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Figure EV1. Proteins and 63-mer RNA fragments used for in vitro phase separation assays and time-dependent effect of 100m°®A-cy3 on LLPS of zZRbm14b
(related to Fig 3).

A Purified proteins from Escherichia coli. The proteins were subjected to SDS-PAGE and stained with Coomassie Blue. Arrowheads indicate the full-length band of each
protein.

B, C Validation of the quality of RNA fragments. In vitro transcribed 63-mer RNA fragments were subjected to immuno-northern dot blotting using an anti-m°®A antibody
(B) or resolved in 15% urea-denaturing PAGE followed by fluorescent imaging to visualize RNA (UV exposure) and the cy3 label (cy3 exposure) (C).

D Representative differential interference contrast images at the indicated time points after the addition of the indicated RNA fragments or buffer into GFP-zRbm14b
or GFP-zIDR. The final concentrations of RNAs and proteins were 1 uM and 10 puM, respectively. Imaging was performed at 25°C. Red squares highlight the time of
initial LLPS in each group. The results are summarized in Fig 3B.

E Kinetics of 10m®A-induced LLPS of zZRbm14b. 10m®A-cy3 was mixed with His-GFP-zRbm14b at the indicated final concentrations and imaged at 25°C. Partition
coefficients were respectively calculated for 49 or 47 droplets from three independent experiments and pooled together in the histograms.

F Representative fluorescent images showing effects of m°A- and m°C-RNA modifications on the LLPS of zZRbm14b. Imaging was performed at 25°C. Red squares high-
light the time of initial LLPS in each group. The results are summarized in Fig 3E.

Data information: Fluorescent micrographs in (E) and (F) were taken manually under a wide-field microscope. Sometimes some condensates moved during imaging,
resulting in a positional shift between their GFP and cy3 images. Quantification results are presented as mean + SD. Unpaired two-sided Student’s t-test: ***P < 0.001.
Source data are available online for this figure.
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Figure EV2. zRbm14 functions in the blastula-to-gastrula development through both RNA-binding and phase separation (related to Figs 4 and 5A-C).

A

Diagrams showing target sequences of the indicated MOs on zZRbm14 mRNAs. Translation initiation codons (AUG) are shown in red. Lowercase letters represent
intron sequences. 14a-MO and 14b-tMO were designed to respectively repress the translation of both maternal and zygotic mMRNAs of zRbm14a and zZRbm14b.
14b-MO was designed to interfere with the splicing of zZRbm14b pre-mRNA and thus only interfered with the zygotic transcript. The efficacies of both 14a-MO and
14b-MO were confirmed previously using 24-hpf morphants (Xiao et al, 2019).

Our anti-zRbm14a antibody only weakly cross-reacted with zZRbm14b. HEK293T cell lysates expressing GFP, GFP-zZRbm14a, or GFP-zRbm14b were immunoblotted
with antibodies against GFP and zRbm14a, respectively.

14a-MO efficiently repressed the translation of zRbm14a mRNA in early embryos. Zebrafish 1-cell embryos were each microinjected with 4 ng of MO and collected
at the indicated time points. Lysates from 5 embryos were loaded in each lane. a-tubulin served as an internal control.

14b-tMO efficiently repressed the translation of zZRbm14b mRNA in early embryos. 14b-200 nt-GFP, a reporter mRNA in vitro transcribed from a construct contain-
ing a 5’ 200-nucleotide zZRbm14b cDNA fragment followed by an in-frame GFP cDNA (D), was used to assess the efficacy of 14b-tMO. In total, 100 pg of the
reporter mRNA were co-injected with 4 ng of MO into each 1-cell embryo. The embryos were imaged at the indicated time points (E). Note that the embryos co-
injected with 14b-tMO failed to express GFP.

A typical set of zebrafish morphants. In total, 8 ng of ctrl-MO, 14-tMOs (4 ng 14a-MO + 4 ng 14b-tMO), or 14-MOs (4 ng 14a-MO + 4 ng 14b-MO) were co-
injected with 100 pg of in vitro transcribed GFP mRNA (as a tracer) into each 1-cell embryo to generate control, maternal zRbm14, and zygotic zZRbm14 morphants,
respectively. GFP-positive embryos were collected at 2.5 hpf and imaged sequentially at the indicated time points. Representative embryos and quantification
results are presented in Fig 4A and B.

A typical set of zebrafish embryos in rescue experiments. 800 pg of in vitro transcribed mRNA for one of the indicated proteins were co-injected with 14-tMOs

(4 ng 14a-MO + 4 ng 14b-tMO) into 1-cell embryos. GFP-positive morphants were imaged at the indicated time points. Representative embryos (arrows) and
quantification results are presented in Fig 5B and C.

Source data are available online for this figure.
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Figure EV3. Transcriptome analysis of zebrafish embryos (related to Fig 6).

sox32 pou5f3 thx16 irx3a fgf8a zeb1b

A Scatter plots showing correlations of independent replicates of RNA-seq results. The Pearson correlation coefficient (R) and P values are shown.
B zRbm14 and zYthdf2 were largely responsible for the decay of different mRNAs. Only a small portion of transcripts accumulated in maternal zRbm14 morphants by
more than 2-fold overlapped with those accumulated in maternal ZYthdf2 =/~ embryos (Zhao et al, 2017). Note that the zZRbm14 depletion interfered with the levels

of much more transcripts than the

zYthdf2 deficiency at 6 hpf.

C Differential alternative splicing events in the zZRbm14 morphants. SE, skipped exon; A3SS, alternative 3’ splicing site; ASSS, alternative 5’ splicing site; MXE, mutually

exclusive exon; RI, retained intron.

D Venn diagrams between the genes with differential RI and downregulated zygotic transcripts (Fig 6E) in maternal zRbm14 morphants. As the major ZGA occurs from
3 hpf (Fig 1A; Jukam et al, 2017), only transcripts of 4- and 6-hpf embryos were analyzed.

E Top 10 enriched terms of differentially expressed genes (DEGs, fold change > 2) between control and maternal zRbm14 morphants at 6 hpf.

F Relative transcript levels of cyclin genes. FCs were calculated from RNA-seq results, relative to the levels in 2.5-hpf ctrl-MO embryos, of two independent sets of sam-
ples. Only transcripts with TPM > 500 and classified as “maternal transcripts” (Fig 6D) were analyzed. Note the increasingly reduced clearance of the transcripts fol-
lowing time in maternal zRbm14 morphants. ccnal and ccna2, zebrafish cyclin A genes; ccnbl and ccnb2, cyclin B genes; ccnel, cyclin E gene; and ccnp, cyclin P

gene.

G Expression profile of zygotic transcripts critical for the differentiation of three germ layers. Sox32 (also named casanova), pou5f3 (homolog of mammalian Oct4), tbx16
(spadetail), irx3a (encoding Iro3), fgf8a (encoding Fgf8a), and zeblb (encoding Kheper) were selected from our pools of zygotic transcripts (Fig 6D) according to
literature (Kudoh et al, 2004; Schier & Talbot, 2005; Perez-Camps et al, 2016).

Data information: P values of the sequencing data in (A) were calculated by using two-sided Wilcoxon and Mann—Whitney tests. P values in (E) were calculated by using

Metascape. A P value of < 0.05 is consi

dered statistically significant.

Source data are available online for this figure.
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Figure EV4. Relationships between zRbm14 and zParn (related to Fig 7).

A B Depletion of zZRbm14 resulted in an accumulation of poly(A)-containing maternal transcripts of dnajc5ga. Total RNAs purified from the indicated zebrafish embryos
were subjected to poly(A) length assays as illustrated in Fig 7A. Transcripts of actbl (B-actin mRNA), which was not a target of zRbm14 based on Fig 6D and E,
served as a negative control. One set of representative PCR results (A) and quantification results from three independent experiments (B) are presented. The major
band of poly(A)-actbl was quantified, as in Fig 7B. As poly(A)-dnajc5ga emerged as multiple bands, their total intensity was measured.

C zParn, but not components of the CCR4-NOT complex, associated with zRbm14b. GFP-zRbm14b was co-expressed with the indicated RFP-fusion proteins in
HEK293T cells. Co-immunoprecipitations (co-IP) were performed with anti-GFP beads. Luciferase served as a negative control. zCnot6a, zebrafish CCR4a orthologue;
zCnot1, zebrafish Notl orthologue. Diagrams of zCnotl mutants are provided.

D  Secondary structure prediction for zZRbm14b and zParn using Predictor of Natural Disordered Regions (PONDR). Bold line indicates predicted IDR.

E Purified RFP and zParn-RFP from E. coli. The proteins were subjected to SDS—PAGE, followed by Coomassie blue staining.

F Efficient co-phase separation of 10-uM zParn and 10-uM zRbm14b. Purified zParn-RFP was mixed with GFP-zRbm14b and imaged under a wide-field microscope
at 2.5 and 30 min, respectively. Partition coefficients were respectively calculated for 44 or 84 droplets from three independent experiments and pooled together in
the histograms.

G Expression profile of zParn during early embryogenesis. Lysates from 5 embryos were loaded in each lane. Immunoblotting was performed with an anti-human
PARN antibody. a-tubulin and zRbm14a served as internal controls.

Data information: Quantification results are presented as mean + SD, with sample dots. Unpaired two-sided Student’s t-test: ns, no significance; *P < 0.05; **P < 0.01;
***p < 0.001. Note that the t-test cannot be performed for the 2.5-hpf samples in (B) because the relative mRNA levels of the control samples were set as 1 and thus
have no error bars.

Source data are available online for this figure.
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Figure EV5. Generation of Rbm14-deficient mice (related to Fig 8).

A Gene knock-out strategy and representative genotyping PCR results. The exon 2 of Rbm14 was knocked out by crossing Rbm14flox/flox mice with Ella-Cre mice. Posi-
tions of two forward primers (F1 and F2) and the reverse primer (R1) for genotyping are indicated. Neo, neomycin resistance gene. The PCRs were performed using
genomic DNAs from E8.5 embryos or remnants of resorbing Rbm14~/~ embryos.

B Morphologies of mouse E8.5 embryos. No Rbm14~/~ embryos were identified except for empty deciduae.

C E4.5 embryos used for RNA deep sequencing. Zygotic embryos were collected from the oviduct of superovulated Rbm14™~ female mice after mating with Rbm14
male mice and cultured to E4.5. Nine viable embryos (designated S2-S10) were picked as specimens for RNA extraction and deep sequencing.

D Differential alternative splicing events in Rbm14 /= embryos. SE, skipped exon; A3SS, alternative 3’ splicing site; A5SS, alternative 5 splicing site; MXE, mutually
exclusive exon; RI, retained intron.

E Venn diagrams between the genes showing differential RI and genes downregulated in the Rbm14 '~ embryos (Fig 8F).

+/— +/—

Source data are available online for this figure.
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