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Supplementary Figures

Supplementary Figure 1: Fibroblast identification through single-cell RNA
sequencing analysis of whole-tissue homogenates derived from human
NSCLC tumour samples.
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a) Boxplots showing the results of batch correction testing after reciprocal PCA (rPCA)
integration (n = 8158 single cell transcriptomes). Intra-sample nearest neighbour (nn)
overlap z-scores define whether the cells from individual samples are grouped
together with greater frequency than randomly sampled cells, z-scores greater than
1.96 (equivalent to p=0.05) indicate cells that significantly overlap with other cells

from the same dataset and this threshold is shown by the dotted horizontal line.



Barplot showing the relative abundance of different cell types across all samples in
the TLDS scRNA-seq dataset.

Violin plot showing the number of genes measure per cell, grouped by cell type.
Violin plot showing the number of unique molecular identifiers (counts) measured per
cell, grouped by cell type.

Feature plots showing the expression of canonical cell type markers: TRBC2 (T
cells); DCN (Fibroblasts); LYZ (Myeloid cells); KRT19 (Epithelial cells); CD79A (B
cells); KIT (Mast cells); VWF (Endothelial cells); AGER (AT1 pneumocytes).

2D visualisation (UMAP dimensionality reduction) of Qian et al.’s scRNA-seq data *,
highlighting the stromal cell cluster.

UMAP and scatter plot showing the demarcation of mural cells and fibroblasts within
the Qian dataset’s stromal cell cluster, using consensus fibroblast and mural cell

gene signature scores.

All boxplots are displayed using the Tukey method (centre line, median; box limits, upper

and lower quartiles; whiskers, last point within a 1.5x interquartile range).



Supplementary Figure 2: Integration of seven scRNA-seq datasets identifies
three major fibroblast subpopulations in human NSCLC and control tissues.
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a)

Boxplots showing the intra-dataset nearest neighbour (nn) overlap z-score before
and after canonical correlation analysis (CCA) mediated integration (n = 9673
fibroblast transcriptomes). Intra-dataset nearest neighbour (nn) overlap z-scores
define whether the cells from individual datasets are grouped together with greater
frequency than randomly sampled cells, z-scores greater than 1.96 (equivalent to
p=0.05) indicate cells that significantly overlap with other cells from the same dataset
and this threshold is shown by the dotted horizontal line.

Bar plots showing the number of clusters and minimum number of sample-level
markers per cluster for different clustering resolutions, resolution 0.15 was selected
for fibroblast subpopulation identification.

UMAP plot showing the distribution of fibroblasts from the HLCA dataset? and their
original annotations.

UMAP plots showing the distribution of fibroblasts from each of datasets used.

Bar plot showing the relative abundance of fibroblast subpopulations grouped by
tissue subtype.

Bar plot showing the most significantly upregulated fibroblast gene signatures for
each subpopulation, calculated through GSVA. Complete results from this analysis
are provided in Supplementary Data 4.

Volcano plot showing sample level differential expression analysis between
adventitial fibroblasts isolated from tumour samples or control samples. Genes
differentially expressed (adj.P<0.01, shown in red and labelled, n = 36 [Control], 42
[Tumour]). Complete results from this analysis are provided in Supplementary Data
5.

Volcano plot showing sample level differential expression analysis between
myofibroblasts isolated from tumour samples or control samples. Genes differentially
expressed (adj.P<0.01, shown in red and labelled, n = 28 [Control], 64 [Tumour]).

Complete results from this analysis are provided in Supplementary Data 5.

All boxplots are displayed using the Tukey method (centre line, median; box limits, upper

and lower quartiles; whiskers, last point within a 1.5x interquartile range).



Supplementary Figure 3: Multiplexed IHC (mxIHC) and digital cytometry show
that fibroblast subpopulations occupy spatially discrete niches and varied
NSCLC tissue subtype enrichment.
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a) Bar and violin plots showing the expression of markers selected to demarcate fibroblast

subpopulations by mxIHC. Boxplots represent sample level expression (averaged over

single cells) and violin plots show expression at the single cell level.

mxIHC, highlighting the three subpopulations.

UMAP dimensionality reduction, as measured by mxIHC.

2D visualisation (UMAP dimensionality reduction) of the fibroblasts identified through

Feature plots showing the distribution of fibroblast subpopulation markers over the



d) Heatmap showing the signature matrix used for bulk transcriptome deconvolution by
CIBERSORTX (CSx), also available in “.txt” format as Supplementary Data 11.

e) CSx accuracy validation using a pseudobulk dataset generated from single cell
transcriptomes. Barplot shows the correlation (Pearson’s r) between each cell type’s CSx
estimation and true abundance. Scatter plots show the linear relationship between CSx
estimates and true abundance for each fibroblast subpopulation.

f) Boxplot showing the relative abundance of each fibroblast subpopulation in tumour-
adjacent normal tissue grouped by the subtype of the associated tumour, measured by
mxIHC. Nominal p-values for Wilcoxon signed-ranks test are also shown(n = 8 [LUAD],
10 [LUSC])

g) Barplot showing the relative frequency of inflammation or fibrosis in the tumour-adjacent
normal tissue for each tumour subtype. p = 0.00729, chi squared test (n = 8 [LUAD], 10
[LUSCY)).

h) Boxplot showing the relative abundance of each fibroblast subpopulation in tumour-
adjacent normal tissue (measured by mxIHC) in samples grouped by whether there was
histological evidence of inflammation or fibrosis Nominal p-values for Wilcoxon signed-
ranks test are also shown (n = 12 [FALSE], 6 [TRUE]).

All statistical tests carried out were two-sided and boxplots are displayed using the Tukey

method (centre line, median; box limits, upper and lower quartiles; whiskers, last point within

a 1.5x interquartile range). Source data for panels e, f and h are provided in the Source Data

file.



Supplementary Figure 4: Trajectory inference identifies consensus gene
modules associated with the transdifferentiation from alveolar or adventitial
fibroblasts to myofibroblasts.
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a) 2D visualisation (diffusion map dimensionality reduction) of the integrated fibroblast
scRNA-seq dataset split by dataset, highlighting the three subpopulations.

b) Loess plots showing consensus DPT module expression profiles, across each scRNA-
seq dataset.

¢c) Heatmap showing the number of overlapping genes assigned to each DPT module for
the alveolar to myo and adventitial to myo trajectory. Benjamini-Hochberg adjusted p-

values for Fischer exact tests are also shown.



d) 2D visualisation (diffusion map dimensionality reduction) showing the cells grouped by
DPT quintiles.



Supplementary Figure 5: Machine learning based classification of scRNA-seq
data and mxIHC shows adventitial and myo-fibroblasts are conserved across
cancer types, whereas alveolar fibroblasts are lung specific.
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a) Representative micrographs from mxIHC analysis of tissue microarrays (TMAS),
constructed from pancreatic, oral and colon cancer tissue blocks (n cores analysed
Control/Tumour = 14/15 [Pancreas], 10/9 [Oral], 9/13 [Colon]). The representing each
marker or simulated cell classification are provided in the associated key (scale bar

represents 100um).



2D visualisation (UMAP dimensionality reduction) of fibroblasts isolated from
idiopathic pulmonary fibrosis (IPF) and control tissues analysed by scRNA-seq,
highlighting sample type.

As per a, highlighting the fibroblast subpopulation associated with each cell as
predicted by a machine learning classifier.

Violin plots showing the probability of the machine learning classifier model’s
predictions (shown in panel ¢, n = 5066 fibroblast transcriptomes).

Violin plots showing the probability of myofibroblast assignments across data from
different tissue types (n = 1522 [IPF], 5954 [Pancreas], 413 [Oral], 1885 [Colon]

myofibroblast transcriptomes).

All boxplots are displayed using the Tukey method (centre line, median; box limits, upper

and lower quartiles; whiskers, last point within a 1.5x interquartile range).



Supplementary Figure 6: CIBERSORTx mediated digital cytometry shows that
myofibroblasts and alveolar fibroblasts correlate with overall survival rates in
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a) Boxplots showing univariate Cox regression analysis of four-year overall survival rates in
multiple bulk transcriptomic datasets. Relative fibroblast subpopulation abundance (% of
all fibroblasts per sample) was used as a continuous variable for this analysis. Each
point represents a different transcriptomic dataset. *p<0.05, **p<0.01 (LUAD datasets n
= 503 [TCGA-LUAD?], 398 [GSE720944], 442 [GSE68465°%], 226 [GSE31210°¢]; LUSC

492 [TCGA-LUSC’], 129 [GSE45738], 234 [GSE157009°, 249

[GSE157010°); exact p-values provided in Source Data file).

datasets n

b) Volcano plot showing sample level differential expression (log fold change and wilcox
test Bonferroni adjusted p-values) analysis between myofibroblasts isolated from LUAD
samples or LUSC samples (n= 45 [LUAD], 16 [LUSC]).

Forest plots showing covariate independent hazard ratios (+/-95% confidence intervals)
and adjusted p-values from multivariate Cox regression analysis of four-year overall

survival rates across each individual LUAD patient cohort analysed, using myofibroblast



abundance, disease stage and patient age as independent variables (exact p-values
provided in Source Data file).

d) Forest plots showing covariate independent hazard ratios (+/-95% confidence intervals)
and adjusted p-values each individual LUAD patient cohort analysed® 4 > 8 using
alveolar fibroblast abundance, disease stage and patient age as independent variables
(exact p-values provided in Source Data file).

All statistical tests carried out were two-sided and boxplots are displayed using the Tukey

method (centre line, median; box limits, upper and lower quartiles; whiskers, last point within

a 1.5x interquartile range). Source data for panels a, ¢ and d are provided in the Source

Data file.



Supplementary Figure 7: Fibroblast subpopulations are associated with
morphological, molecular and immunological features of LUAD tumours.
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Boxplots showing the relative abundance of fibroblast subpopulations in well/moderately
differentiated LUAD tumours compared to poorly differentiated, measured by
CIBERSORTXx digital cytometry. Nominal p-values for Wilcoxon signed-ranks test are
also shown (n = 106 [G1/G2-TCGA], 81 [G3-TCGAJ3, 269 [G1/G2-GSE68465], 167 [G3-
GSE68465]°).

Heatmap showing Spearman’s correlation (rho) between fibroblast subpopulations
(measured by mxIHC) and LUAD morphological growth patterns (determined by routine
clinical pathology). Statistical significance is shown as Benjamini-hochberg adjusted p-
values for comparisons where adj.p<0.05 (n = 12).

Scatter plots showing the association between each fibroblast subpopulation and the
proportion of the tumour comprised of solid morphology growth pattern. Trendline
represents a linear regression model with error bands representing 95% confidence
intervals.

Boxplots showing the relative abundance of fibroblast subpopulations in LUAD tumours
grouped by molecular subtype (TRU = Terminal Respiratory Unit, PP = Proximal
Proliferative and PI = Proximal Inflammatory), measured by CIBERSORTXx digital
cytometry (n = 515 [TCGA?3)], 442 [GSE72094%], 443 [GSE68465°], 226 [GSE312108]
LUAD samples).

Boxplots showing the relative abundance of fibroblast subpopulations in LUAD tumours
grouped by TP53 mutation status, measured by CIBERSORTXx digital cytometry.
Nominal p-values for Wilcoxon signed-ranks test are also shown (n = 247 [wt-TCGA],
263 [mut-TCGAJ3, 331 [wt-GSE72094], 111 [mut-GSE72094]%).

Scatter plot showing Spearman’s correlation between alveolar or myofibroblast
abundance and LM22 immune cell subpopulations across LUAD transcriptomic datasets

(n = 4 datasets).

All statistical tests carried out were two-sided and boxplots are displayed using the Tukey

method (centre line, median; box limits, upper and lower quartiles; whiskers, last point within

a 1.5x interquartile range). Source data for panels a, ¢, d and e are provided in the Source
Data file.
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