Cryo-EM Structures of human ABCA7 provide insights into its phospholipid

translocation mechanisms

Le Thi My Le¹[†], James Robert Thompson¹[†], Sepehr Dehghani-Ghahnaviyeh², Shashank Pant^{2,#},

Phuoc Xuan Dang¹, Jarrod Bradley French¹, Takahisa Kanikeyo³, Emad Tajkhorshid² & Amer

Alam^{1,*}

¹The Hormel Institute, University of Minnesota, Austin, Minnesota 59912

² Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA

³Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224

†These authors contributed equally to this work

Current affiliation: Loxo Oncology at Lilly., Louisville, CO 80027, USA

*Address correspondence to: Amer Alam, PhD, aalam@umn.edu

Appendix

Table of contents

Appendix Figure S1. ABCA7_{BPL} characterization and cryo-EM data processing.

Appendix Figure S2. ABCA7_{PE} Cryo-EM data processing.

Appendix Figure S3. ABCA7_{DIGITON} cryo-EM processing.

Appendix Figure S4. ABCA7_{EQ-ATP} cryo-EM processing.

Appendix Figure S5. TMD-ECD interfaces of open and closed form ABCA7.

Appendix Figure S6. Histograms of lipid counts in the TMD lumen for POPE and POPC systems.

Appendix Figure S7. Sequence alignment of human (hs) ABCA7, ABCA1, and ABCA4, and ABCA3.

Appendix Figure S8. Amino acid positions of ABCA7 with variants associated with risk of AD. Appendix Table S1. Table of K_M and V_{Max} values of ABCA7 incorporated in nanodiscs, liposomes, and detergent.

Appendix Table S2. Data collection and refinement statistics.

Appendix Figure S1. ABCA7_{BPL} characterization and cryo-EM data processing. (A) ATPase rates for ABCA7 under various experimental conditions as percentage of wildtype ABCA7 ATPase activity in liposomes, nanodiscs, and detergent. ATPase rate comparison for nanodisc and liposome reconstituted ABCA7 with and without ATP analog adenosine-5'-o-(3-thio-triphosphate) (ATP γ S) or sodium orthovanadate (VO₄) along with a hydrolysis-deficient mutant ABCA7_{EQ} in nanodiscs, liposomes, and detergent. Experimental replicates (n)=3 and error bars represent standard deviation (s.d). (B) SEC peak of ABCA7BPL samples for cryo-EM. (C) Representative cryo-EM micrograph at -2.5 µm defocus. Scale bar = 20 nm. (D) cryo-EM processing workflow. Boxes indicate 3D classes used for further refinement for both Map 1 and Map 2 (red). E Fourier shell correlation (FSC) curves for Map 1 (top) and Map 2 (bottom) Dotted lines indicate position 0. 143 and 0.5 cutoff criteria for resolution estimates.

Appendix Figure S2. ABCA7_{PE} Cryo-EM data processing. (A) Size exclusion chromatography micrograph of cryo-EM sample showing monodisperse ABCA7_{PE} nanodisc (main peak). (B) Representative micrograph at -2.5 μ m defocus and 2D classes. Scale bar = 20 nm. (C) cryo-EM processing workflow. Dashed boxes demarcate Subsets 1 and 2. Solid boxes indicate 3D classes used for further refinement. 2D = 2D Classification, 3D=3D classification, R3D = 3D refinement. (D) Fourier shell correlation (FSC) curves for ABCA7_{PE}. Dotted lines indicate position 0.143 and 0.5 cutoff criteria for resolution estimates.

Appendix Figure S3. ABCA7_{DIGITONIN} cryo-EM processing. (A) SEC profile of ABCA7_{DIGITONIN} and its ATPase activity with and without ATP γ S. (B) Representative micrograph at -2.5 µm defocus and 2D classes. Scale bar = 20 nm. (C) cryo-EM processing workflow. C2D = 2D Classification, C3D=3D classification, R3D = 3D refinement. (D) Local resolution colored EM map of ABCA7_{DIGITONIN}. (E) Fourier shell correlation (FSC) curves for ABCA7_{DIGITONIN}. Dotted lines indicate position 0.143 and 0.5 cutoff criteria for resolution estimates.

Appendix Figure S4. ABCA7_{EQ-ATP} cryo-EM processing. (A) SEC peak for ABCA7_{EQ-ATP} in nanodiscs. (B) Representative EM micrograph (-2.5 defocus) and rep 2D classes for ABCA7_{EQ-ATP} sample. © Cryo-EM data processing pipeline. C2D = 2D Classification, C3D=3D classification, R3D = 3D refinement. (D) FSC curves for ABCA7_{EQ-ATP}. Dotted lines indicate position 0.143 and 0.5 cutoff criteria for resolution estimates. (E) Local resolution colored EM map.

Appendix Figure S5. TMD-ECD interfaces of open and closed form ABCA7. (A) The TMD-ECD binding interfaces of ABCA7_{PE} with TMD1 and TMD2 and with $C\alpha$ for residues in TMD1 and TMD2 within 5Å of either ECD or vice versa shown as spheres. (B) The same analysis for the TMD-ECD binding interfaces of ABCA7_{EQ-ATP} with closed cavity.

Appendix Figure S6. Histograms of lipid counts in the TMD lumen for POPE and POPC systems. (A/B) POPE and POPC lipid counts in the lumen of ABCA7 captured through the 2 μ s of MD simulations. The histograms were calculated for each protein's copy separately and shown here. Y-axis of the histograms represent probability distribution function (PDF). Copy IV of the POPE system shows more lipid penetration to the lumen of TMD compared to other POPE and POPC systems.

	i 10	20	зò	4 Q	5 <u>0</u>	еò	7 <u>0</u>	8 Ó	эö
ABCA7 ABCA1 ABCA4 ABCA3	MAFWTQLMLLLWKNFN MACWPQLRLLLWKNLT MGFVRQIQLLLWKNWT	IYRRRQPVQLLV FRRRQTCQLLL LRKRQKIRFVV	ELLWPLFLI EVAWPLFII ELVWPLSLI	FFILVAVRHS FLILISVRLS FLVLIWLRNA	HPPLEHHE YPPYEQHE NPLYSHHE	CHFPNKPLPS CHFPNKAMPS CHFPNKAMPS CHFPNKAMPS	AGTVPWLQGLICN AGTLPWVQGIICN AGMLPWLQGIFCN	IVNNTCFPQL IANNPCFRYP IVNNPCFQSP	TPGEEPG TPGEAPG TPGESPG
ABCA7 ABCA1 ABCA4 ABCA3	100 RLSNFNDSLVSRLLA VVGNFNKSIVARLFSD IVSNYNNSILARVYR 	10 12 ARTVIGGASAH ARRLLLYSQKD FQELLMNAPES	Q RTLAGLGKI TSMKDMRKY QHLGRIWTI	130 LIATLRA VLRTLQQI ELHILSQFMD	K TLRTHPER	KSSSNLKLQDE IAGRGIRIRDI	FLVDNETFSGFL) LLKDEETLTLFL]	1 HNLSLPKST KNIGLSDSV	40 AQPQPTK VDKMLRA VYLLINS
ABCA7 ABCA1 ABCA4 ABCA3	150 160 QSPLEPPMLDVAEL. DVILHKVFLQGYQLHI QVRPEQFAHGVPDLAI	TSLLRTESL TSL.CNGSKSE KDIACSEALLE	EMIQLGDQI RFIIFSQRI	1 EVSEL RGAKTVRYAL	.GLALGQA .GLALGQA .CGLPREKI .CSLSQGTL 	Q AAAERVLRSNN QWIEDTLYANN	4DILKPILRTLNS VDFFK.LFRVLPI	STSPFPSKEL LLDSRSQGI	180 EPLHS .AEATKT NLRSWGG
ABCA7 ABCA1 ABCA4 ABCA3	190 2 LLEAAEDLAQELLALE LLHSLGTLAQELFSMF ILSDMSPRICEFIRE	00 21 SLVELRALLQR SWSDMRQEVMF SMQDLLWVTRP	9 PRGTSGP. LTNVNSSS LMQNGGPE	220 LELLS SSTQIYQAVS IFTKLMGILS	23 EALCSVRG RIVCGHPE DLLCGYPE	0. 240 PSSTVGPSLNV GGGLKIKSLNV GGGSRVLSFNV	YEASDLMELVG. YEDNNYKALFGC YEDNNYKAFLGI	QEPESA NGTEEDAET DSTRKDPIY	260 LPDSSLS FYDNSTT SYDRRTT
ABCA7 ABCA1 ABCA4 ABCA3	270 280 PACSELIGADSHPLS PYCNDLMKNDESSPLS SFCNALIGSDESNPLI MAVLRODALLLM	290 RLLWRRLKPLI RIIWKALKPLL KIAWRAAKPLL NYTLOKRKVLV	300 LGKLLFAP VGKILYTP MGKILYTP TVLELFLP	0 31 DTPFTRKLMA DTPATRQVMA DSPAARRILK LLFSGILIWL	QVNRTFEE EVNKTFQE NANSTFEE RLKIQSEN	320 LTLLRDVREVV LAVFHDLEGMV LEHVRKLVKAV VPNATIYPGQS	330 340 VEMLGPRIFTMN VEELSPKIWTFME VEEVGPQIWYFFI SIQELPLFFTPP	35 IDSSNVAMLQ NSQEMDLVR NSTQMNMIR PGDTWELAY	0 RLLQMQD MLLDSRD DTLGNPT .IPSHSD
ABCA7 ABCA1 ABCA4 ABCA3	360 370 EGRRQPREGRDHM. NDHFWEQQLDGLDWTF VKDFLNRQLGEEGITF AAKTVTETVRRALVIN	380 EALRSFLDPG. QDIVAFLAKHP EAILNFLYKGP MRVRGF	SC EDVQSSNG RESQADDM P	390 GGYSWQDAHA SVYTWREAFN ANFDWRDIFN SEKDFEDYIR	40 DVGHLVGT ETNQAIRT HITDRTLRL CYDNCSSSV	0 410 LGRVTECLSLI ISRFMECVNLN VNQYLECLVLI LAAVVFEHPEN	2 420 XLEAAPSEAALV VKLEPIATEVWLJ VKFESYNDETQLJ VHSKEPLPLAVKY	430 /SRALQLLAE NKSMELLDE QRALSLLEE /HLRFSYTRR	HR <mark>FW</mark> AGV RKFWAGI NMFWAGV NY <mark>MWTQ.</mark>
ABCA7 ABCA1 ABCA4 ABCA3	440 450 VFLGPEDSSDPTEHP VFTGITPC VFTGITPC VF	460 PDLGPGHVRIK SIELPHHVKYK TSSLPPHVKYK KETEGWHTTSL	470 IRMDIDVV IRMDIDNVI IRMDIDVVI FPLFPNPG	480 IRTNKIRDRF ERTNKIKDGY EKTNKIKDRY PREPTSPDG	490 WDPGPAAD WDPGPRAD WDSGPRAD GEPGYIRE	500 PLTDLRYVWGC PFEDMRYVWGC PVEDFRYIWGC GFLAVQH	510 GFVYLQDLVERA GFAYLQDVVEQA GFAYLQDMVEQG AVDRAIMEYHZ	520 VRVLSGANP IRVLTGTEK TRSQVQAEA ADAATRQLFQ	530 RAGLYLQ KTGVYMQ PVGIYLQ RLTVTIK
ABCA7 ABCA1 ABCA4 ABCA3	540 QMPYPCYVDDVELRVI QMPYPCYVDDIFLRVN QMPYPCFVDDSDMIII RFPYPPFIADPELVAJ	550 SRSLPLFLTTA SRSMPLFMTTA NRCFPIFMVLA QYQLPLLLLLS	560 WIYSVTLT WIYSVAVI WIYSVSMT FTYTALTI	570 VKAVVREKET IKGIVYEKEA VKSIVLEKEI ARAVVQEKER	580 RLRDTMRA RLKETMRI RLKETLKN RLKEYMRM	590 MGLSRAVLWLC MGLDNSILWFS QGVSNAVIWC MGLSSWLHWSZ	600 WFLSCLGPFLLS WFISSLIPLLV9 WFLDSFSIMSM3 WFLLFFLFLLIA	610 SAALLVLVLK SAGLLVVILK SIFLLTIFIM AASFMTLLFC	LG LG HG VKVKPNV
ABCA7 ABCA1 ABCA4 ABCA3	620 630 DILPYSHPGVVFUFU NLLPYSDSVVFVFU RILHYSDPFILFUFU AVLSRDPSLVLAFU	640 AFAVATVTQSF VFAVVTILQCF AFSTATIMLCF CFAISTISFSF	650 LLSAFFSR LISTLFSR LLSTFFSK MVSTFFSK	660 ANLAAACGGI ANLAAACGGI ASLAAACSGV ANMAAAFGGF	670 AYFSLYLP IYFTLYLP IYFTLYLP LYFFTYIP	680 YVLCVAWRDRI YVLCVAWQDYV HILCFAWQDRN YFFVAPRYNW	690 PAGGRVAASLLS /GFTLKIFASLLS 4TAELKKAVSLLS 4TLSQKLCSCLLS	700 PVAFGFGCE PVAFGFGCE PVAFGFGFE NVAMAMGAQ	SLALLEE YFALFEE YLVRFEE LIGKFEA
7 : ABCA7 ABCA1 ABCA4 ABCA3	10 720 OGEGAOWHNVGTRPT OGIGVOWDNIFESPVB OGLGLOWSNIGNSPTE KGMGIQWRDLLSPVNV	739 ADVFSLAQVSG EDGFNLTTSVS GDEFSFLLSMQ DDFCFGQVLG	740 LLLDAAL MMLFDTFL MMLLDAAV MLLDSVL	750 YGLATWYLEA YGVMTWYIEA YGLLAWYLDQ YGLVTWYMEA	760 VCPGQYGI VFPGQYGI VFPGDYGI VFPGQFGV	770 PEPWNFPFRRS PRPWYFPCTKS PLPWYFLLQES PQPWYFIMPS	SYWC <mark>G</mark> SYWFG SYWLGGEGCSTRE SYWC <mark>G</mark> P	780 PRPPKSPAP EESDEKSHP ERALEKTEP KPRAVAGKEE	790. CPTPLD. GSNQKR. LTEETED EDSDPE.
ABCA7 ABCA1 ABCA4 ABCA3	800 PKVLVBEA ISEICMBEE PEHPEGIHDSFFBRE KALRNEYFBAE	810 PGLSPGVSVRS THLKLGVSIQN PGWVPGVCVKN EDLVAGIKIKH	LEKRFP LVKVYR LVKIFE LSKVFRVG	820 GSPQPALRGI DGMKVAVDGI PCGRPAVDRI NKDRAAVRDI	830 SLDFYQGH ALNFYEGQ NITFYENQ NLNLYEGQ	840 ITAFLGHNGAO ITSFLGHNGAO ITAFLGHNGAO ITVLLGHNGAO	850 SKTTTLSILSGL SKTTTMSILTGL SKTTTLSILTGL SKTTTLSMLTGL	B 6 0 PPS G GSAF I PPT S GTAY I PPT S GTVLV PPT S GRAY I	870 L <mark>GHDV</mark> RS LGKDIRS GGRDIET SGYEISQ
ABCA7 ABCA1 ABCA4 ABCA3	880 890 SMAAIRPHLGVCPOT EMSTIRONLGVCPOH SLDAVROSLGMCPOH DMVQIRKSLGLCPOHI	900 VLFDMLTVDEH VLFDMLTVEEH ILFHHLTVAEH ILFDNLTVAEH	910 VWFYGRLKO IWFYARLKO MLFYAQLKO LYFYAQLKO	0 92 GLSAAVVGPE GLSEKHVKAB GKSQEEAQLE GLSRQKCPEE	QDRLLQDV MEQMALDV MEAMLEDT VKQMLHII	930 GL.VSKQSVQ GL.PSSKLKSK GL.HHKRNEE GL.EDKWNSR	940 95 RHLSGGMORKLS SQLSGGMORKLS SRFLSGGMRRKLS	5099 VAIAFVGGS VALAFVGGS VALAFVGGS SVAIAFVGDA SIGIALIAGS	60 QVVILDE KVVILDE KVVILDE KVLILDE
ABCA7 ABCA1 ABCA4 ABCA3	970 980 PTAGVDPASRRGIWEI PTAGVDPYSRRGIWEI PTSGVDPYSRRSIWDI PTSGWDAISRRAIWDI	990 LLKYREGRTLI LLKYROGRTII LLKYRSGRTII LOROKSDRTIV	1000 LSTHHLDE LSTHHMDE MSTHHMDE LTTHFMDE	1010 AELLGDRVAV ADVLGDRIAI ADLLGDRIAI ADLLGDRIAI	10 VAGGRLCC ISHGKLCC IAQGRLYC MAKGELOC	20 103 CGSPLFLRRHI VGSSLFLKNQI SGTPLFLKNCE CGSSLFLKOKY	30. 1040 LGSGYYLTLVKAF GTGYLTLVKK (GAGYHMTLVKE	1050 LPLTTNEKA VESSLSSCR MKNIQSQRK HCNPED	DTDMEGS NSSSTVS GSEGTCS

Appendix Figure S7. Sequence alignment of human (hs) ABCA7, ABCA1, and ABCA4, and ABCA3.

Appendix Figure S8. Amino acid positions of ABCA7 with variants associated with risk of AD. Structure of ABCA7 with Cα atoms shown for amino acid with known pathogenic variants (green), protective variants (red), and ABCA7 residues conserved in ABCA1 with mutations known to disrupt the latter's binding to apoA1 and/or phospholipid translocation (blue). Cyan spheres highlight residue positions of ABCA1 mutations known to disrupt phospholipid efflux including those equivalent to the VFVNFA motif within the ABCA1 RD. Grey bars indicate the upper (extracellular) and lower (cytoplasmic) membrane bilayer leaflets (UL and LL, respectively).

	Nanodiscs	Detergent (DDM/CHS)	Liposomes
K _M	0.51	0.43	0.74
V _{Max}	37.41	162.9	167.8

Appendix Table S1. Table of $K_{\rm M}$ and $V_{\rm Max}$ values of ABCA7 incorporated in nanodiscs, liposomes, and detergent.

Dataset	ABCA7 _{BPL}		ABCA7 _{PE}	ABCA7 _{DIGITONIN}	ABCA7 _{EQ-ATP}		
Magnification	96k		96k	96k	96k		
Pixel Size (Å)	0.895		0.889	0.889	0.89		
Total Dose (e/Å ²)	60		40	40	40		
Defocus Range (um)	-0.8 to 2.6		-0.8 to 2.6	-0.8 to 2.6	-0.8 to 2.6		
Maps	Map 1 Map 2		Map3				
EMDB ID	EMD- 28041	EMD- 28044	EMD- 28047	EMD-28050	EMD-28451		
# Particles in final Class	91381	124114	50704	149590	177230		
Resolution (Å) (0.143 threshold)	3.6	3.2	4.0	3.9	3.7		
Sharpening B factor	-82.9	-20	-132	-50	-134.1		
Refined Coordinates	ABCA7 _{BPL}		ABCA7 _{PE}	ABCA7 _{DIGITONIN}	ABCA7 _{EQ-ATP}		
PDB ID	8EDW		8EE6	8EEB	8EOP		
# Residues/Non-	1804/14311		1808/14475	1873/14673	1687/13266		
hydrogen Atoms							
Ligands	20		26		4		
R.M.S deviations							
Bond Length (Å)	0.003		0.003	0.002	0.003		
Bond Angles (°)	0.676		0.683	0.626	0.593		
MolProbity Statistics							
MolProbity Score	1.76		1.69	1.73	1.76		
Clashscore	8.80		8.30	9.05	6.82		
Poor rotamers (%)	0.07		0.07	0.00	0.00		
Ramachandran statistics							
Favored (%)	95.80		96.42	96.61	94.30		
Allowed (%)	4.14		3.52	3.39	5.64		
Outliers (%)	0.06		0.06	0.00	0.06		

Appendix Table S2. Data collection and refinement statistics.