 21 (22.34%) 

Lifestyle 
Non-aerial Aerial  

59 (62.77%) 35 (37.23%)  
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