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Supplementary Figures 

Supplementary Figure 1: Fibroblast identification through single-cell RNA 
sequencing analysis of whole-tissue homogenates derived from human 
NSCLC tumour samples. 

 

a) Boxplots showing the results of batch correction testing after reciprocal PCA (rPCA) 

integration (n = 8158 single cell transcriptomes). Intra-sample nearest neighbour (nn) 

overlap z-scores define whether the cells from individual samples are grouped 

together with greater frequency than randomly sampled cells, z-scores greater than 

1.96 (equivalent to p=0.05) indicate cells that significantly overlap with other cells 

from the same dataset and this threshold is shown by the dotted horizontal line. 



b) Barplot showing the relative abundance of different cell types across all samples in 

the TLDS scRNA-seq dataset. 

c) Violin plot showing the number of genes measure per cell, grouped by cell type. 

d) Violin plot showing the number of unique molecular identifiers (counts) measured per 

cell, grouped by cell type. 

e) Feature plots showing the expression of canonical cell type markers: TRBC2 (T 

cells); DCN (Fibroblasts); LYZ (Myeloid cells); KRT19 (Epithelial cells); CD79A (B 

cells); KIT (Mast cells); VWF (Endothelial cells); AGER (AT1 pneumocytes). 

f) 2D visualisation (UMAP dimensionality reduction) of Qian et al.’s scRNA-seq data 1, 

highlighting the stromal cell cluster.  

g) UMAP and scatter plot showing the demarcation of mural cells and fibroblasts within 

the Qian dataset’s stromal cell cluster, using consensus fibroblast and mural cell 

gene signature scores. 

All boxplots are displayed using the Tukey method (centre line, median; box limits, upper 

and lower quartiles; whiskers, last point within a 1.5x interquartile range).  

  



Supplementary Figure 2: Integration of seven scRNA-seq datasets identifies 
three major fibroblast subpopulations in human NSCLC and control tissues. 

 



a) Boxplots showing the intra-dataset nearest neighbour (nn) overlap z-score before 

and after canonical correlation analysis (CCA) mediated integration (n = 9673 

fibroblast transcriptomes). Intra-dataset nearest neighbour (nn) overlap z-scores 

define whether the cells from individual datasets are grouped together with greater 

frequency than randomly sampled cells, z-scores greater than 1.96 (equivalent to 

p=0.05) indicate cells that significantly overlap with other cells from the same dataset 

and this threshold is shown by the dotted horizontal line. 

b) Bar plots showing the number of clusters and minimum number of sample-level 

markers per cluster for different clustering resolutions, resolution 0.15 was selected 

for fibroblast subpopulation identification. 

c) UMAP plot showing the distribution of fibroblasts from the HLCA dataset2 and their 

original annotations. 

d) UMAP plots showing the distribution of fibroblasts from each of datasets used. 

e) Bar plot showing the relative abundance of fibroblast subpopulations grouped by 

tissue subtype. 

f) Bar plot showing the most significantly upregulated fibroblast gene signatures for 

each subpopulation, calculated through GSVA. Complete results from this analysis 

are provided in Supplementary Data 4. 

g) Volcano plot showing sample level differential expression analysis between 

adventitial fibroblasts isolated from tumour samples or control samples. Genes 

differentially expressed (adj.P<0.01, shown in red and labelled, n = 36 [Control], 42 

[Tumour]). Complete results from this analysis are provided in Supplementary Data 

5. 

h) Volcano plot showing sample level differential expression analysis between 

myofibroblasts isolated from tumour samples or control samples. Genes differentially 

expressed (adj.P<0.01, shown in red and labelled, n = 28 [Control], 64 [Tumour]).  

Complete results from this analysis are provided in Supplementary Data 5. 

All boxplots are displayed using the Tukey method (centre line, median; box limits, upper 

and lower quartiles; whiskers, last point within a 1.5x interquartile range). 

  



Supplementary Figure 3: Multiplexed IHC (mxIHC) and digital cytometry show 
that fibroblast subpopulations occupy spatially discrete niches and varied 
NSCLC tissue subtype enrichment. 

 

a) Bar and violin plots showing the expression of markers selected to demarcate fibroblast 

subpopulations by mxIHC. Boxplots represent sample level expression (averaged over 

single cells) and violin plots show expression at the single cell level. 

b) 2D visualisation (UMAP dimensionality reduction) of the fibroblasts identified through 

mxIHC, highlighting the three subpopulations. 

c) Feature plots showing the distribution of fibroblast subpopulation markers over the 

UMAP dimensionality reduction, as measured by mxIHC. 



d) Heatmap showing the signature matrix used for bulk transcriptome deconvolution by 

CIBERSORTx (CSx), also available in “.txt” format as Supplementary Data 11. 

e) CSx accuracy validation using a pseudobulk dataset generated from single cell 

transcriptomes. Barplot shows the correlation (Pearson’s r) between each cell type’s CSx 

estimation and true abundance. Scatter plots show the linear relationship between CSx 

estimates and true abundance for each fibroblast subpopulation. 

f) Boxplot showing the relative abundance of each fibroblast subpopulation in tumour-

adjacent normal tissue grouped by the subtype of the associated tumour, measured by 

mxIHC. Nominal p-values for Wilcoxon signed-ranks test  are also shown(n = 8 [LUAD], 

10 [LUSC]) 

g) Barplot showing the relative frequency of inflammation or fibrosis in the tumour-adjacent 

normal tissue for  each tumour subtype. p = 0.00729, chi squared test (n = 8 [LUAD], 10 

[LUSC]).  

h) Boxplot showing the relative abundance of each fibroblast subpopulation in tumour-

adjacent normal tissue (measured by mxIHC) in samples grouped by whether there was 

histological evidence of inflammation or fibrosis Nominal p-values for Wilcoxon signed-

ranks test  are also shown (n = 12 [FALSE], 6 [TRUE]). 

All statistical tests carried out were two-sided and boxplots are displayed using the Tukey 

method (centre line, median; box limits, upper and lower quartiles; whiskers, last point within 

a 1.5x interquartile range). Source data for panels e, f and h are provided in the Source Data 

file. 

  



Supplementary Figure 4: Trajectory inference identifies consensus gene 
modules associated with the transdifferentiation from alveolar or adventitial 
fibroblasts to myofibroblasts. 

 

a) 2D visualisation (diffusion map dimensionality reduction) of the integrated fibroblast 

scRNA-seq dataset split by dataset, highlighting the three subpopulations. 

b) Loess plots showing consensus DPT module expression profiles, across each scRNA-

seq dataset. 

c) Heatmap showing the number of overlapping genes assigned to each DPT module for 

the alveolar to myo and adventitial to myo trajectory. Benjamini-Hochberg adjusted p-

values for Fischer exact tests are also shown. 



d) 2D visualisation (diffusion map dimensionality reduction) showing the cells grouped by 

DPT quintiles. 

  



Supplementary Figure 5: Machine learning based classification of scRNA-seq 
data and mxIHC shows adventitial and myo-fibroblasts are conserved across 
cancer types, whereas alveolar fibroblasts are lung specific. 

 

a) Representative micrographs from mxIHC analysis of tissue microarrays (TMAs), 

constructed from pancreatic, oral and colon cancer tissue blocks (n cores analysed 

Control/Tumour = 14/15 [Pancreas], 10/9 [Oral], 9/13 [Colon]). The representing each 

marker or simulated cell classification are provided in the associated key (scale bar 

represents 100µm).  



b) 2D visualisation (UMAP dimensionality reduction) of fibroblasts isolated from 

idiopathic pulmonary fibrosis (IPF)  and control tissues analysed by scRNA-seq, 

highlighting sample type. 

c) As per a, highlighting the fibroblast subpopulation associated with each cell as 

predicted by a machine learning classifier. 

d) Violin plots showing the probability of the machine learning classifier model’s 

predictions (shown in panel c, n = 5066 fibroblast transcriptomes). 

e) Violin plots showing the probability of myofibroblast assignments across data from 

different tissue types (n = 1522 [IPF], 5954 [Pancreas], 413 [Oral], 1885 [Colon] 

myofibroblast transcriptomes). 

All boxplots are displayed using the Tukey method (centre line, median; box limits, upper 

and lower quartiles; whiskers, last point within a 1.5x interquartile range). 

  



Supplementary Figure 6: CIBERSORTx mediated digital cytometry shows that 
myofibroblasts and alveolar fibroblasts correlate with overall survival rates in 
LUAD. 

 

a) Boxplots showing univariate Cox regression analysis of four-year overall survival rates in 

multiple bulk transcriptomic datasets. Relative fibroblast subpopulation abundance (% of 

all fibroblasts per sample) was used as a continuous variable for this analysis. Each 

point represents a different transcriptomic dataset. *p<0.05, **p<0.01 (LUAD datasets n 

= 503 [TCGA-LUAD3], 398 [GSE720944], 442 [GSE684655], 226 [GSE312106]; LUSC 

datasets n = 492 [TCGA-LUSC7], 129 [GSE45738], 234 [GSE1570099], 249 

[GSE1570109]; exact p-values provided in Source Data file).  

b) Volcano plot showing sample level differential expression (log fold change and wilcox 

test Bonferroni adjusted p-values) analysis between myofibroblasts isolated from LUAD 

samples or LUSC samples (n= 45 [LUAD], 16 [LUSC]). 

c) Forest plots showing covariate independent hazard ratios (+/-95% confidence intervals) 

and adjusted p-values from multivariate Cox regression analysis of four-year overall 

survival rates across each individual LUAD patient cohort analysed, using myofibroblast 



abundance, disease stage and patient age as independent variables (exact p-values 

provided in Source Data file).  

d) Forest plots showing covariate independent hazard ratios (+/-95% confidence intervals) 

and adjusted p-values each individual LUAD patient cohort analysed3, 4, 5, 6, using 

alveolar fibroblast abundance, disease stage and patient age as independent variables 

(exact p-values provided in Source Data file).  

All statistical tests carried out were two-sided and boxplots are displayed using the Tukey 

method (centre line, median; box limits, upper and lower quartiles; whiskers, last point within 

a 1.5x interquartile range). Source data for panels a, c and d are provided in the Source 

Data file. 

  



Supplementary Figure 7: Fibroblast subpopulations are associated with 
morphological, molecular and immunological features of LUAD tumours. 

 



a) Boxplots showing the relative abundance of fibroblast subpopulations in well/moderately 

differentiated LUAD tumours compared to poorly differentiated, measured by 

CIBERSORTx digital cytometry. Nominal p-values for Wilcoxon signed-ranks test  are 

also shown (n = 106 [G1/G2-TCGA], 81 [G3-TCGA]3, 269 [G1/G2-GSE68465], 167 [G3-

GSE68465]5). 

b) Heatmap showing Spearman’s correlation (rho) between fibroblast subpopulations 

(measured by mxIHC) and LUAD morphological growth patterns (determined by routine 

clinical pathology). Statistical significance is shown as Benjamini-hochberg adjusted p-

values for comparisons where adj.p<0.05 (n = 12). 

c) Scatter plots showing the association between each fibroblast subpopulation and the 

proportion of the tumour comprised of solid morphology growth pattern. Trendline 

represents a linear regression model with error bands representing 95% confidence 

intervals. 

d) Boxplots showing the relative abundance of fibroblast subpopulations in LUAD tumours 

grouped by molecular subtype (TRU = Terminal Respiratory Unit, PP = Proximal 

Proliferative and PI = Proximal Inflammatory), measured by CIBERSORTx digital 

cytometry (n = 515 [TCGA3], 442 [GSE720944], 443 [GSE684655], 226 [GSE312106] 

LUAD samples).  

e) Boxplots showing the relative abundance of fibroblast subpopulations in LUAD tumours 

grouped by TP53 mutation status, measured by CIBERSORTx digital cytometry. 

Nominal p-values for Wilcoxon signed-ranks test  are also shown (n = 247 [wt-TCGA], 

263 [mut-TCGA]3, 331 [wt-GSE72094], 111 [mut-GSE72094]4). 

f) Scatter plot showing Spearman’s correlation between alveolar or myofibroblast 

abundance and LM22 immune cell subpopulations across LUAD transcriptomic datasets 

(n = 4 datasets).  

All statistical tests carried out were two-sided and boxplots are displayed using the Tukey 

method (centre line, median; box limits, upper and lower quartiles; whiskers, last point within 

a 1.5x interquartile range). Source data for panels a, c, d and e are provided in the Source 

Data file. 
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