Supplementary Information

Visible-Light-Induced Selective Defluoroalkylations of Polyfluoroarenes with

Alcohols

Wengang Xu,^{1*} Qi Shao,² Congjian Xia,² Qiao Zhang,¹ Yadi Xu,¹ Yingguo Liu,^{3*}

Mingbo Wu^{1,2}*

Affiliations:

¹College of New Energy, China University of Petroleum (China East), 266580,

Qingdao, P. R. China

² College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil

Processing, China University of Petroleum (China East) 266580, Qingdao, P. R.

China.

³ Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced

Technology, Zhengzhou University, Zhengzhou Henan province, 450001, P. R. China

*Corresponding author. Email: chmxw@upc.edu.cn; liuyg@zzu.edu.cn; wumb@upc.edu.cn.

Contents

1. General Information	S3
2. Complementary Reaction Optimization Data	S4
3. Starting Material Preparation	S7
4. General Procedures for Defluoroalkylation of Polyfluoroarenes	S11
5. Analytical Data of the Products	S12
6. Gram-Scale Preparation of 3aa and Transformations of the Products	S38
7. Additional Experiments to Elucidate the Mechanism	S42
8. DFT Calculation	S50
References	S69
¹ H, ¹⁹ F, ¹³ C-NMR Spectra	S70

1. General Information

Chemicals and solvents were purchased from commercial suppliers and used as received. ¹H NMR, ¹³C NMR, ¹⁹F NMR spectra were recorded on a Bruker AV-III400 (400 MHZ) spectrometer. Chemical shifts were calibrated using residual undeuterated solvent as an internal reference (CDCl₃: 7.26 ppm ¹H NMR, 77.0 ppm ¹³C NMR; CD₃OD: 4.87 ppm ¹H NMR, 49.0 ppm ¹³C NMR). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), p (pentet). High-resolution mass spectra (HRMS) were obtained on Agilent 7200 GC-QTOF spectrometer (EI). Cyclic voltammetry was performed using Vertex. C. EIS Chenhua (China). The high-pressure syringe pump was purchased from Longer (China) for continuous flow setup. The L-cube dual syringe high pressure constant flow pump was purchased from Ou Shi Sheng (Beijing) Technology Co., Ltd (China). The needle valves, and PFA micro tubings were purchased from IDEX Health & Science (USA). The back pressure regulator was purchased from Zaiput (USA). Stern-Volmer fluorescence quenching was performed using an Spectrofluorophotometer RF-6000 Shimadzu Corporation.

2. Complementary Reaction Optimization Data

Table S1. Screening of photocatalysts

^a The yields were obtained with ¹H-NMR using trimethoxybenzene as the internal standard.

Table S2. Screening of the amount of hexanol

^{*a*} The yields were obtained with ¹⁹F-NMR using trifluorotoluene as the internal standard.

Table S3. Screening of the amount of quinuclidine

entry	n	yield% ^a
1	30	87
2	10	39
3	5	24

^{*a*} The yields were obtained with ¹⁹F-NMR using trifluorotoluene as the internal standard.

Table S4. Screening of solvents

^{*a*} The yields were obtained with ¹⁹F-NMR using trifluorotoluene as the internal standard.

entry	deviation	yield% (3aa) ^a		
1	no	87 ^b		
2	no light, 4-CzIPN, or quinuclidine	0		
3	w/o ZnCl ₂	28		
4	w/o K ₃ PO ₄	86		
5	w/o K_3PO_4 and using ZnCl ₂ (50 mol%)	70		

^a The yields were obtained with ¹⁹F-NMR using trifluorotoluene as the internal standard. ^b Isolated yield.

Table S6. Optimization in continuous flow reactors

CO ₂ Me		D₂Me → F + <i>n</i> -Bu, ∧		4-CzIPN (a mol%) quinuclidine (b mol%) ZnCl ₂ (c mol%)		CO ₂ Me F F n-Bu OH		
F	F F F 1a 2a (1.5 equiv)		DMSO (d M), r.t. f. r. = $e mL h^{-1}$ t _R = f h Blue LEDs					
entry	а	b	С	d	е	f	conv.% ^a	yield% ^a
1	2	30	150	0.05	2	0.5	80	33
2	2	30	150	0.05	1	1	98	43
3	2	20	50	0.05	1	1	81	40
4	1	20	50	0.05	1	1	74	45
5	1	20	50	0.05	1	2	82	60
6	1	20	50	0.05	0.5	2	83	67
7	1	20	50	0.1	0.5	2	81	73
8	1	20	50	0.1	0.5	8	86	85 ^b

^{*a*} The conversions and yields were obtained with ¹⁹F-NMR using trifluorotoluene as the internal standard.

^b Isolated yield.

3. Starting Material Preparation

3.1 Preparation of 1k, 1l, 1m

To a solution of pentafluorobenzoic acid (1.06 g, 5 mmol) in DCM (15 mL) was added DCC (1.24g, 6 mmol), DMAP (61.0 mg, 0.5 mmol), and alcohol (6 mmol). The mixture was stirred for 24 h at room temperature. After filtration, the mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with petroleum ether/EtOAc = 9/1 (v/v) to afford the products as colorless oil.

But-3-yn-1-yl 2,3,4,5,6-pentafluorobenzoate (1k): colorless oil (0.95 g, 72%). ¹H NMR (400 MHz, CDCl₃): δ 4.50 – 4.45 (m, 2H), 2.68 – 2.63 (m, 2H), 2.04 – 2.02 (m, 1H); ¹⁹F NMR (377 MHz, CDCl₃): δ -137.85 – -138.07 (m, 2F), -148.25 – -148.56 (m, 1F), -160.30 – -160.59 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 158.73, 146.90 – 144.02 (m), 144.79 – 141.85 (m), 139.21 – 136.24 (m), 108.15 – 107.74 (m), 79.06, 70.33 (d, *J* = 1.8 Hz), 64.21, 18.84; HRMS (EI): Calcd for C₁₁H₆F₅O₂ [M+H]⁺ 264.1510, found 264.1512.

3-Chloropropyl 2,3,4,5,6-pentafluorobenzoate (11): colorless oil (0.82 g, 57%). ¹H NMR (400 MHz, CDCl₃): δ 4.54 (t, *J* = 6.0 Hz, 2H), 3.68 (t, *J* = 6.3 Hz, 2H), 2.22 (p, *J* = 6.2 Hz, 2H); ¹⁹F NMR (377 MHz, CDCl₃): δ -138.07 – -138.20 (m, 2F), -148.10 – -148.26 (m, 1F), -160.15 – -160.32 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 158.82 (d, *J* = 1.4 Hz), 146.91 – 144.04 (m), 144.78 – 141.83 (m), 139.22 – 136.24 (m), 108.17 – 107.78 (m), 63.34, 40.69, 31.28; HRMS (EI): Calcd for C₁₀H₇ClF₅O₂ [M+H]⁺ 289.5980, found 289.5984.

3-Bromopropyl 2,3,4,5,6-pentafluorobenzoate (1m): colorless oil (1.09 g, 65%).¹H NMR (400 MHz, CDCl₃): δ 4.52 (t, *J* = 5.9 Hz, 2H), 3.51 (t, *J* = 6.4 Hz, 2H), 2.29 (p, *J* = 6.2 Hz, 2H); ¹⁹F NMR (377 MHz, CDCl₃): δ -138.15 – -138.26 (m, 2F), -148.26 – -148.40 (m, 1F), -160.29 – -160.47 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 158.78, 146.90 – 144.02 (m), 144.77 – 141.83 (m), 139.19 – 136.25 (m), 108.14 – 107.74 (m), 64.33, 31.32, 28.72; HRMS (EI): Calcd for C₁₀H₇BrF₅O₂ [M+H]⁺ 334.0520, found 334.0525.

3.2 Preparation of 1w

To a 50 mL round-bottom flask charged with (+)-Fenchol (0.77 g, 5.0 mmol) was added Et_3N (1.01 g, 10 mmol) and DCM (10 mL). The resulting mixture was stirred at 0 °C in an ice-water bath for 5 min. Then, pentafluorobenzoyl chloride (1.15 g, 5.0 mmol) was added dropwise. After stirring at 0 °C for 6 hours, the reaction mixture was filtered through celite, and the filtrate was concentrated under vacuum. The residue was purified by flash column chromatography on silica gel, eluting with petroleum ether/EtOAc = 9/1 (v/v) to afford 0.49 g (28%) of **1w** as a colorless oil.

(1R,2R,4S)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl

pentafluorobenzoate (1w): colorless oil (0.49 g, 28%). ¹H NMR (400 MHz, CDCl₃):

2,3,4,5,6-

δ 4.64 (d, J = 2.0 Hz, 1H), 1.80 – 1.62 (m, 4H), 1.55 – 1.45 (m, 1H), 1.26 (dd, J = 10.4, 1.6 Hz, 1H), 1.19 (s, 3H), 1.16 (dt, J = 12.3, 2.4 Hz, 1H), 1.12 (s, 3H), 0.87 (s, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -138.24 – -138.40 (m, 2F), -149.25 – -149.46 (m, 1F), - 160.49 – -160.72 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 159.45 (d, J = 1.2 Hz), 146.80 – 143.91 (m), 144.52 – 141.58 (m), 139.20 – 136.26 (m), 108.86 – 108.48 (m), 89.87, 48.48, 48.38, 41.36, 39.63, 29.64, 26.64, 25.71, 20.13, 19.18; HRMS (EI): Calcd for C₁₇H₁₈F₅O₂ [M+H]⁺ 349.3130, found 349.3134.

3.3 Preparation of S1, S2, S3

To a solution of acid (5 mmol) in DCM (15 mL) was added DCC (1.24g, 6 mmol), DMAP (61.0 mg, 0.5 mmol), and 1,6-hexanediol (0.71 g, 6 mmol). The mixture was stirred for 24 h at room temperature. After filtration, the mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with petroleum ether/EtOAc = 2/1 (v/v) to afford compound as a colorless oil.

.

6-Hydroxyhexyl 2-(4-isobutylphenyl)propanoate (S1): colorless oil (0.63 g, 41%). ¹H NMR (400 MHz, CDCl₃): δ 7.19 (d, J = 8.1 Hz, 2H), 7.08 (d, J = 8.1 Hz, 2H), 4.06 (td, J = 7.6, 6.7, 1.1 Hz, 2H), 3.68 (q, J = 7.2 Hz, 1H), 3.60 (t, J = 6.5 Hz, 2H), 2.44 (d, J = 7.2 Hz, 2H), 1.89 – 1.79 (m, 1H), 1.62 – 1.50 (m, 5H), 1.48 (d, J = 7.2 Hz, 3H), 1.36 – 1.23 (m, 4H), 0.89 (d, J = 6.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 174.84, 140.45, 137.85, 129.24, 127.13, 64.55, 62.77, 45.18, 45.00, 32.53, 30.16, 28.47, 25.52, 25.22, 22.35, 18.42; HRMS (EI): Calcd for C₁₉H₃₁O₃ [M+H]⁺ 307.4460, found 307.4457.

6-Hydroxyhexyl 4-(N,N-dipropylsulfamoyl)benzoate (S2): colorless oil (0.39 g, 20%). ¹H NMR (400 MHz, CDCl₃): δ 8.14 (d, *J* = 8.5 Hz, 2H), 7.86 (d, *J* = 8.5 Hz, 2H), 4.35 (t, *J* = 6.6 Hz, 2H), 3.65 (t, *J* = 6.5 Hz, 2H), 3.11 – 3.07 (m, 4H), 1.79 (p, *J* = 6.6 Hz, 2H), 1.66 (s, 1H), 1.64 – 1.42 (m, 10H), 0.86 (t, *J* = 7.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 165.31, 144.22, 133.74, 130.14, 126.98, 65.59, 62.76, 49.93, 32.56, 28.63, 25.80, 25.40, 21.92, 11.12; HRMS (EI): Calcd for C₁₉H₃₂NO₅S [M+H]⁺ 386.5190, found 386.5187.

6-Hydroxyhexyl 3-(4,5-diphenyloxazol-2-yl)propanoate (S3): colorless oil (0.70 g, 36%).¹H NMR (400 MHz, CDCl₃): δ 7.63 (dd, J = 8.4, 1.7 Hz, 2H), 7.57 (dd, J = 8.1, 1.7 Hz, 2H), 7.39 – 7.29 (m, 6H), 4.13 (t, J = 6.7 Hz, 2H), 3.60 (t, J = 6.5 Hz, 2H), 3.18 (t, J = 7.5 Hz, 2H), 2.91 (t, J = 7.5 Hz, 2H), 1.68 – 1.49 (m, 5H), 1.36 (p, J = 3.5 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 172.09, 161.79, 145.37, 135.06, 132.39, 128.92, 128.62, 128.53, 128.44, 128.05, 127.87, 126.42, 64.80, 62.77, 32.51, 31.15, 28.52, 25.66, 25.31, 23.55; HRMS (EI): Calcd for C₂₄H₂₈NO₄ [M+H]⁺ 394.4830, found 394.4836.

4. General Procedures for Defluoroalkylation of Polyfluoroarenes

4.1 General Procedures in Batch

In a 10 mL Schlenk tube with a magnetic stir bar were placed 4-CzIPN (**PC**, 4.8 mg, 0.006 mmol), quinuclidine (6.6 mg, 0.06 mmol), K₃PO₄ (42.4 mg, 0.2 mmol) and ZnCl₂ (41.0 mg, 0.3 mmol). Under nitrogen atmosphere, fluoroarenes (**1**, 0.2 mmol), alcohols (**2**, 0.6 mmol), DMSO (4 mL) were added, subsequently. The mixture was degassed *via* freeze-pump-thaw for three times, and irradiated under a blue LED (2-meter strips, 18 W, 456 nm) for 24 hrs at rt. The resulting mixture was quenched with H₂O (2 mL) and extracted with Et₂O (5 mL × 3). The combined organic layer was washed with saturated brine, dried over MgSO₄ and concentrated in vacuo. Silica gel chromatography (eluent: petroleum ether/EtOAc = 5/1) of the crude product afforded the desired compound.

4.2 General Procedures in Continuos-Flow

a) Reaction set up

BPR (Back Pressure Regulation) Pump S11

Figure S1. Continuous-flow setup

b) General procedures

Under nitrogen atmosphere, a round bottom flask was equipped with a rubber septum and magnetic stir bar and charged with 4-CzIPN (PC, 7.9 mg, 0.01mmol), quinuclidine (22.2 mg, 0.2 mmol), ZnCl₂ (68.15 mg, 0.5 mmol), pentafluorobenzoate (**1a**, 226.1 mg, 1 mmol) and hexanol (**2a**, 153.3 mg, 1.5 mmol). The resulting mixture was sealed and degassed *via* vacuum evacuation and back-filled with nitrogen for three times. Then anhydrous DMSO (10 mL) was added, and bubbled with a nitrogen balloon for 10-15 min. As shown in Figure S1, a syringe pump was filled with the reaction mixture and attached to the flow apparatus with 5 psi back-pressure regulator (BPR). The tubing (PFA, O.D. = 1/16", I.D. 0.03", 877 cm, volume = 4.0 mL) was placed at rt. The flow apparatus itself was set up with $t_R = 8$ h, flow rate = 0.5 mL/h. After approximately 9 h of equilibration, the reacted solution was collected for 4 h. The resulting mixture was quenched with H₂O (2 mL) and extracted with Et₂O (5 mL × 3). The combined organic layer was washed with saturated brine, dried over MgSO₄ and concentrated in vacuo. Silica gel chromatography (eluent: petroleum ether/EtOAc = 5/1) of the crude product afforded the desired compound.

5. Analytical Data of the Products

Methyl 2,3,5,6-tetrafluoro-4-(1-hydroxyhexyl)benzoate (3aa): The reaction was performed using 0.2 mmol of fluoroarenes and 0.3 mmol of alcohols; colorless oil (54 mg, 87%). ¹H NMR (400 MHz, CDCl₃): δ 5.07 (q, J = 7.5 Hz, 1H), 3.97 (s, 3H), 2.33 (d, J = 8.1 Hz, 1H), 2.05 – 1.96 (m, 1H), 1.89 – 1.77 (m, 1H), 1.49 – 1.41 (m, 1H), 1.33 – 1.30 (m, 5H), 0.88 (t, J = 8.0 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.34 – 139.50 (m, 2F), -143.18 – -143.40 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.09 – 160.19 (m), 145.97 – 143.18 (m), 145.67 – 142.99 (m), 125.70 (t, J = 14.9 Hz), 111.38 (t, J = 16.0 Hz), 66.81, 53.30, 36.78, 31.30, 25.35, 22.44, 13.92; HRMS (EI): Calcd for

 $C_{14}H_{17}O_{3}F_{4}$ [M+H]⁺ 309.1114, found 309.1109.

1-(Perfluorophenyl)hexan-1-ol (3ba): The reaction was performed using 0.2 mmol of fluoroarenes and 1 mmol of alcohols; white solid (49 mg, 91%); Mp. 48 – 49 °C. ¹H NMR (400 MHz, CDCl₃): δ 5.03 (t, *J* = 7.3 Hz, 1H), 2.23 (s, 1H), 2.05 – 1.95 (m, 1H), 1.86 – 1.77 (m, 1H), 1.50 – 1.39 (m, 1H), 1.35 – 1.27 (m, 5H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -144.05 (dd, *J* = 22.4, 8.1 Hz, 2F), -155.51 (td, *J* = 20.7, 4.2 Hz, 1F), -161.94 (tt, *J* = 18.5, 5.0 Hz, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 146.09 – 143.35 (m), 141.87 – 138.96 (m), 138.96 – 136.09 (m), 117.47 – 117.08 (m), 66.54 (q, *J* = 1.5 Hz), 36.97 (t, *J* = 1.8 Hz), 31.33, 25.49, 22.45, 13.90; HRMS (EI): Calcd for C₁₂H₁₄OF₅ [M+H]⁺ 269.0965, found 269.0963.

1-(Perfluoropyridin-4-yl)hexan-1-ol (3ca): The reaction was performed using 0.2 mmol of fluoroarenes and 1 mmol of alcohols; colorless oil (39 mg, 77%). ¹H NMR (400 MHz, CDCl₃): δ 5.10 (t, J = 8.8 Hz, 1H), 2.31 (s, 1H), 2.06 – 1.96 (m, 1H), 1.89 – 1.76 (m, 1H), 1.54 – 1.41 (m, 1H), 1.37 – 1.27 (m, 5H), 0.89 (t, J = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -90.53 – -90.74 (m, 2F), -145.01 – -145.20 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 144.89 – 142.05 (m), 141.22 – 138.25 (m), 136.49 – 136.11 (m), 66.96, 36.53 (t, J = 1.4 Hz), 31.25, 25.19, 22.41, 13.91; HRMS (EI): Calcd for C₁₁H₁₃NOF₄Na [M+Na]⁺ 274.0831, found 274.0833.

1-(Perfluoro-[1,1'-biphenyl]-4-yl)hexan-1-ol (3da): The reaction was performed using 0.2 mmol of fluoroarenes and 0.3 mmol of alcohols; white solid (47 mg, 57%); Mp. 59 – 60 °C. ¹H NMR (400 MHz, CDCl₃): δ 5.14 (q, J = 8.1 Hz, 1H), 2.26 (d, J = 8.2 Hz, 1H), 2.11 – 2.02 (m, 1H), 1.94 – 1.85 (m, 1H), 1.57 – 1.46 (m, 1H), 1.37 – 1.31 (m, 5H), 0.90 (t, J = 6.9 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -137.26 - -137.41 (m, 2F), -138.31 – -138.49 (m, 2F), -143.22 – -143.35 (m, 2F), -150.22 - -150.35 (m, 1F), - 160.49 – -160.66 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 145.91 – 143.06 (m), 145.38 – 142.63 (m), 143.82 – 140.89 (m), 139.30 – 136.60 (m), 139.09 – 136.37 (m), 124.78 (t, J = 1.5.0 Hz), 105.36 – 104.75 (m), 102.59 – 102.05 (m), 66.96 (t, J = 1.8 Hz), 36.91 (t, J = 1.4 Hz), 31.35, 25.49, 22.47, 13.96; HRMS (EI): Calcd for C₁₈H₁₃OF₉Na [M+Na]⁺ 439.0720, found 439.0711.

1,1'-(Perfluoro-[1,1'-biphenyl]-4,4'-diyl)bis(hexan-1-ol) (3ea): white solid (73 mg, 73%); Mp. 119 – 120 °C. ¹H NMR (400 MHz, CDCl₃): δ 5.14 (q, *J* = 7.2 Hz, 1H), 2.26 (d, *J* = 7.9 Hz, 1H), 2.12 – 2.00 (m, 1H), 1.94 – 1.85 (m, 1H), 1.56 – 1.50 (m, 1H), 1.38 – 1.30 (m, 5H), 0.91 (t, *J* = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -138.26 – -138.41 (m, 4F), -143.50 – -143.66 (m, 4F); ¹³C NMR (100 MHz, CDCl₃): δ 145.86 – 143.01 (m), 145.43 – 142.56 (m), 124.46 (t, *J* = 15.0 Hz), 106.33 – 105.76 (m), 66.96, 36.92, 31.35, 25.49, 22.48, 13.97; HRMS (EI): Calcd for C₂₄H₂₇O₂F₈ [M+H]⁺ 499.1883, found 499.1891.

1-(2,3,5,6-Tetrafluorophenyl)hexan-1-ol (3fa): colorless oil (29 mg, 57%). ¹H NMR (400 MHz, CDCl₃): δ 7.03 - 6.95 (m, 1H), 5.06 (q, *J* = 7.8 Hz, 1H), 2.18 (d, *J* = 8.6 Hz,

1H), 2.06 – 1.97 (m, 1H), 1.89 – 1.78 (m, 1H), 1.52 – 1.40 (m, 1H), 1.34 – 1.28 (m, 5H), 0.87 (t, J = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -138.92 - -139.03 (m, 2F), -144.68 - -144.80 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 147.32 – 144.18 (m), 145.87 – 142.74 (m), 123.12 (t, J = 14.7 Hz), 104.93 (t, J = 22.6 Hz), 66.92 (t, J = 1.9 Hz), 37.00 (t, J = 1.7 Hz), 31.35, 25.45, 22.47, 13.96; HRMS (EI): Calcd for C₁₂H₁₅OF₄ [M+H]⁺ 251.1059, found 251.1064.

1-(2,3,5,6-Tetrafluoro-4-(trifluoromethyl)phenyl)hexan-1-ol (3ga): The reaction was performed using 0.2 mmol of fluoroarenes and 1 mmol of alcohols; white solid (50 mg, 78%); Mp. 51 – 52 °C. ¹H NMR (400 MHz, CDCl₃): δ 5.09 (t, J = 7.3 Hz, 1H), 2.28 (s, 1H), 2.06 – 1.97 (m, 1H), 1.91 – 1.78 (m, 1H), 1.52 – 1.43 (m, 1H), 1.37 – 1.28 (m, 5H), 0.89 (t, J = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -56.40 (t, J = 21.7 Hz, 3F), -140.32 – -140.62 (m, 2F), -142.19 - -142.30 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 145.99 – 143.19 (m), 145.46 – 142.55 (m), 126.84 (t, J = 15.0 Hz), 120.71 (q, J = 274.6 Hz), 108.74 (q, J = 11.3 Hz), 66.81 (t, J = 1.8 Hz), 36.74 (t, J = 1.5 Hz), 31.29, 25.35, 22.44, 13.92; HRMS (EI): Calcd for C₁₃H₁₄OF₇ [M+H]⁺ 319.0933, found 319.0926.

1-(2,3,5,6-Tetrafluoro-4-(1-hydroxyhexyl)phenyl)ethan-1-one (3ha): The reaction was performed using 0.2 mmol of fluoroarenes and 0.3 mmol of alcohols; colorless liquid (38 mg, 65%). ¹H NMR (400 MHz, CDCl₃): δ 5.07 (q, J = 7.1 Hz, 1H), 2.62 (t, J = 1.8 Hz, 3H), 2.24 (d, J = 7.8 Hz, 1H), 2.06 – 1.96 (m, 1H), 1.89 – 1.76 (m, 1H), 1.50 – 1.42 (m, 1H), 1.37 – 1.28 (m, 5H), 0.89 (t, J = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -141.67 – -141.79 (m, 2F), -143.07 – -143.19 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 192.13 (t, J = 1.6 Hz), 145.80 – 143.00 (m), 145.21 – 142.35 (m), 125.30 (t, J = 6.8 Hz), J = 1.6 Hz), 145.80 – 143.00 (m), 145.21 – 142.35 (m), 125.30 (t, J = 6.8 Hz), J = 1.6 Hz), 145.80 – 143.00 (m), 145.21 – 142.35 (m), 125.30 (t, J = 6.8 Hz), J = 1.6 Hz), 145.80 – 143.00 (m), 145.21 – 142.35 (m), 125.30 (t, J = 6.8 Hz), J = 1.6 Hz), 145.80 – 143.00 (m), 145.21 – 142.35 (m), 125.30 (t, J = 6.8 Hz), J = 1.6 Hz), 145.80 – 143.00 (m), 145.21 – 142.35 (m), 125.30 (t, J = 6.8 Hz), J = 1.6 Hz), 145.80 – 143.00 (m), 145.21 – 142.35 (m), 125.30 (t, J = 6.8 Hz), J = 1.6 Hz), 145.80 – 143.00 (m), 145.21 – 142.35 (m), 125.30 (t, J = 1.6 Hz), 145.80 – 143.00 (m), 145.21 – 142.35 (m), 125.30 (t, J = 1.6 Hz), 145.80 – 143.00 (m), 145.21 – 142.35 (m), 125.30 (t, J = 0.8 Hz), 145.80 – 143.00 (m), 145.21 – 142.35 (m), 125.30 (t, J = 0.8 Hz), 145.80 – 143.00 (m), 145.21 – 142.35 (m), 125.30 (t, J = 0.8 Hz), 145.80 – 143.00 (m), 145.21 – 142.35 (m), 125.30 (t, J = 0.8 Hz), 145.80 – 143.00 (m), 145.21 – 142.35 (m), 125.30 (t, J = 0.8 Hz), 145.80 – 143.00 (m), 145.21 – 142.35 (m), 125.30 (t, J = 0.8 Hz), 145.80 – 143.00 (m), 145.21 – 142.35 (m), 125.30 (t, J = 0.8 Hz), 145.80 – 143.00 (m), 145.21 – 142.35 (m), 125.30 (t, J = 0.8 Hz), 145.80 – 143.00 (m), 145.21 – 142.35 (m), 125.30 (t, J = 0.8 Hz), 145.80 – 143.00 (m), 145.21 – 142.35 (m), 125.30 (t, J = 0.8 Hz), 145.80 – 143.80 (m), 145.80 – 143.80 (m), 145.80 – 143.80 (m), 145.80 – 143.80 (m), 145.80 –

J = 15.1 Hz), 118.44 (t, J = 16.7 Hz), 66.81 (t, J = 1.7 Hz), 36.81 (t, J = 1.6 Hz), 32.42 (t, J = 2.4 Hz), 31.31, 25.37, 22.44, 13.93; HRMS (EI): Calcd for C₁₄H₁₇O₂F₄ [M+H]⁺ 293.1165, found 293.1166.

Tert-butyl 2,3,5,6-tetrafluoro-4-(1-hydroxyhexyl)benzoate (3ia): white solid (65 mg, 93%); Mp. 46 – 47 °C. ¹H NMR (400 MHz, CDCl₃): δ 5.06 (t, J = 7.2 Hz, 1H), 2.24 (s, 1H), 2.05 – 1.94 (m, 1H), 1.86 -1.77 (m, 1H), 1.59 (s, 9H), 1.49 – 1.40 (m, 1H), 1.35 – 1.28 (m, 5H), 0.88 (t, J = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -140.95 – - 141.06 (m, 2F), -143.66 – -143.82 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 158.58 – 158.45 (m), 145.70 – 142.99 (m), 145.48 – 142.71 (m), 124.62 (t, J = 15.0 Hz), 113.56 (t, J = 17.0 Hz), 84.69, 66.84 (t, J = 1.9 Hz), 36.91 (t, J = 1.4 Hz), 31.34, 28.06, 25.37, 22.45, 13.94; HRMS (EI): Calcd for C₁₇H₂₃O₃F₄ [M+H]⁺ 351.1583, found 351.1581.

Phenyl 2,3,5,6-tetrafluoro-4-(1-hydroxyhexyl)benzoate (3ja): white solid (62 mg, 84%); Mp. 72 – 73 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.48 – 7.42 (m, 2H), 7.34 – 7.29 (m, 1H), 7.27 – 7.23 (m, 2H), 5.12 (q, *J* = 7.7 Hz, 1H), 2.25 (d, *J* = 8.4 Hz, 1H), 2.08 – 1.99 (m, 1H), 1.91 – 1.82 (m, 1H), 1.53 – 1.42 (m, 1H), 1.39 – 1.28 (m, 5H), 0.90 (t, *J* = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -138.46 – -138.58 (m, 2F), -142.80 – 142.93 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 158.17 – 157.97 (m), 150.07, 146.29 – 143.42 (m), 145.88 – 143.11 (m), 129.68, 126.66, 126.38 (t, *J* = 15.0 Hz), 121.31, 111.07 (t, *J* = 15.3 Hz), 66.93 (t, *J* = 1.7 Hz), 36.88 (t, *J* = 1.5 Hz), 31.33, 25.38, 22.46, 13.94; HRMS (EI): Calcd for C₁₉H₁₈O₃F₄Na [M+Na]⁺ 393.1090, found 393.1095.

But-3-yn-1-yl 2,3,5,6-tetrafluoro-4-(1-hydroxyhexyl)benzoate (3ka): colorless oil (47 mg, 68%). ¹H NMR (400 MHz, CDCl₃): δ 5.07 (q, J = 7.6 Hz, 1H), 4.49 (t, J = 6.8 Hz, 2H), 2.67 (td, J = 6.8, 2.7 Hz, 2H), 2.25 (d, J = 8.3 Hz, 1H), 2.05 (t, J = 2.6 Hz, 1H), 2.03 – 1.95 (m, 1H), 1.87 – 1.77 (m, 1H), 1.51 – 1.41 (m, 1H), 1.37 – 1.27 (m, 5H), 0.88 (t, J = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -138.98 – -139.11 (m, 2F), -143.11 – -143.25 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 159.44 – 159.28 (m), 146.30 – 143.19 (m), 145.76 – 142.92 (m), 125.84 (t, J = 15.1 Hz), 111.26 (t, J = 15.6 Hz), 79.18, 70.38, 66.86 (t, J = 1.8 Hz), 64.04, 36.85 (t, J = 1.8 Hz), 31.31, 25.36, 22.45, 18.86, 13.94; HRMS (EI): Calcd for C₁₇H₁₉O₃F₄ [M+H]⁺ 347.1270, found 347.1272.

3-Chloropropyl 2,3,5,6-tetrafluoro-4-(1-hydroxyhexyl)benzoate (3la): colorless oil (62 mg, 84%). ¹H NMR (400 MHz, CDCl₃): δ 5.08 (q, J = 7.5 Hz, 1H), 4.55 (t, J = 5.9 Hz, 2H), 3.69 (t, J = 6.3 Hz, 2H), 2.26 – 2.18 (m, 3H), 2.06 – 1.96 (m, 1H), 1.88 – 1.76 (m, 1H), 1.52 – 1.40 (m, 1H), 1.36 – 1.29 (m, 5H), 0.88 (t, J = 6.9 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.20 – -139.33 (m, 2F), -143.05 – -143.17 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 159.52 – 159.35 (m), 146.15 – 143.26 (m), 145.78 – 142.96 (m), 125.87 (t, J = 15.1 Hz), 111.29 (t, J = 15.5 Hz), 66.86 (t, J = 1.9 Hz), 63.10, 40.78, 36.84 (t, J = 1.7 Hz), 31.31, 31.25, 25.36, 22.45, 13.94; HRMS (EI): Calcd for C₁₆H₂₀O₃F₄Cl [M+H]⁺ 371.1037, found 371.1028.

3-Bromopropyl 2,3,5,6-tetrafluoro-4-(1-hydroxyhexyl)benzoate (3ma): colorless oil (61 mg, 74%). ¹H NMR (400 MHz, CDCl₃): δ 5.08 (q, J = 7.7 Hz, 1H), 4.56 – 4.52 (m, 2H), 3.69 (t, J = 6.3 Hz, 1H), 3.54 (t, J = 6.4 Hz, 1H), 2.33 – 2.27 (m, 1H), 2.26 – 2.19 (m, 2H), 2.06 – 1.96 (m, 1H), 1.89 – 1.76 (m, 1H), 1.51 – 1.40 (m, 1H), 1.37 – 1.28 (m, 5H), 0.88 (t, J = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.16 – -139.32 (m, 2F), -143.03 – -143.19 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 159.49 – 159.36 (m), 146.16 – 143.26 (m), 145.88 – 143.03 (m), 125.80 (t, J = 15.0 Hz), 111.26 (t, J = 15.0 Hz), 66.88 (t, J = 1.9 Hz), 64.11, 40.79, 36.86 (t, J = 1.8 Hz), 31.31, 28.93, 25.36, 22.45, 13.95; HRMS (EI): Calcd for C₁₆H₂₀O₃F₄Br [M+H]⁺ 415.0532, found 415.0522.

2,3,5,6-Tetrafluoro-4-(1-hydroxyhexyl)benzamide (3na): white solid (42 mg, 72%); Mp. 98 – 99 °C. ¹H NMR (400 MHz, CD₃OD): δ 5.04 (t, *J* = 7.3 Hz, 1H), 2.04 – 1.95 (m, 1H), 1.87 – 1.77 (m, 1H), 1.49 – 1.39 (m, 1H), 1.36 – 1.26 (m, 5H), 0.89 (t, *J* = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CD₃OD): δ -144.88 – -145.15 (m, 4F); ¹³C NMR (100 MHz, CD₃OD): δ 162.78 (t, *J* = 2.6 Hz), 147.25 – 144.29 (m), 145.90 – 142.90 (m), 125.65 (t, *J* = 15.2 Hz), 117.31 – 116.73 (m), 66.72 (t, *J* = 1.8 Hz), 36.96 (t, *J* = 2.0 Hz), 32.62, 26.72, 23.59, 14.31; HRMS (EI): Calcd for C₁₃H₁₆NO₂F₄ [M+H]⁺ 294.1117, found 294.1124.

N-benzyl-2,3,5,6-tetrafluoro-4-(1-hydroxyhexyl)benzamide (3oa): yellow solid (73 mg, 95%); Mp. 76 – 77 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.39 – 7.28 (m, 5H), 6.38 (s, 1H), 5.04 (t, *J* = 7.3 Hz, 1H), 4.64 (d, *J* = 5.7 Hz, 2H), 2.39 (s, 1H), 2.06 – 1.93 (m, 1H), 1.86 – 1.74 (m, 1H), 1.48 – 1.38 (m, 1H), 1.35 – 1.27 (m, 5H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -141.21 - -141.32 (m, 2F), -142.84 – -142.96 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 158.10 (t, *J* = 2.6 Hz), 145.79 – 142.96 (m), 144.97 – 142.21 (m), 136.87, 128.87, 127.89, 127.75, 124.48 (t, *J* = 15.1 Hz), 114.88 (t, *J* = 18.4 Hz), 66.74 (t, *J* = 1.6 Hz), 44.26, 36.79 (t, *J* = 1.5 Hz), 31.32, 25.36, 22.43, 13.91; HRMS (EI): Calcd for C₂₀H₂₂NO₂F₄ [M+H]⁺ 384.1587, found 384.1586.

1-(2,3,5,6-Tetrafluoro-4-(1-hydroxyhexyl)benzoyl)pyrrolidin-2-one (3pa): colorless oil (67 mg, 93%). ¹H NMR (400 MHz, CDCl₃): δ 5.07 (q, *J* = 7.5 Hz, 1H), 4.01 (t, *J* = 7.3 Hz, 2H), 2.64 (t, *J* = 8.1 Hz, 2H), 2.21 – 2.14 (m, 3H), 2.05 – 1.96 (m, 1H), 1.88 – 1.79 (m, 1H), 1.51 – 1.42 (m, 1H), 1.37 – 1.27 (m, 5H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -142.61 – -142.74 (m, 2F), -143.86 – -144.00 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 174.11, 158.07 – 157.97 (m), 145.55 – 142.62 (m), 144.30 – 141.51 (m), 124.20 (t, *J* = 15.0 Hz), 115.10 (t, *J* = 18.2 Hz), 66.87 (t, *J* = 1.8 Hz), 45.39, 36.85 (t, *J* = 1.6 Hz), 32.77, 31.35, 25.42, 22.45, 17.22, 13.94; HRMS (EI): Calcd for C₁₇H₂₀NO₃F₄ [M+H]⁺ 362.1379, found 362.1382.

1-(2,3,5,6-Tetrafluoro-4-(1-hydroxyhexyl)benzoyl)piperidin-2-one (3qa): colorless oil (73 mg, 98%). ¹H NMR (400 MHz, CDCl₃): δ 5.05 (q, J = 7.3 Hz, 1H), 3.90 (t, J = 5.9 Hz, 2H), 2.57 (t, J = 6.4 Hz, 2H), 2.18 (d, J = 8.2 Hz, 1H), 2.03 – 1.89 (m, 5H), 1.86 – 1.77 (m, 1H), 1.52 – 1.41 (m, 1H), 1.36 – 1.27 (m, 5H), 0.88 (t, J = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -144.00 – -144.26 (m, 4F); ¹³C NMR (100 MHz, CDCl₃): δ 172.68, 161.04 – 160.95 (m), 145.63 – 142.72 (m), 143.86 – 140.91 (m), 123.46 – 123.13 (m), 117.52 – 117.18 (m), 66.81 (t, J = 1.8 Hz), 45.01, 36.86 (t, J = 1.5 Hz), 34.21, 31.36, 25.44, 22.45, 22.31, 20.47, 13.96; HRMS (EI): Calcd for C₁₈H₂₁NO₃F₄Na [M+Na]⁺ 398.1355, found 398.1345.

1-(2,3,6-Trifluorophenyl)hexan-1-ol (3ra): white solid (10 mg, 22%); Mp. 79 – 80 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.09 – 7.01 (m, 1H), 6.85 – 6.78 (m, 1H), 5.03 (q, J =7.6 Hz, 1H), 2.18 (d, J = 8.3 Hz, 1H), 2.04 – 1.95 (m, 1H), 1.88 – 1.78 (m, 1H), 1.50 – 1.41 (m, 1H), 1.34 – 1.28 (m, 5H), 0.88 (t, J = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -120.55 – -120.64 (m, 1F), -138.79 (dd, J = 21.1, 8.6 Hz, 1F), -142.07 – -142.20 (m, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 157.21 (dd, J = 6.3, 2.5 Hz), 154.78 (dd, J = 7.0, 2.7 Hz), 149.82 – 147.00 (m), 148.47 – 145.86 (m), 115.73 (ddd, J = 19.5, 10.6, 1.5 Hz), 111.02 (ddd, J = 25.2, 6.3, 4.3 Hz), 66.81 (q, J = 1.8 Hz), 37.12 (t, J = 1.4 Hz), 31.40, 25.50, 22.49, 13.97; HRMS (EI): Calcd for C₁₂H₁₆OF₃ [M+H]⁺ 233.1153, found 233.1148.

91% (A:B:C = 78:21:1)

1-(2,3,6-trifluoro-4-(trifluoromethyl)phenyl)hexan-1-ol (3sa): colorless oil (55 mg, 91%). Major component: ¹H NMR (400 MHz, CDCl₃): δ 7.12 (ddd, J = 9.7, 5.0, 2.2 Hz, 1H), 5.06 (t, J = 7.6 Hz, 1H), 2.30 (s, 1H), 2.07 – 1.96 (m, 1H), 1.88 – 1.77 (m, 1H), 1.52 – 1.39 (m, 1H), 1.36 – 1.28 (m, 5H), 0.88 (t, J = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -61.38 (d, J = 12.9 Hz, 3F), -117.73 (ddd, J = 14.5, 9.4, 4.1 Hz, 1F), -135.40 (d, J = 20.4 Hz, 1F), -142.77 – -143.00 (m, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 155.16 (ddd, J = 247.0, 7.2, 3.6 Hz), 149.11 (ddd, J = 252.5, 13.5, 9.0 Hz), 146.38 – 143.54 (m), 126.06 (dd, J = 18.4, 13.5 Hz), 121.34 (qt, J = 271.2, 3.3 Hz), 119.53 (qt, J = 50.4, 2.8 Hz), 109.00 (dp, J = 28.7, 4.3 Hz), 66.69 (d, J = 1.5 Hz), 36.84 (t, J = 1.5 Hz), 31.34, 25.40, 22.45, 13.91; HRMS (EI): Calcd for C₁₃H₁₅OF₆ [M+H]⁺ 301.2444, found 301.2446.

Ethyl 2,3,5-trifluoro-4-(1-hydroxyhexyl)benzoate (3ta): colorless oil (57 mg, 93%). ¹H NMR (400 MHz, CDCl₃): δ 7.42 (ddd, J = 10.4, 5.1, 2.3 Hz, 1H), 5.04 (q, J = 7.6Hz, 1H), 4.40 (q, J = 7.2 Hz, 2H), 2.24 (d, J = 8.6 Hz, 1H), 2.04 – 1.95 (m, 1H), 1.87 – 1.76 (m, 1H), 1.51 – 1.43 (m, 1H), 1.40 (t, J = 7.1 Hz, 3H), 1.34 – 1.27 (m, 5H), 0.88 (t, J = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -119.71 (ddd, J = 15.1, 10.3, 3.3 Hz, 1F), -136.83 (dt, J = 19.9, 2.9 Hz, 1F), -138.82 (ddd, J = 20.5, 15.9, 5.1 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 162.50 – 162.37 (m), 156.29 – 153.61 (m), 150.55 – 147.66 (m), 148.61 – 145.74 (m), 126.18 (dd, J = 18.7, 13.9 Hz), 119.36 (t, J = 9.2 Hz), 112.83 (dd, J = 26.9, 3.8 Hz), 66.83 – 66.75 (m), 62.06, 36.92(t, J = 1.5 Hz), 31.35, 25.39, 22.46, 14.14, 13.94; HRMS (EI): Calcd for C₁₅H₂₀O₃F₃ [M+H]⁺ 305.1365, found 305.1361.

Methyl 3,5-difluoro-4-(1-hydroxyhexyl)benzoate (3ua): colorless oil (52 mg, 95%). ¹H NMR (400 MHz, CDCl₃): δ 7.57 – 7.50 (m, 2H), 5.05 (t, J = 7.3 Hz, 1H), 3.92 (s, 3H), 2.27 (s, 1H), 2.03 – 1.94 (m, 1H), 1.86 – 1.77 (m, 1H), 1.49 – 1.41 (m, 1H), 1.35 – 1.27 (m, 5H), 0.87 (t, J = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -113.75 (d, J= 8.2 Hz, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 164.78 (t, J = 3.3 Hz), 160.55 (dd, J = 248.7, 8.8 Hz), 131.29 (t, J = 10.0 Hz), 124.68 (t, J = 16.9 Hz), 113.17 – 112.80 (m), 66.65 (t, J = 2.3 Hz), 52.65, 37.10 (t, J = 1.4 Hz), 31.39, 25.45, 22.47, 13.93; HRMS (EI): Calcd for C₁₄H₁₈O₃F₂Na [M+Na]⁺ 295.1122, found 295.1120.

Methyl 2,5-difluoro-4-(1-hydroxyhexyl)benzoate (3va): colorless oil (24 mg, 44%). ¹H NMR (400 MHz, CDCl₃): δ 7.60 – 7.55 (m, 1H), 7.33 – 7.28 (m, 1H), 5.01 (t, J =8.4 Hz, 1H), 3.93 (s, 3H), 2.03 (s, 1H), 1.78 – 1.70 (m, 2H), 1.50 – 1.40 (m, 1H), 1.38 – 1.27 (m, 5H), 0.88 (t, J = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -114.14 – -114.24 (m, 1F), -124.29 – -124.43 (m, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 163.80 (dd, J = 4.2, 2.1 Hz), 158.18 (dd, J = 256.9, 2.2 Hz), 154.62 (dd, J = 242.7, 2.5 Hz), 139.39 (dd, J = 16.3, 7.8 Hz), 118.09 (dd, J = 26.5, 1.7 Hz), 117.93 (t, J = 10.1 Hz), 115.64 (dd, J = 26.2, 4.9 Hz), 67.81 (t, J = 1.1 Hz), 52.52, 37.88, 31.48, 25.01, 22.49, 13.95; HRMS (EI): Calcd for C₁₄H₁₉O₃F₂ [M+H]⁺ 273.1302, found 273.1302.

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl

hydroxyhexyl)benzoate (3wa): colorless oil (43 mg, 50%). ¹H NMR (400 MHz, CDCl₃): δ 5.07 (q, J = 7.7 Hz, 1H), 4.98 (td, J = 10.9, 4.4 Hz, 1H), 2.25 (d, J = 8.4 Hz, 1H), 2.19 – 2.12 (m, 1H), 2.05 – 1.94 (m, 2H), 1.87 – 1.77 (m, 1H), 1.76 – 1.69 (m, 2H), 1.59 – 1.40 (m, 4H), 1.37 – 1.27 (m, 6H), 1.17 – 1.04 (m, 3H), 0.94 (d, J = 6.5 Hz, 3H), 0.91 (d, J = 7.0 Hz, 4H), 0.80 (d, J = 7.0 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -140.00 – -140.13 (m, 2F), -143.39 – -143.52 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 159.33 – 159.23 (m), 145.76 – 142.96 (m), 145.47 – 142.80 (m), 125.01 (t, J = 15.0 Hz), 112.54 (t, J = 16.8 Hz), 66.85 (t, J = 1.8 Hz), 46.82, 40.57, 36.89 (t, J = 1.5 Hz), 34.03, 31.47, 31.33, 25.85, 25.37, 23.02, 22.46, 21.95, 20.80, 15.85, 13.96; HRMS (EI): Calcd for C₂₃H₃₃O₃F₄ [M+H]⁺ 433.2366, found 433.2357.

(1R,2R,4S)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl 2,3,5,6-tetrafluoro-4-(1-hydroxyhexyl)benzoate (3xa): colorless oil (77 mg, 89%). ¹H NMR (400 MHz, CDCl₃): δ 5.08 (q, *J* = 8.0 Hz, 1H), 4.63 (d, *J* = 2.0 Hz, 1H), 2.25 (d, *J* = 8.2 Hz, 1H), 2.06 – 1.97 (m, 1H), 1.88 – 1.82 (m, 1H), 1.81 – 1.59 (m, 5H), 1.53 – 1.42 (m, 2H), 1.38 – 1.23 (m, 8H), 1.19 (s, 3H), 1.11 (s, 3H), 0.89 (s, 1H), 0.87 (s, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.28 – -139.40 (m, 2F), -143.37 – -143.49 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.11 – 159.98 (m), 146.01 – 143.24 (m), 145.72 – 143.00 (m), 125.33 (t, *J* = 15.2 Hz), 112.06 (t, *J* = 16.1 Hz), 89.56, 66.89, 48.45, 48.34, 41.34, 39.59, 36.89, 31.34, 29.64, 26.61, 25.71, 25.40, 22.45, 20.13, 19.20, 13.94; HRMS (EI): Calcd for C₂₃H₃₀O₃F₄Na [M+Na]⁺ 453.2029, found 453.2036.

Methyl 2,3,5,6-tetrafluoro-4-(hydroxymethyl)benzoate (3ab): The reaction was performed using 0.2 mmol of fluoroarenes and 1 mmol of alcohols; colorless oil (23 mg, 49%). ¹H NMR (400 MHz, CDCl₃): δ 4.84 (s, 2H), 3.99 (s, 3H), 2.12 (s, 1H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.24 – -139.34 (m, 2F), -143.40 – -143.51 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.09 – 160.03 (m), 146.31 – 143.59 (m), 145.88 – 143.08 (m), 121.63 (t, *J* = 17.6 Hz), 112.45 (t, *J* = 16.2 Hz), 53.34, 53.00 – 52.90 (m); HRMS (EI): Calcd for C₉H₇O₃F₄ [M+H]⁺ 239.0331, found 239.0332.

Methyl 2,3,5,6-tetrafluoro-4-(1-hydroxyethyl)benzoate (3ac): The reaction was performed using 0.2 mmol of fluoroarenes and 1 mmol of alcohols; colorless oil (46 mg, 92%). ¹H NMR (400 MHz, CDCl₃): δ 5.29 (p, *J* = 6.9 Hz, 1H), 3.98 (s, 3H), 2.31 (d, *J* = 7.8 Hz, 1H), 1.66 (d, *J* = 6.7 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.27 – -139.43 (m, 2F), -143.81 – -143.95 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.14 – 160.04 (m), 146.04 – 143.17 (m), 145.64 – 142.92 (m), 126.26 (t, *J* = 14.8 Hz), 111.50 (t, *J* = 15.8 Hz), 62.66 (t, *J* = 1.5 Hz), 53.28, 23.02 (t, *J* = 1.0 Hz); HRMS (EI): Calcd for C₁₀H₈O₃F₄Na [M+Na]⁺ 275.0307, found 275.0316.

Methyl 2,3,5,6-tetrafluoro-4-(1-hydroxydecyl)benzoate (3ad): The reaction was performed using 0.2 mmol of fluoroarenes and 0.3 mmol of alcohols; colorless oil (64 mg, 88%). ¹H NMR (400 MHz, CDCl₃): δ 5.07 (t, J = 7.3 Hz, 1H), 3.98 (s, 3H), 2.24 (s, 1H), 2.05 – 1.96 (m, 1H), 1.87 – 1.77 (m, 1H), 1.49 – 1.40 (m, 1H), 1.34 – 1.21 (m, 13H), 0.87 (t, J = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.31 – -139.47 (m, 2F), -143.18 – -143.33 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.17 – 160.08 (m), 146.00 – 143.19 (m), 145.69 – 143.03 (m), 125.70 (t, J = 15.0 Hz), 111.47 (t, J = 16.0 Hz), 66.88, 53.28, 36.89, 31.82, 29.44, 29.39, 29.23, 29.15, 25.69, 22.64, 14.07; HRMS

(EI): Calcd for C₁₈H₂₄O₃F₄Na [M+Na]⁺ 387.1559, found 387.1562.

Methyl 2,3,5,6-tetrafluoro-4-(1-hydroxy-3,3-dimethylbutyl)benzoate (3ae): colorless oil (52 mg, 85%). ¹H NMR (400 MHz, CDCl₃): δ 5.25 (td, J = 8.3, 4.0 Hz, 1H), 3.97 (s, 3H), 2.14 (d, J = 8.5 Hz, 1H), 1.99 (ddt, J = 14.6, 8.3, 1.4 Hz, 1H), 1.71 (dd, J = 14.6, 4.1 Hz, 1H), 1.00 (s, 9H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.20 – -139.33 (m, 2F), -143.45 – -143.57 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.14 – 160.09 (m), 146.08 – 143.27 (m), 145.51 – 142.80 (m), 126.99 (t, J = 15.1 Hz), 111.35 (t, J = 15.8 Hz), 64.39 (t, J = 1.5 Hz), 53.25, 50.75, 30.64, 29.75; HRMS (EI): Calcd for C₁₄H₁₆O₃F₄Na [M+Na]⁺ 331.0933, found 331.0933.

Methyl 4-(2-cyclopropyl-1-hydroxyethyl)-2,3,5,6-tetrafluorobenzoate (3af): The reaction was performed using 0.2 mmol of fluoroarenes and 0.3 mmol of alcohols; colorless oil (46 mg, 78%). ¹H NMR (400 MHz, CDCl₃): δ 5.21 (q, J = 7.0 Hz, 1H), 3.98 (s, 3H), 2.39 (d, J = 7.8 Hz, 1H), 2.00 (dt, J = 13.9, 7.0 Hz, 1H), 1.70 (dt, J = 14.2, 7.2 Hz, 1H), 0.74 – 0.64 (m, 1H), 0.57 – 0.48 (m, 1H), 0.47 – 0.38 (m, 1H), 0.18 – 0.12 (m, 1H), 0.03 – -0.03 (m, 1H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.43 – -139.56 (m, 2F), -142.99 – -143.13 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.24 – 160.02 (m), 145.98 – 143.32 (m), 145.79 – 143.13 (m), 125.59 (t, J = 15.0 Hz), 111.51 (t, J = 15.9 Hz), 67.22 (t, J = 1.5 Hz), 53.27, 41.60, 7.21, 4.14, 3.98; HRMS (EI): Calcd for C₁₃H₁₃O₃F₄ [M+H]⁺ 293.0801, found 293.0796.

Methyl 2,3,5,6-tetrafluoro-4-(4-fluoro-1-hydroxybutyl)benzoate (3ag): colorless oil (36 mg, 60%). ¹H NMR (400 MHz, CDCl₃): δ 5.13 (q, J = 7.9 Hz, 1H), 4.60 – 4.54 (m, 1H), 4.48 – 4.42 (m, 1H), 3.98 (s, 3H), 2.36 (d, J = 8.1 Hz, 1H), 2.20 – 2.12 (m, 1H), 2.01 – 1.91 (m, 2H), 1.80 – 1.68 (m, 1H); ¹⁹F NMR (377 MHz, CDCl₃): δ -140.02 – -140.13 (m, 2F), -142.59 – -142.69 (m, 2F), -217.52 – -217.90 (m, 1F); ¹³C NMR (100 MHz, CDCl₃): δ 160.01 – 159.96 (m), 146.06 – 143.24 (m), 145.73 – 143.01 (m), 125.10 (t, J = 15.0 Hz), 111.85 (t, J = 16.1 Hz), 83.27 (d, J = 165.7 Hz), 66.41 (t, J = 1.5 Hz), 53.31, 32.77 (d, J = 4.4 Hz), 26.91 (d, J = 20.1 Hz); HRMS (EI): Calcd for C₁₂H₁₁O₃F₅Na [M+Na]⁺ 321.0526, found 321.0534.

Methyl 4-(3-chloro-1-hydroxypropyl)-2,3,5,6-tetrafluorobenzoate (3ah): colorless oil (26 mg, 44%). ¹H NMR (400 MHz, CDCl₃): δ 5.43 – 5.38 (m, 1H), 3.98 (s, 3H), 3.82 – 3.76 (m, 1H), 3.68 – 3.63 (m, 1H), 2.58 – 2.49 (m, 1H), 2.41 (d, *J* = 6.8 Hz, 1H), 2.23 – 2.13 (m, 1H); ¹⁹F NMR (377 MHz, CDCl₃): δ -138.76 – -138.91 (m, 2F), -142.58 – -142.74 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 159.96 – 159.92 (m), 146.06 – 143.29 (m), 145.79 – 143.12 (m), 124.28 (t, *J* = 14.9 Hz), 112.13 (t, *J* = 15.7 Hz), 63.44 (t, *J* = 1.9 Hz), 53.37, 40.76, 38.60 (t, *J* = 2.0 Hz); HRMS (EI): Calcd for C₁₁H₁₀O₃F₄Cl [M+H]⁺ 301.0255, found 301.0249.

Methyl 2,3,5,6-tetrafluoro-4-(4,4,4-trifluoro-1-hydroxybutyl)benzoate (3ai): colorless oil (47 mg, 70%). ¹H NMR (400 MHz, CDCl₃): δ 5.13 (td, J = 8.4, 4.7 Hz,

1H), 3.99 (s, 3H), 2.45 – 2.36 (m, 2H), 2.34 – 2.14 (m, 2H), 2.09 – 2.00 (m, 1H); ¹⁹F NMR (377 MHz, CDCl₃): δ -66.23 (t, J = 10.3 Hz, 3F), -138.49 – -138.62 (m, 2F), -142.89 – -143.05 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 159.87 – 159.77 (m), 146.11 – 143.26 (m), 145.70 – 142.91 (m), 126.69 (q, J = 274.4 Hz), 124.10 (t, J = 14.8 Hz), 112.33 (t, J = 15.9 Hz), 65.29 (t, J = 2.1 Hz), 53.40, 30.49 (q, J = 29.6 Hz), 29.10 (q, J = 2.2 Hz); HRMS (EI): Calcd for C₁₂H₁₀O₃F₇ [M+H]⁺ 335.0518, found 335.0516.

Methyl 4-(3-((tert-butyldimethylsilyl)oxy)-1-hydroxypropyl)-2,3,5,6tetrafluorobenzoate (3aj): The reaction was performed using 0.2 mmol of fluoroarenes and 0.3 mmol of alcohols; colorless oil (59 mg, 75%). ¹H NMR (400 MHz, CDCl₃): δ 5.38 (dt, J = 8.7, 4.2 Hz, 1H), 3.97 (s, 3H), 3.95 – 3.89 (m, 1H), 3.87 – 3.81 (m, 1H), 3.68 (d, J = 5.0 Hz, 1H), 2.32 – 2.23 (m, 1H), 1.98 – 1.91 (m, 1H), 0.90 (s, 9H), 0.09 (d, J = 2.1 Hz, 6H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.65 – -139.86 (m, 2F), -142.56 – -142.82 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.20 – 160.12 (m), 146.02 – 143.35 (m), 145.85 – 143.21 (m), 125.32 (t, J = 14.6 Hz), 111.48 (t, J = 15.8Hz), 66.05, 61.36, 53.21, 37.84, 25.74, 18.07, -5.63 (d, J = 0.6 Hz); HRMS (EI): Calcd for C₁₇H₂₄O₄F₄NaSi [M+Na]⁺ 419.1278, found 419.1280.

Methyl 2,3,5,6-tetrafluoro-4-(1-hydroxy-2-phenylethyl)benzoate (3ak): The reaction was performed using 0.2 mmol of fluoroarenes and 0.3 mmol of alcohols; white solid (33 mg, 51%); Mp. 85 – 86 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.33 – 7.29 (m, 2H), 7.27 – 7.25 (m, 1H), 7.17 (d, J = 6.7 Hz, 2H), 5.33 (q, J = 7.2 Hz, 1H), 3.97 (s, 3H), 3.32 (dd, J = 13.5, 8.0 Hz, 1H), 3.12 (dd, J = 13.5, 6.4 Hz, 1H), 2.39 (d, J = 7.2 Hz, 1H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.19 – -139.42 (m, 2F), -142.61 – -142.80

(m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.11 – 159.99 (m), 145.97 – 143.20 (m), 145.72 – 143.05 (m), 135.97, 129.16, 128.79, 127.25, 124.57 (t, *J* = 14.8 Hz), 111.71 (t, *J* = 15.8 Hz), 67.70 (t, *J* = 1.5 Hz), 53.28, 42.97 (t, *J* = 1.5 Hz); HRMS (EI): Calcd for C₁₆H₁₂O₃F₄Na [M+Na]⁺ 351.0620, found 351.0629.

Methyl 2,3,5,6-tetrafluoro-4-(1-hydroxy-3-phenylpropyl)benzoate (3al): The reaction was performed using 0.2 mmol of fluoroarenes and 0.3 mmol of alcohols; white solid (39 mg, 57%); Mp. 63 – 64 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.29 (t, *J* = 7.2 Hz, 2H), 7.22 – 7.16 (m, 3H), 5.10 (q, *J* = 7.1 Hz, 1H), 3.98 (s, 3H), 2.88 – 2.81 (m, 1H), 2.71 – 2.63 (m, 1H), 2.41 – 2.33 (m, 1H), 2.31 (d, *J* = 10.3 Hz, 1H), 2.21 – 2.11 (m, 1H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.12 – -139.36 (m, 2F), -142.88 – -143.06 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.09 – 159.99 (m), 146.00 – 143.20 (m), 145.74 – 142.99 (m), 140.30, 128.53, 128.28, 126.26, 125.28 (t, *J* = 15.0 Hz), 111.67 (t, *J* = 15.8 Hz), 66.16 (t, *J* = 1.8 Hz), 53.30, 38.05 (t, *J* = 1.8 Hz), 31.94; HRMS (EI): Calcd for C₁₇H₁₄O₃F₄Na [M+Na]⁺ 365.0777, found 365.0777.

Methyl 2,3,5,6-tetrafluoro-4-(1-hydroxy-3-(4-methoxyphenyl)propyl)benzoate (3am): The reaction was performed using 0.2 mmol of fluoroarenes and 0.3 mmol of alcohols; colorless oil (31 mg, 41%). ¹H NMR (400 MHz, CDCl₃): δ 7.09 (d, J = 8.6 Hz, 2H), 6.82 (d, J = 8.6 Hz, 2H), 5.09 (t, J = 7.2 Hz, 1H), 3.98 (s, 3H), 3.78 (s, 3H), 2.82 – 2.74 (m, 1H), 2.67 – 2.55 (m, 1H), 2.39 – 2.07 (m, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.21 – -139.33 (m, 2F), -142.88 – -143.05 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.08 – 160.02 (m), 158.07, 146.00 – 143.19 (m), 145.68 – 143.01 (m),

132.30, 129.20, 125.36 (t, J = 15.0 Hz), 113.94, 111.62 (t, J = 16.1 Hz), 66.13 (t, J = 1.9 Hz), 55.25, 53.28, 38.26, 31.03; HRMS (EI): Calcd for C₁₈H₁₇F₄O₄ [M+H]⁺ 373.3156, found 373.3158.

Methyl 2,3,5,6-tetrafluoro-4-(1-hydroxy-2-methylpropyl)benzoate (3an): colorless oil (49 mg, 87%). ¹H NMR (400 MHz, CDCl₃): δ 4.68 (d, J = 9.0 Hz, 1H), 3.98 (s, 3H), 2.26 (s, 1H), 2.22 – 2.10 (m, 1H), 1.15 (d, J = 6.6 Hz, 3H), 0.81 (d, J = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.37 – -139.49 (m, 2F), -142.06 – -142.18 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.15 – 160.10 (m), 145.96 – 143.24 (m), 145.71 – 143.08 (m), 125.11 (t, J = 15.2 Hz), 111.51 (t, J = 16.1 Hz), 72.75, 53.29, 34.27 (t, J = 1.6 Hz), 19.11, 18.66; HRMS (EI): Calcd for C₁₂H₁₂O₃F₄Na [M+Na]⁺ 303.0620, found 303.0622.

Methyl 4-(2-ethyl-1-hydroxyhexyl)-2,3,5,6-tetrafluorobenzoate (dr = 1:1) (3ao): The reaction was performed using 0.2 mmol of fluoroarenes and 0.3 mmol of alcohols; colorless oil (33 mg, 49%). ¹H NMR (400 MHz, CDCl₃): δ 4.93 (t, *J* = 8.6 Hz, 1H), 3.98 (s, 3H), 2.24 (d, *J* = 8.8 Hz, 1H), 1.92 – 1.84 (m, 1H), 1.67 – 1.59 (m, 2H), 1.39 – 1.31 (m, 2H), 1.22 – 1.13 (m, 4H), 0.93 (q, *J* = 7.3 Hz, 3H), 0.82 (t, *J* = 7.5 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.32 – -139.48 (m, 2F), -142.14 – -142.30 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.21 – 160.04 (m), 146.00 – 143.31 (m), 145.79 – 143.19 (m), 125.64 (td, *J* = 15.0, 3.0 Hz), 111.45 (td, *J* = 15.7, 15.3, 2.2 Hz), 69.63, 69.38, 53.26, 44.75, 44.33, 28.44, 28.31, 28.07, 28.06, 23.11, 22.78, 22.06, 21.17, 14.02, 13.86, 10.44, 9.69; HRMS (EI): Calcd for $C_{16}H_{20}O_3F_4Na \ [M+Na]^+$ 359.1246, found 359.1248.

Methyl 4-(cyclohexyl(hydroxy)methyl)-2,3,5,6-tetrafluorobenzoate (3ap): colorless oil (53 mg, 83%). ¹H NMR (400 MHz, CDCl₃): δ 4.74 (t, J = 8.5 Hz, 1H), 3.98 (s, 3H), 2.23 (d, J = 8.5 Hz, 1H), 2.19 – 2.15 (m, 1H), 1.86 – 1.79 (m, 2H), 1.72 – 1.65 (m, 2H), 1.22 – 0.82 (m, 6H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.41 – -139.53 (m, 2F), -141.97 – -142.09 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.18 – 160.03 (m), 145.96 – 143.23 (m), 145.71 – 143.11 (m), 125.03 (t, J = 15.3 Hz), 111.48 (t, J =15.6 Hz), 71.75, 53.25, 43.47 (t, J = 1.2 Hz), 29.58, 28.89, 26.08, 25.63, 25.52; HRMS (EI): Calcd for C₁₅H₁₆O₃F₄Na [M+Na]⁺ 343.0933, found 343.0933.

Methyl 4-(cyclopentyl(hydroxy)methyl)-2,3,5,6-tetrafluorobenzoate (3aq): colorless oil (61 mg, 99%). ¹H NMR (400 MHz, CDCl₃): δ 4.77 (dd, J = 9.4, 5.3 Hz, 1H), 3.98 (s, 3H), 2.50 – 2.42 (m, 1H), 2.27 (d, J = 8.0 Hz, 1H), 2.04 – 1.95 (m, 1H), 1.78 – 1.51 (m, 5H), 1.48 – 1.38 (m, 1H), 1.14 – 1.05 (m, 1H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.31 – -139.45 (m, 2F), -142.31 – -142.44 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.18 – 160.08 (m), 145.99 – 143.23 (m), 145.74 – 143.09 (m), 125.58 (t, J = 15.3 Hz), 111.50 (t, J = 15.8 Hz), 71.08, 53.26, 45.91 (t, J = 1.5 Hz), 30.27, 28.96, 25.24, 25.21; HRMS (EI): Calcd for C₁₄H₁₄O₃F₄Na [M+Na]⁺ 329.0777, found 329.0780.

Methyl 4-(cyclobutyl(hydroxy)methyl)-2,3,5,6-tetrafluorobenzoate (3ar): colorless oil (46 mg, 78%). ¹H NMR (400 MHz, CDCl₃): δ 5.01 (dd, J = 7.8, 6.3 Hz, 1H), 3.97 (s, 3H), 2.88 – 2.78 (m, 1H), 2.25 – 2.17 (m, 2H), 2.07 – 1.96 (m, 1H), 1.95 – 1.79 (m, 3H), 1.71 (q, J = 9.6, 9.2 Hz, 1H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.35 – -139.47 (m, 2F), -142.53 – -142.67 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.18 – 160.06 (m), 145.95 – 143.22 (m), 145.75 – 143.10 (m), 124.30 (t, J = 15.4 Hz), 111.54 (t, J = 15.9 Hz), 71.07, 53.27, 40.44 (t, J = 1.4 Hz), 25.58, 23.72, 17.67; HRMS (EI): Calcd for C₁₃H₁₃O₃F₄ [M+H]⁺ 293.0801, found 293.0796.

Methyl 4-((4,4-difluorocyclohexyl)(hydroxy)methyl)-2,3,5,6-tetrafluorobenzoate (3as): colorless oil (64 mg, 90%). ¹H NMR (400 MHz, CDCl₃): δ 4.81 (t, *J* = 8.6 Hz, 1H), 3.99 (s, 3H), 2.35 (d, *J* = 8.2 Hz, 1H), 2.28 (d, *J* = 13.4 Hz, 1H), 2.24 – 2.14 (m, 1H), 2.12 – 2.05 (m, 1H), 1.96 (s, 1H), 1.83 – 1.62 (m, 2H), 1.52 – 1.41 (m, 1H), 1.39 – 1.32 (m, 2H); ¹⁹F NMR (377 MHz, CDCl₃): δ -92.60 (d, *J* = 236.6 Hz, 1F), -102.41 (dt, *J* = 242.2, 36.6 Hz, 1F), -138.76 – -138.89 (m, 2F), -141.81 – -141.94 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.06 – 159.85 (m), 146.00 – 143.19 (m), 145.76 – 142.97 (m), 124.15 (t, *J* = 15.1 Hz), 123.00 (t, *J* = 240.8 Hz) 112.04 (t, *J* = 16.0 Hz), 70.35, 53.38, 41.36 (d, *J* = 1.0 Hz), 32.87 (ddd, *J* = 25.6, 23.3, 4.8 Hz), 25.45 (dd, *J* = 60.0, 9.8 Hz); HRMS (EI): Calcd for C₁₅H₁₅O₃F₆ [M+H]⁺ 357.0925, found 357.0926.

Methyl 2,3,5,6-tetrafluoro-4-(2-hydroxypropan-2-yl)benzoate (3at): colorless oil (41 mg, 78%). ¹H NMR (400 MHz, CDCl₃): δ 3.97 (s, 3H), 2.75 (t, J = 3.9 Hz, 1H), 1.74 (t, J = 2.0 Hz, 6H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.33 – -139.45 (m, 2F), -139.63 – -139.77 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.11 – 160.01 (m), 146.57 – 143.68 (m), 145.90 – 142.94 (m), 129.33 (t, J = 12.3 Hz), 110.92 (t, J = 15.9 Hz), 73.52 (t, J = 2.1 Hz), 53.27, 30.55 (t, J = 4.0 Hz); HRMS (EI): Calcd for C₁₁H₁₀O₃F₄Na [M+Na]⁺ 289.0464, found 289.0473.

Methyl 2,3,5,6-tetrafluoro-4-(1-hydroxycyclohexyl)benzoate (3au): colorless oil (45 mg, 73%). ¹H NMR (400 MHz, CDCl₃): δ 3.97 (s, 3H), 2.42 (t, *J* = 3.6 Hz, 1H), 2.06 (d, *J* = 5.0 Hz, 4H), 1.89 – 1.68 (m, 4H), 1.32 (tt, *J* = 13.1, 4.0 Hz, 2H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.18 – -139.26 (m, 2F), -139.36 – -139.49 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.17 – 160.03 (m), 146.63 – 143.70 (m), 146.16 – 143.37 (m), 129.79 (t, *J* = 11.3 Hz), 110.78 (t, *J* = 15.7 Hz), 75.62 – 75.51 (m), 53.21, 36.93 (t, *J* = 4.2 Hz), 25.10, 21.35; HRMS (EI): Calcd for C₁₄H₁₄O₃F₄Na [M+Na]⁺ 329.0777, found 329.0780.

Methyl 2,3,5,6-tetrafluoro-4-((1r,3r,5r,7r)-2-hydroxyadamantan-2-yl)benzoate (3av): colorless oil (39 mg, 55%). ¹H NMR (400 MHz, CDCl₃): δ 3.97 (s, 3H), 2.78 (s, 2H), 2.48 (s, 1H), 2.34 (d, J = 12.5 Hz, 2H), 1.92 (d, J = 12.2 Hz, 2H), 1.81 (q, J = 3.3

Hz, 2H), 1.76 (s, 2H), 1.70 – 1.65 (m, 4H); ¹⁹F NMR (377 MHz, CDCl₃): δ -136.45 (q, J = 9.4 Hz, 2F), -139.12 – -139.24 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.14 – 160.01 (m), 147.34 – 144.57 (m), 146.77 – 143.94 (m), 127.58 (t, J = 12.0 Hz), 111.06 (t, J = 16.3 Hz), 80.67 – 80.62 (m), 53.20, 46.96, 39.25, 37.19, 36.23 (t, J = 6.4 Hz), 35.61 (t, J = 2.1 Hz), 32.93, 27.45, 26.30, 26.16; HRMS (EI): Calcd for C₁₈H₁₈O₃F₄Na [M+Na]⁺ 381.1090, found 381.1093.

Methyl 4-(1,3-dihydroxy-3-methylbutyl)-2,3,5,6-tetrafluorobenzoate (3aw): The reaction was performed using 0.2 mmol of fluoroarenes and 0.3 mmol of alcohols; colorless oil (54 mg, 87%). ¹H NMR (400 MHz, CDCl₃): δ 5.53 (dd, *J* = 11.1, 2.7 Hz, 1H), 4.05 (s, 1H), 3.97 (s, 3H), 2.37 (dd, *J* = 14.6, 11.0 Hz, 1H), 2.08 (s, 1H), 1.69 (dd, *J* = 14.6, 2.5 Hz, 1H), 1.44 (s, 3H), 1.35 (s, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ - 139.47 – -139.59 (m, 2F), -142.55 – -142.67 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.21 – 160.10 (m), 146.11 – 143.26 (m), 145.80 – 143.17 (m), 125.26 (t, *J* = 14.2 Hz), 111.55 (t, *J* = 15.9 Hz), 72.11, 64.10 (t, *J* = 2.0 Hz), 53.26, 46.69, 31.93, 27.59; HRMS (EI): Calcd for C₁₃H₁₄O₄F₄Na [M+Na]⁺ 333.0726, found 333.0731.

Methyl 4-(1,3-dihydroxypropyl)-2,3,5,6-tetrafluorobenzoate (3ax): The reaction was performed using 0.2 mmol of fluoroarenes and 0.3 mmol of alcohols; colorless oil (37 mg, 65%). ¹H NMR (400 MHz, CDCl₃): δ 5.38 (dd, J = 9.4, 3.9 Hz, 1H), 3.97 (s, 3H), 3.96 – 3.84 (m, 2H), 3.46 (s, 1H), 2.36 – 2.25 (m, 1H), 2.01 – 1.93 (m, 1H), 1.80 (s, 1H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.31 – -139.43 (m, 2F), -142.79 – -142.91 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.21 – 160.09 (m), 146.02 – 143.23 (m), 145.77 – 143.09 (m), 125.05 (t, J = 14.8 Hz), 111.61 (t, J = 15.9 Hz), 65.42 (t, J = 1.9

Hz), 60.58, 53.30, 37.73 (t, J = 1.6 Hz); HRMS (EI): Calcd for C₁₁H₁₁O₄F₄ [M+H]⁺ 283.0593, found 283.0592.

Methyl 4-(1,2-dihydroxyethyl)-2,3,5,6-tetrafluorobenzoate (3ay): white solid (28 mg, 53%); Mp. 85 – 86 °C. ¹H NMR (400 MHz, CD₃OD): δ 5.10 (t, J = 6.8 Hz, 1H), 3.93 (s, 3H), 3.88 (dd, J = 11.1, 7.0 Hz, 1H), 3.75 (dd, J = 11.0, 6.9 Hz, 1H); ¹⁹F NMR (377 MHz, CD₃OD): δ -142.84 – -142.96 (m, 2F), -144.00 – -144.12 (m, 2F); ¹³C NMR (100 MHz, CD₃OD): δ 161.35 – 161.25 (m), 147.79 – 145.07 (m), 147.16 – 144.38 (m), 125.38 (t, J = 15.5 Hz), 112.96 (t, J = 16.4 Hz), 67.96 (t, J = 1.8 Hz), 65.17 (t, J = 2.5 Hz), 53.76; HRMS (EI): Calcd for C₁₀H₈O₄F₄Na [M+Na]⁺ 291.0256, found 291.0249.

Methyl 2,3,5,6-tetrafluoro-4-(1-hydroxydodecyl)benzoate (3az): The reaction was performed using 0.2 mmol of fluoroarenes and 0.3 mmol of alcohols; colorless oil (78 mg, 99%). ¹H NMR (400 MHz, CDCl₃): δ 5.07 (q, J = 7.3 Hz, 1H), 3.98 (s, 3H), 2.23 (d, J = 8.1 Hz, 1H), 2.06 – 1.95 (m, 1H), 1.88 – 1.78 (m, 1H), 1.49 – 1.40 (m, 1H), 1.37 – 1.18 (m, 17H), 0.87 (t, J = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.28 – 139.40 (m, 2F), -143.18 – -143.32 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.17 – 160.06 (m), 146.00 – 143.19 (m), 145.75 – 143.02 (m), 125.71 (t, J = 15.0 Hz), 111.48 (t, J = 15.8 Hz), 66.88 (t, J = 1.6 Hz), 53.27, 36.90, 31.88, 29.57, 29.48, 29.39, 29.31, 29.16, 25.69, 22.66, 14.08; HRMS (EI): Calcd for C₂₀H₂₈O₃F₄Na [M+Na]⁺ 415.1872, found 415.1873.

Methyl 2,3,5,6-tetrafluoro-4-((5S,8R,9S,10S,13S,14S)-3-hydroxy-10,13-dimethyl-17-oxohexadecahydro-1H-cyclopenta[a]phenanthren-3-yl)benzoate (4): white solid (92 mg, 93%); Mp. 152 – 153 °C. ¹H NMR (400 MHz, CDCl₃): δ 3.96 (s, 3H), 2.47 – 2.39 (m, 2H), 2.38 – 2.30 (m, 1H), 2.28 – 2.20 (m, 1H), 2.13 – 2.00 (m, 2H), 1.97 – 1.89 (m, 2H), 1.86 – 1.75 (m, 4H), 1.74 – 1.65 (m, 2H), 1.63 – 1.47 (m, 4H), 1.34 – 1.27 (m, 3H), 1.10 – 0.95 (m, 2H), 0.90 (s, 3H), 0.86 (s, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.27 – -139.40 (m, 2F), -139.55 – -139.69 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 211.70, 160.10 – 159.97 (m), 146.59 – 143.70 (m), 146.10 – 143.14 (m), 129.64 (t, *J* = 11.2 Hz), 110.70 (t, *J* = 15.6 Hz), 75.84, 54.05, 53.22, 51.39, 47.78, 40.30, 39.38 (t, *J* = 4.0 Hz), 35.79, 35.62, 34.99, 33.36, 32.89 (t, *J* = 4.0 Hz), 31.48, 30.74, 27.83, 21.70, 20.15, 13.79, 11.42; HRMS (EI): Calcd for C₂₇H₃₂O₄F₄Na [M+Na]⁺ 519.2134, found 519.2138.

Methyl 2,3,5,6-tetrafluoro-4-((5S,8R,9S,10S,13R,14S,17R)-3-hydroxy-10,13dimethyl-17-((S)-6-methylheptan-2-yl)hexadecahydro-1H-

cyclopenta[a]phenanthren-3-yl)benzoate (5): white solid (63 mg, 53%); Mp. 129 -

130 °C. ¹H NMR (400 MHz, CDCl₃): δ 3.97 (s, 3H), 2.35 (s, 1H), 2.23 (dd, J = 13.9, 4.5 Hz, 1H), 2.12 – 1.88 (m, 4H), 1.85 – 1.65 (m, 4H), 1.63 – 1.47 (m, 6H), 1.40 – 1.29 (m, 6H), 1.17 – 1.06 (m, 6H), 1.05 – 0.96 (m, 4H), 0.90 (d, J = 6.5 Hz, 3H), 0.87 (s, 3H), 0.87 (s, 3H), 0.85 (d, J = 1.9 Hz, 3H), 0.66 (s, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.34 – -139.46 (m, 2F), -139.56 – -139.64 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.15 – 160.04 (m), 146.61 – 143.74 (m), 146.09 – 143.28 (m), 129.81 (t, J = 11.0 Hz), 110.65 (t, J = 15.5 Hz), 76.07 (m), 56.47, 56.24, 53.97, 53.22, 42.60, 40.37, 39.97, 39.58 (t, J = 3.9 Hz), 39.50, 36.16, 35.79, 35.47, 33.43, 32.95 (t, J = 4.0 Hz), 31.94, 28.22, 28.20, 28.00, 24.16, 23.82, 22.81, 22.68 (t, J = 3.1 Hz), 22.55, 20.91, 18.66, 12.08, 11.45; HRMS (EI): Calcd for C₃₅H₅₀O₃F₄Na [M+Na]⁺ 617.3594, found 617.3602.

cyclopenta[a]phenanthren-3-yl)benzoate (6): The reaction was performed using 0.6 mmol of fluoroarenes and 0.2 mmol of alcohols; white solid (88 mg, 74%); Mp. 99 – 100 °C. ¹H NMR (400 MHz, CDCl₃): δ 3.95 (s, 3H), 3.64 (s, 3H), 2.54 (s, 1H), 2.46 (t, J = 13.3 Hz, 1H), 2.37 – 2.29 (m, 1H), 2.24 – 2.10 (m, 2H), 2.03 – 1.72 (m, 7H), 1.68 – 1.51 (m, 4H), 1.46 – 1.35 (m, 5H), 1.35 – 1.27 (m, 2H), 1.22 – 1.14 (m, 3H), 1.12 – 1.02 (m, 3H), 0.98 (s, 3H), 0.90 (d, J = 6.4 Hz, 3H), 0.64 (s, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.22 – -139.53 (m, 4F); ¹³C NMR (100 MHz, CDCl₃): δ 174.73, 160.09 – 159.97 (m), 146.57 – 143.69 (m), 146.08 – 143.30 (m), 129.90 (t, J = 10.7 Hz), 110.60 (t, J = 15.5 Hz), 76.42, 56.48, 55.83, 53.15, 51.40, 42.69, 40.09, 39.94, 37.89, 37.44 (t, J = 15.5 Hz), 76.42, 56.48, 55.83, 53.15, 51.40, 42.69, 40.09, 39.94, 37.89, 37.44 (t, J = 15.5 Hz), 76.42, 56.48, 55.83, 53.15, 51.40, 42.69, 40.09, 39.94, 37.89, 37.44 (t, J = 15.5 Hz), 76.42, 56.48, 55.83, 53.15, 51.40, 42.69, 40.09, 39.94, 37.89, 37.44 (t, J = 15.5 Hz), 76.42, 56.48, 55.83, 53.15, 51.40, 42.69, 40.09, 39.94, 37.89, 37.44 (t, J = 15.5 Hz), 76.42, 56.48, 55.83, 53.15, 51.40, 42.69, 40.09, 39.94, 37.89, 37.44 (t, J = 15.5 Hz), 76.42, 56.48, 55.83, 53.15, 51.40, 42.69, 40.09, 39.94, 37.89, 37.44 (t, J = 15.5 Hz), 76.42, 56.48, 55.83, 53.15, 51.40, 42.69, 40.09, 39.94, 37.89, 37.44 (t, J = 15.5 Hz), 76.42, 56.48, 55.83, 53.15, 51.40, 42.69, 40.09, 39.94, 37.89, 37.44 (t, J = 15.5 Hz), 76.42, 56.48, 55.83, 53.15, 51.40, 42.69, 40.09, 39.94, 37.89, 37.44 (t, J = 15.5 Hz), 76.42, 56.48, 55.83, 53.15, 51.40, 42.69, 40.09, 39.94, 37.89, 37.44 (t, J = 15.5 Hz), 76.42, 56.48, 55.83, 53.15, 51.40, 42.69, 40.09, 39.94, 37.89, 37.44 (t, J = 15.5 Hz), 76.42, 56.48, 55.83, 53.15, 51.40, 42.69, 40.09, 39.94, 37.89, 37.44 (t, J = 15.5 Hz), 76.42, 56.48, 55.83, 53.15, 51.40, 42.69, 40.09, 39.94, 37.89, 37.44 (t, J = 15.5 Hz), 76.42, 76.42, 76.42, 76.42, 76.42, 76.42, 76.42, 76.42, 76.42, 76.42, 76.42, 76.42,
J=3.6 Hz), 35.56, 35.28, 34.40, 31.62 (t, *J*=4.3 Hz), 31.08, 30.96, 30.93, 28.09, 26.46, 26.31, 24.08, 23.44, 21.04, 18.20, 12.01; HRMS (EI): Calcd for C₃₃H₄₅O₅F₄ [M+H]⁺ 597.3203, found 597.3199.

Methyl

2,3,5,6-tetrafluoro-4-(1-hydroxy-6-((2-(4-

isobutylphenyl)propanoyl)oxy)hexyl)benzoate (7): The reaction was performed using 0.6 mmol of fluoroarenes and 0.2 mmol of alcohols; colorless oil (73 mg, 71%). ¹H NMR (400 MHz, CDCl₃): δ 7.18 (d, J = 8.1 Hz, 2H), 7.08 (d, J = 8.1 Hz, 2H), 5.03 (t, J = 7.3 Hz, 1H), 4.04 (t, J = 6.3 Hz, 2H), 3.98 (s, 3H), 3.67 (q, J = 7.2 Hz, 1H), 2.43 (d, J = 7.2 Hz, 2H), 2.01 – 1.90 (m, 1H), 1.88 – 1.71 (m, 2H), 1.68 (s, 1H), 1.57 (p, J = 6.7 Hz, 2H), 1.47 (d, J = 7.2 Hz, 3H), 1.33 – 1.17 (m, 4H), 0.88 (d, J = 6.6 Hz, 6H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.24 – -139.36 (m, 2F), -143.12 – -143.24 (m, 2F); ¹³C NMR (100 MHz, CDCl₃) δ 174.84, 160.13 – 160.01 (m), 146.00 – 143.19 (m), 145.71 – 142.97 (m), 140.47, 137.78, 129.23, 127.10, 125.57 (t, J = 15.0 Hz), 111.51 (t, J = 15.9 Hz), 66.55, 64.33, 53.27, 45.14, 44.96, 36.57, 30.13, 28.31, 25.33 (d, J = 1.5 Hz), 25.25, 22.30, 18.35; HRMS (EI): Calcd for C₂₇H₃₃O₅F₄ [M+H]⁺ 513.5416, found 513.5420.

Methyl 4-(6-((4-(N,N-dipropylsulfamoyl)benzoyl)oxy)-1-hydroxyhexyl)-2,3,5,6tetrafluorobenzoate (8): The reaction was performed using 0.6 mmol of fluoroarenes and 0.2 mmol of alcohols; colorless oil (73 mg, 62%). ¹H NMR (400 MHz, CDCl₃): δ 8.13 (d, *J* = 8.5 Hz, 2H), 7.86 (d, *J* = 8.5 Hz, 2H), 5.09 (t, *J* = 7.2 Hz, 1H), 4.34 (t, *J* = 6.5 Hz, 2H), 3.97 (s, 3H), 3.09 (t, *J* = 7.6 Hz, 4H), 2.45 (s, 1H), 2.10 – 2.01 (m, 1H),

1.91 – 1.83 (m, 1H), 1.79 (p, J = 6.8 Hz, 2H), 1.59 – 1.46 (m, 7H), 1.41 – 1.32 (m, 1H), 0.86 (t, J = 7.4 Hz, 6H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.20 – -139.32 (m, 2F), -143.14 – -143.26 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 165.28, 160.10 – 159.97 (m), 146.01 – 143.20 (m), 144.22, 145.70 – 142.99 (m), 133.62, 130.13, 126.97, 125.48 (t, J = 15.0 Hz), 111.61 (t, J = 15.9 Hz), 66.56 (t, J = 1.7 Hz), 65.38, 53.28, 49.92, 36.60 (t, J = 1.6 Hz), 28.49, 25.64, 25.41, 21.90, 11.10; HRMS (EI): Calcd for C₂₇H₃₄F₄NO₇S [M+H]⁺ 592.6146, found 592.6150.

Methyl 4-(6-((3-(4,5-diphenyloxazol-2-yl)propanoyl)oxy)-1-hydroxyhexyl)-2,3,5,6-tetrafluorobenzoate (9): The reaction was performed using 0.6 mmol of fluoroarenes and 0.2 mmol of alcohols; colorless oil (85 mg, 71%). ¹H NMR (400 MHz, CDCl₃): δ 7.61 (dd, J = 8.0, 1.7 Hz, 2H), 7.56 (dd, J = 8.0, 1.7 Hz, 2H), 7.37 – 7.28 (m, 6H), 5.02 (dd, J = 8.1, 6.3 Hz, 1H), 4.12 (t, J = 6.5 Hz, 2H), 3.97 (s, 3H), 3.18 (t, J = 7.4 Hz, 2H), 2.91 (t, J = 7.4 Hz, 2H), 2.40 (s, 1H), 2.01 – 1.92 (m, 1H), 1.80 – 1.71 (m, 1H), 1.63 (p, J = 6.6 Hz, 2H), 1.53 – 1.43 (m, 1H), 1.39 (p, J = 7.2 Hz, 2H), 1.34 – 1.28 (m, 1H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.26 – -139.38 (m, 2F), -143.10 – -143.23 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 172.00, 161.81, 160.13 – 160.02 (m), 145.43, 146.02 – 143.16 (m), 145.74 – 142.89 (m), 135.07, 132.36, 128.93, 128.62, 128.51, 128.46, 128.07, 127.88, 126.44, 125.58 (t, J = 15.1 Hz), 111.62 (t, J = 15.8 Hz), 66.52 (t, J = 1.5 Hz), 64.60, 53.26, 36.60 (t, J = 1.5 Hz), 31.15, 28.39, 25.52, 25.37, 23.56; HRMS (EI): Calcd for C₃₂H₂₉F₄NO₆ [M+H]⁺ 600.5786, found 600.5791.

6. Gram-Scale Preparation of 3aa and Transformations of the Products

In a 100 mL Schlenk tube with a magnetic stir bar were placed 4-CzIPN (PC, 118.3 mg, 0.15 mmol), quinuclidine (166.8 mg, 1.5 mmol), K₃PO₄ (1.06 g, 5 mmol) and ZnCl₂ (1.02 g, 7.5 mmol). Under nitrogen atmosphere, methyl pentafluorobenzoate (**1a**, 1.13 g, 5 mmol), hexanol (**2a**, 0.77g, 7.5 mmol), DMSO (40 mL) were added, subsequently. The resulting mixture was sealed and degassed *via* freeze-pump-thaw for three times. Then, the reaction was placed under a blue LED (2-meter strips, 18 W, 456 nm) and irradiated for 72 hrs at rt. The resulting mixture was quenched with H₂O and and extracted with ether (20 mL × 3). The combined organic layer was washed with brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by column chromatography. Silica gel chromatography (eluent: petroleum ether/EtOAc = 5/1) of the crude product afforded the desired compound as a colorless oil (1.17 g).

1-(2,3,5,6-Tetrafluoro-4-(hydroxymethyl)phenyl)hexan-1-ol (10): Under nitrogen atmosphere, **3aa** (44 μL, 0.2 mmol), THF (4 mL) and lithium aluminum hydride solution (0.3 mL, 1 M in THF) were added in a 10 mL Schlenk tube with a magnetic stir bar at 0 °C. Subsequently. The resulting mixture was sealed and cooled to 0 °C for 30 mins. The solvent was removed under vacuum. Silica gel chromatography (eluent: petroleum ether/EtOAc = 2/1) of the crude product afforded the desired compounds as a colorless oil (55 mg, 99%). ¹H NMR (400 MHz, CDCl₃): δ 5.03 (t, *J* = 7.4 Hz, 1H), 4.77 (s, 2H), 2.62 (s, 2H), 2.04 – 1.92 (m, 1H), 1.88 – 1.76 (m, 1H), 1.48 – 1.37 (m, 1H), 1.34 – 1.26 (m, 5H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ - 144.73 (dd, *J* = 22.1, 13.0 Hz, 2F), -145.23 (dd, *J* = 22.0, 13.0 Hz, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 146.21 – 143.46 (m), 145.52 – 142.87 (m), 122.28 (t, *J* = 15.0 Hz), 117.51 (t, *J* = 17.7 Hz), 66.71 (t, *J* = 2.1 Hz), 52.68 – 52.59 (m), 36.78, 31.34, 25.41, 22.43, 13.89; HRMS (EI): Calcd for C₁₃H₁₇F₄O₂ [M+H]⁺ 281.2626, found 281.2629.

Methyl 4-(1-bromohexyl)-2,3,5,6-tetrafluorobenzoate (11): In a 10 mL Schlenk tube with a magnetic stir bar were placed **3aa** (44 μ L, 0.2 mmol) and CH₂Cl₂ (1 mL). Under nitrogen atmosphere, added PBr₃(14 μ L, 0.14 mmol) at 0 °C. After completion of reaction (monitored by TLC), the mixture was quenched by water and extracted with CH₂Cl₂ three times. The combined organic layer was washed by brine, dried over MgSO₄ and concentrated in vacuo. Silica gel chromatography (eluent: petroleum ether/EtOAc = 5/1) of the crude product afforded the desired compounds as a colorless oil (57 mg, 77%). ¹H NMR (400 MHz, CDCl₃): δ 5.19 (t, *J* = 7.9 Hz, 1H), 3.99 (s, 3H), 2.42 – 2.32 (m, 1H), 2.28 – 2.19 (m, 1H), 1.51 – 1.44 (m, 1H), 1.36 – 1.28 (m, 5H), 0.88 (t, *J* = 6.9 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -138.82 – -138.96 (m, 2F), -139.91 (s, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 159.92 – 159.82 (m), 146.05 – 143.25 (m), 145.79 – 143.06 (m), 123.73 (t, *J* = 14.2 Hz), 112.27 (t, *J* = 16.0 Hz), 53.37, 38.85 (t, *J* = 1.7 Hz), 36.93 (t, *J* = 2.8 Hz), 30.81, 27.93, 22.33, 13.87; HRMS (EI): Calcd for C₁₄H₁₆O₂F₄Br [M+H]⁺ 371.0270, found 371.0261.

Methyl 2,3,5,6-tetrafluoro-4-hexanoylbenzoate (12): In a 10 mL Schlenk tube with a magnetic stir bar were placed sodium acetate (49.2 mg, 0.6 mmol), pyridinium dichromate (225.7 mg, 0.6 mmol). Under nitrogen atmosphere, CH_2Cl_2 (4 mL) and 3aa (44 µL, 0.2 mmol) were added at room temperature. After stirred for 2 hrs, the mixture was quenched by water and extracted with CH_2Cl_2 (5 mL × 3). The combined organic layer was washed by brine, dried over MgSO₄ and concentrated in vacuo. Silica gel chromatography (eluent: petroleum ether/EtOAc = 5/1) of the crude product afforded

the desired compounds as a colorless oil (54 mg, 88%). ¹H NMR (400 MHz, CDCl₃): δ 3.99 (s, 3H), 2.85 (t, J = 7.3 Hz, 2H), 1.74 – 1.67 (m, 2H), 1.37 – 1.29 (m, 4H), 0.89 (t, J = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -137.72 – -137.85 (m, 2F), -141.13 – -141.27 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 194.68 – 194.59 (m), 159.57 – 159.45 (m), 145.93 – 143.03 (m), 144.55 – 141.70 (m), 122.47 (t, J = 19.3 Hz), 114.15 (t, J = 16.4 Hz), 53.50, 44.98, 31.01, 23.03, 22.30, 13.78; HRMS (EI): Calcd for C₁₄H₁₄O₃F₄Na [M+Na]⁺ 329.0777, found 329.0776.

Methyl (*E***)-2,3,5,6-tetrafluoro-4-(hex-1-en-1-yl)benzoate (13):** In a 10 mL Schlenk tube with a magnetic stir bar were placed **3aa** (44 μL, 0.2 mmol), Et₃N (67 μL, 0.48 mmol) and CH₂Cl₂ (2 mL). Then, dropwise added trifluoromethanesulfonic anhydride (54 μL, 0.32 mmol) at 0 °C. After stirring for 4 h, the reaction was quenched by adding water, and the mixture was extracted with CH₂Cl₂ three times. The combined organic layer were washed with brine, dried (MgSO₄), and concentrated in vacuo. Silica gel chromatography (eluent: petroleum ether/EtOAc = 10/1) of the crude product afforded the desired compounds as a colorless oil (36 mg, 62%). ¹H NMR (400 MHz, CDCl₃): δ 6.72 (dt, *J* = 16.2, 7.0 Hz, 1H), 6.36 (dt, *J* = 16.4, 1.6 Hz, 1H), 3.96 (s, 3H), 2.30 (q, *J* = 7.9 Hz, 2H), 1.52 – 1.45 (m, 2H), 1.43 – 1.33 (m, 2H), 0.93 (t, *J* = 7.2 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -140.76 – -140.88 (m, 2F), -143.25 – -143.37 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.47 – 160.35 (m), 146.32 – 143.46 (m), 143.86 (t, *J* = 7.8 Hz), 145.60 – 142.80 (m), 120.35 (t, *J* = 13.6 Hz), 114.79 (t, *J* = 2.9 Hz), 109.21 (t, *J* = 15.6 Hz), 53.06, 34.15, 30.84, 22.22, 13.83; HRMS (EI): Calcd for C₁₄H₁₄O₂F₄Na [M+Na]⁺ 313.0828, found 313.0834.

7. Additional Experiments to Elucidate the Mechanism

7.1 Radical Inhibition Experiments

The radical initiator, TEMPO, can totally inhibit the formation of product, **3aa**, thus supporting a radical-based mechanism.

7.2 Evidence for the Presence of Carbon Radical

In a 10 mL Schlenk tube with a magnetic stir bar were placed 4-CzIPN (**PC**, 2.4 mg, 0.003 mmol), quinuclidine (3.3 mg, 0.03 mmol), K_3PO_4 (21.2 mg, 0.1 mmol) and ZnCl₂ (20.5 mg, 0.15 mmol). Under nitrogen atmosphere, methyl pentafluorobenzoate (**1a**, 0.1 mmol), hexanol (**2a**, 0.15 mmol), benzyl acrylate (0.2 mmol), DMSO (2 mL) were added, subsequently. The mixture was degassed *via* freeze-pump-thaw for three times, and irradiated under a blue LED (2-meter strips, 18 W, 456 nm) for 24 hrs at rt. The resulting mixture was quenched with H₂O (2 mL) and extracted with Et₂O (2 mL × 3). The combined organic layer was washed with saturated brine, dried over MgSO₄ and concentrated in vacuo. The yields of **3aa** and 5-pentyldihydrofuran-2(3*H*)-one were determined by ¹H NMR and ¹⁹F NMR of the crude products using trifluorotoluene (0.033 mmol) as an internal standard.¹

7.3 Evidence for the Presence of Polyfluorophenyl Radical

When adding the radical trappers for polyfluoroaryl radicals, such as alkynes and trimethoxybenzene, no radical addition products was observed with no significant influence on the yields of alkylpolyfluoroarenes.

7.4 Stern-Volmer Quenching Experiments

In a typical experiment, a solution of 4-CzIPN in anhydrous reaction solvent (DMSO)

 $(1.0 \times 10^{-5} \text{ M})$ was added with an appropriate amount of quencher in a quartz cuvette. Then the emission of the sample was collected. The emission intensity was collected with excited wavelength of photocatalysts, respectively.

S44

7.5 Defluoroalkylation of Pentafluorochlorobenzene

In a 10 mL Schlenk tube with a magnetic stir bar were placed 4-CzIPN (**PC**, 4.8 mg, 0.006 mmol), quinuclidine (6.6 mg, 0.06 mmol), K₃PO₄ (42.4 mg, 0.2 mmol) and ZnCl₂ (41.0 mg, 0.3 mmol). Under nitrogen atmosphere, pentafluorochlorobenzene (**1y**, 0.2 mmol), hexanol (**2a**, 0.6 mmol,), DMSO (4 mL) were added, subsequently. The mixture was degassed *via* freeze-pump-thaw for three times, and irradiated under a blue LED (2-meter strips, 18 W, 456 nm) for 24 hrs at rt. The resulting mixture was quenched with H₂O (2 mL) and extracted with Et₂O (5 mL × 3). The combined organic layer was washed with saturated brine, dried over MgSO₄ and concentrated in vacuo. Silica gel chromatography (eluent: petroleum ether/EtOAc = 5/1) of the crude product afforded the desired compound.

1-(4-Chloro-2,3,5,6-tetrafluorophenyl)hexan-1-ol (3ya): colorless oil (26 mg, 45%). Major component: ¹H NMR (400 MHz, CDCl₃): δ 5.05 (t, J = 7.4 Hz, 1H), 2.16 (s, 1H), 2.05 – 1.95 (m, 1H), 1.88 – 1.77 (m, 1H), 1.52 – 1.39 (m, 1H), 1.36 – 1.28 (m, 5H), 0.88 (t, J = 6.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ -140.91 – -141.03 (m, 2F), - 143.31 – -143.42 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 146.04 – 143.18 (m), 145.47 – 142.62 (m), 126.10 (t, J = 5.2 Hz), 121.13 (t, J = 15.3 Hz), 66.79 (t, J = 1.6 Hz), 36.96 (t, J = 1.7 Hz), 31.34, 25.45, 22.46, 13.93; HRMS (EI): Calcd for C₁₂H₁₄OF₄Cl [M+H]⁺ 285.0669, found 285.0665.

7.6 Cyclic Voltammetry Experiments

Cyclic Voltammograms were collected using Vertex. C. EIS Chenhua (China) with a typical three-electrode cell which contained 0.5 M sodium sulfate (Na₂SO₄) aqueous solution (pH = \sim 7) as electrolyte. The KCl-saturated Ag/AgCl and Pt net were used as the reference electrode and counter electrode, respectively. Sample (0.01 M) and tetrabutylammonium tetrafluoroborate (0.1 M) in DMSO were used for tests. Measurements were performed using glassy carbon working electrode, platinum wire counter electrode, and KCl-saturated Ag/AgCl reference electrode in a scan rate of 0.1 V/s.

 $E_p^{red} = -2.67 \text{ V vs Ag/AgCl in DMSO}$

7.7 Deuterium-Labeling Experiments and KIE Determination

Deuterium-labeling experiments: 2b-D (21 μ L, 0.5 mmol) was used to perform the defluoroalkylation reaction under the standard conditions. Silica gel chromatography (eluent: petroleum ether/EtOAc = 2/1) of the crude product mixture afforded compound **3ab-D** as a colorless liquid. The product was analyzed by ¹H NMR to determine the ratio of H-D exchange.

Methyl 2,3,5,6-tetrafluoro-4-(hydroxymethyl-d2)benzoate (3ab-D): colorless oil (23 mg, 47%). ¹H NMR (400 MHz, CDCl₃): δ 3.98 (s, 3H), 2.07 (s, 1H); ¹⁹F NMR (377 MHz, CDCl₃): δ -139.22 – -139.34 (m, 2F), -143.44 – -143.56 (m, 2F); ¹³C NMR (100 MHz, CDCl₃): δ 160.11 – 160.01 (m), 146.38 – 143.57 (m), 145.89 - 143.08 (m), 121.54 (t, *J* = 17.4 Hz), 112.48 (t, *J* = 16.1 Hz), 53.33; HRMS (EI): Calcd for C₉H₅D₂O₃F₄ [M+H]⁺ 241.0457, found 241.0451.

Determination of the KIE value

The KIE value (5.8) was determined by the measurement of initial rates of the reaction by ¹H NMR and ¹⁹F NMR using trifluorotoluene (0.033 mmol) as an internal standard.

7.8 Quantum Yield Measurement

Determination of the light intensity at 470 nm: Following Yoon's protocol,² the photon flux of the spectrophotometer was determined by standard ferrioxalate actinometry. A 0.15 M solution of ferrioxalate was prepared by dissolving 2.21 g of potassium

ferrioxalate hydrate in 30 mL of 0.05 M H₂SO₄. A buffered solution of phenanthroline was prepared by dissolving 50 mg of phenanthroline and 11.25 g of sodium acetate in 50 mL of 0.5 M H₂SO₄. Both solutions were stored in the dark. To determine the photon flux of the spectrophotometer, 2.0 mL of the ferrioxalate solution was placed in a cuvette and irradiated for 90.0 seconds at $\lambda = 470$ nm with an emission slit width at 10.0 nm. After irradiation, 0.35 mL of the phenanthroline solution was added to the cuvette. The solution was then allowed to rest for 1 h to allow the ferrous ions to completely coordinate to the phenanthroline. The absorbance of the solution was measured at 510 nm. A non-irradiated sample was also prepared and the absorbance at 510 nm measured. Conversion was calculated using eq (1).

mol Fe²⁺ = $\frac{V \cdot \Delta A}{1 \cdot \epsilon}$ (1)

Where V is the total volume (0.00235 L) of the solution after addition of phenanthroline, ΔA is the difference in absorbance at 510 nm between the irradiated and non-irradiated solutions, 1 is the path length (1.000 cm), and ε is the molar absorptivity at 510 nm (11,100 L mol⁻¹ cm⁻¹). The photon flux can be calculated using eq (2).

$$Photon flux = \frac{\text{mol Fe}^{2+}}{\Phi \cdot t \cdot f} \quad (2)$$

Where Φ is the quantum yield for the ferrioxalate actinometer (0.92 for a 0.15 M solution at $\lambda = 468$ nm),³ t is the time (90.0 s), and f is the fraction of light absorbed at $\lambda = 470$ nm (0.14, vide infra).⁴ The photon flux was calculated (average of three experiments) to be 3.22×10^{-8} einstein s⁻¹.

mol Fe²⁺ =
$$\frac{0.00235 \text{ L} \cdot 1.76}{1.000 \text{ cm} \cdot 11100 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}} = 3.73 \times 10^{-7} \text{ mol}$$

Photon flux = $\frac{3.73 \times 10^{-7} \text{ mol}}{0.92 \cdot 90.0 \text{ s} \cdot 0.14} = 3.22 \times 10^{-8} \text{ mol}$

Determination of quantum yield:

A cuvette was charged with **1a** (15 µL, 0.1 mmol), **2a** (19 µL, 0.15mmol), 4-CzIPN (**PC**, 2.4 mg, 0.003 mmol), quinuclidine (3.3 mg, 0.03 mmol), K₃PO₄ (21.2 mg, 0.1 mmol) and ZnCl₂ (20.5 mg, 0.15 mmol).and DMSO (2 mL). The cuvette was then capped with a PTFE stopper. The sample was stirred and irradiated (λ = 470 nm, slit width = 10.0 nm) for 2400 s (40 min). After irradiation, the solvent was removed. The yield of product formed was determined as 24% by crude ¹⁹F NMR using trifluorotoluene as the internal standard. The quantum yield was determined using eq (3). Essentially all incident light (f > 0.999, vide infra) is absorbed by the 4-CzIPN at the reaction conditions described above. Φ (24%) = 0.31.

$$\Phi = \frac{mol \ product}{flux \cdot t \cdot f} \quad (3)$$

$$\Phi = \frac{0.24 \times 0.1 \times 10^{-3} \ mol}{3.21 \times 10^{-8} \ mol \cdot 2400 \ s \cdot 1.00} = 0.31$$

8. DFT Calculation

1. Computational details

All density functional theory (DFT) calculations were conducted with the Gaussian 16C program,⁵ using the popular functionals of M06-2X.⁶ Geometry optimizations were carried out with the Def2-TZVP basis set for all atoms,⁷ using Truhlar's S56 SMD method (Solvation Model based on the Quantum Mechanical Charge Density),⁸ with DMSO as the solvent. Cartesian coordinates (in Å) of related structures which optimized at the M06-2X/Def2-TZVP level of theory. The grid data of orbital Weighted Fukui function f_w^+ (OW_f⁺, delta:0.066) were calculated *via* Multiwfn developed by Tian Lu,⁹⁻¹⁰ which were further illustrated by VMD 1.9.3 program.¹¹

2. Condensed Orbital Weighted (OW) Fukui function and dual descriptors

1a

Radial points:	30 Angular p	oints: 302 To	otal: 9060 p	er center
Atom index	OW f+	OW f-	OW f0	OW
DD				
1(C)	0.15419	0.08005	0.11712	0.07414
2(C)	0.06089	0.15429	0.10759	-0.09340
3(C)	0.10444	0.14246	0.12345	-0.03802
4(C)	0.14709	0.08574	0.11641	0.06135
5(C)	0.10357	0.14437	0.12397	-0.04079
6(C)	0.06122	0.15191	0.10656	-0.09069
7(F)	0.01898	0.04554	0.03226	-0.02656
8(F)	0.00695	0.04728	0.02711	-0.04033
9(F)	0.01927	0.04691	0.03309	-0.02764
10(F)	0.00705	0.04637	0.02671	-0.03933
11(F)	0.03529	0.01893	0.02711	0.01636
12(C)	0.13368	0.00938	0.07153	0.12430
13(O)	0.09554	0.01782	0.05668	0.07772
14(O)	0.04227	0.00564	0.02396	0.03663
15(C)	0.00477	0.00159	0.00318	0.00318
16(H)	0.00037	0.00013	0.00025	0.00024
17(H)	0.00217	0.00076	0.00146	0.00140
18(H)	0.00217	0.00076	0.00146	0.00140

1f

Radial points:	30	Angular points:	302	Total:	9060 per center	
Atom index		OW f+	OW f		OW f0	OW

DD

1(C)	0.17330	0.09109	0.13220	0.08221
2(C)	0.11877	0.15508	0.13692	-0.03631
3(C)	0.12721	0.14563	0.13642	-0.01843
4(C)	0.17238	0.09695	0.13466	0.07544
5(C)	0.12721	0.14563	0.13642	-0.01843
6(C)	0.11877	0.15508	0.13692	-0.03631
7(H)	0.02944	0.00657	0.01801	0.02287
8(F)	0.02345	0.04441	0.03393	-0.02095
9(F)	0.02316	0.04647	0.03481	-0.02331
10(F)	0.02345	0.04441	0.03393	-0.02095
11(F)	0.02316	0.04647	0.03481	-0.02331
12(F)	0.03973	0.02224	0.03099	0.01750
Sum of orbital	weighted f+	1.000033		
Sum of orbital	weighted f-	1.000016		

1g

Radial points:	30 Angular	points: 302 Tot	tal: 9060 p	ber center
Atom index	OW f+	OW f-	OW f0	OW
DD				
1(C)	0.15114	0.11492	0.13303	0.03621
2(C)	0.10480	0.16791	0.13636	-0.06311
3(C)	0.16995	0.12371	0.14683	0.04624
4(C)	0.16993	0.12369	0.14681	0.04624
5(C)	0.10480	0.16791	0.13635	-0.06311
6(C)	0.15116	0.11494	0.13305	0.03622
		S52		

7(F)	0.01626	0.05303	0.03465	-0.03678
8(F)	0.01626	0.05303	0.03464	-0.03678
9(F)	0.03091	0.03131	0.03111	-0.00040
10(F)	0.03090	0.03130	0.03110	-0.00040
11(H)	0.02690	0.00908	0.01799	0.01783
12(H)	0.02691	0.00908	0.01799	0.01783

1r

Radial points:	30 Angular p	oints: 302 To	tal: 9060 p	er center
Atom index	OW f+	OW f-	OW f0	OW
DD				
1(C)	0.18438	0.07932	0.13185	0.10506
2(C)	0.09161	0.15416	0.12288	-0.06255
3(C)	0.12701	0.15350	0.14025	-0.02649
4(C)	0.17436	0.08052	0.12744	0.09384
5(C)	0.11930	0.14642	0.13286	-0.02712
6(C)	0.10073	0.16166	0.13119	-0.06092
7(F)	0.02327	0.04783	0.03555	-0.02456
8(F)	0.01400	0.04799	0.03099	-0.03399
9(F)	0.02072	0.04641	0.03357	-0.02568
10(F)	0.01655	0.05100	0.03377	-0.03445
11(F)	0.04180	0.01878	0.03029	0.02301
12(C)	0.04559	0.00617	0.02588	0.03942
13(F)	0.01701	0.00284	0.00992	0.01417

14(F)	0.01697	0.00283	0.00990	0.01414
15(F)	0.00675	0.00062	0.00369	0.00613

1t

Radial points:	30 Angular p	oints: 302 To	otal: 9060 p	er center
Atom index	OW f+	OW f-	OW f0	OW
DD				
1(C)	0.07250	0.11563	0.09406	-0.04313
2(C)	0.09171	0.15504	0.12337	-0.06334
3(C)	0.15162	0.11265	0.13213	0.03897
4(C)	0.12261	0.12615	0.12438	-0.00354
5(C)	0.05693	0.15787	0.10740	-0.10094
6(C)	0.14542	0.10298	0.12420	0.04244
7(F)	0.01547	0.05068	0.03307	-0.03522
8(F)	0.00590	0.05093	0.02841	-0.04503
9(F)	0.03241	0.02831	0.03036	0.00410
10(F)	0.01040	0.03309	0.02174	-0.02269
11(H)	0.01633	0.00920	0.01277	0.00713
12(C)	0.13391	0.01365	0.07378	0.12026
13(O)	0.09690	0.02735	0.06212	0.06955
14(O)	0.03834	0.00907	0.02370	0.02927
15(C)	0.00433	0.00292	0.00363	0.00141
16(H)	0.00184	0.00151	0.00168	0.00034
17(H)	0.00183	0.00143	0.00163	0.00040
18(C)	0.00079	0.00076	0.00078	0.00003
19(H)	0.00033	0.00030	0.00032	0.00003

20(H)	0.00016	0.00017	0.00017	-0.00001
21(H)	0.00032	0.00030	0.00031	0.00002
Sum of orbital weighted f+		1.000030		
Sum of orbital weighted f-		1.000001		

1u

Radial points:	30 Angular j	points: 302 To	otal: 9060 pe	er center
Atom index	OW f+	OW f-	OW f0	OW
DD				
1(C)	0.06161	0.12632	0.09397	-0.06471
2(C)	0.10919	0.13944	0.12431	-0.03025
3(C)	0.15602	0.13034	0.14318	0.02567
4(C)	0.10851	0.13612	0.12232	-0.02761
5(C)	0.06224	0.12982	0.09603	-0.06757
6(C)	0.13483	0.13693	0.13588	-0.00209
7(F)	0.00797	0.03960	0.02379	-0.03163
8(F)	0.02979	0.04111	0.03545	-0.01132
9(F)	0.00779	0.03826	0.02303	-0.03047
10(H)	0.01429	0.01004	0.01216	0.00425
11(C)	0.14333	0.01658	0.07996	0.12675
12(O)	0.09765	0.02921	0.06343	0.06844
13(O)	0.04222	0.01047	0.02634	0.03175
14(H)	0.01485	0.01033	0.01259	0.00452
15(C)	0.00482	0.00262	0.00372	0.00221
16(H)	0.00220	0.00127	0.00174	0.00093
17(H)	0.00041	0.00021	0.00031	0.00020

18(H)	0.00220	0.00127	0.00174	0.00093
Sum of orbital w	veighted f+	0.999926		
Sum of orbital weighted f-		0.999930		
1v				

Radial points:	30 Angular p	points: 302 T	otal: 9060 p	er center
Atom index	OW f+	OW f-	OW f0	OW
DD				
1(C)	0.08282	0.08623	0.08452	-0.00341
2(C)	0.07847	0.15937	0.11892	-0.08089
3(C)	0.13914	0.13765	0.13839	0.00149
4(C)	0.14273	0.09454	0.11864	0.04819
5(C)	0.05736	0.18545	0.12140	-0.12809
6(C)	0.15090	0.11609	0.13350	0.03481
7(F)	0.00510	0.06029	0.03270	-0.05519
8(F)	0.03216	0.03314	0.03265	-0.00098
9(H)	0.01973	0.00626	0.01300	0.01347
10(C)	0.13014	0.01722	0.07368	0.11292
11(O)	0.09522	0.03067	0.06294	0.06455
12(O)	0.03521	0.00831	0.02176	0.02690
13(C)	0.00407	0.00222	0.00315	0.00185
14(H)	0.00183	0.00106	0.00145	0.00077
15(H)	0.00183	0.00106	0.00145	0.00077
16(F)	0.01279	0.05446	0.03363	-0.04167
17(H)	0.01008	0.00571	0.00790	0.00437
18(H)	0.00036	0.00018	0.00027	0.00017

Sum of orbital weighted f+ 0.999951

Sum of orbital weighted f- 0.999919

3. Current orbital weights (delta=0.066 a.u.) used in orbital-weighted (OW) calculation

1a

HOMO energy:	-0.319925 a.u.	-8.706 eV
LUMO energy:	-0.031879 a.u.	-0.867 eV
Chemical potentia	l: -0.175902 a.u.	-4.787 eV
Delta parameter:	0.066000 a.u.	1.796 eV

The "E_diff" in below output denotes difference between orbital energy with respect to chemical potential

10 Highest weights in orbital-weighted f+

Orbital	57 (LUMO)	Weight:	96.54 %	E_diff:	3.919 eV
Orbital	58 (LUMO+1)	Weight:	2.90 %	E_diff:	5.164 eV
Orbital	59 (LUMO+2)	Weight:	0.56 %	E_diff:	5.655 eV
Orbital	60 (LUMO+3)	Weight:	0.00 %	E_diff:	7.114 eV
Orbital	61 (LUMO+4)	Weight:	0.00 %	E_diff:	7.222 eV
Orbital	62 (LUMO+5)	Weight:	0.00 %	E_diff:	7.610 eV
Orbital	63 (LUMO+6)	Weight:	0.00 %	E_diff:	8.130 eV
Orbital	64 (LUMO+7)	Weight:	0.00 %	E_diff:	8.526 eV
Orbital	65 (LUMO+8)	Weight:	0.00 %	E_diff:	8.835 eV
T (1	. 1 1 1	1.1 10			

Total weight of above listed orbitals: 100.00 %

Orbital	56 (HOMO)	Weight:	73.77 %	E_diff:	-3.919 eV
Orbital	55 (HOMO-1)	Weight:	24.85 %	E_diff:	-4.344 eV
Orbital	54 (HOMO-2)	Weight:	1.03 %	E_diff:	-5.399 eV
Orbital	53 (HOMO-3)	Weight:	0.35 %	E_diff:	-5.715 eV
Orbital	52 (HOMO-4)	Weight:	0.00 %	E_diff:	-6.969 eV
Orbital	51 (HOMO-5)	Weight:	0.00 %	E_diff:	-7.174 eV

Orbital	50 (HOMO-6)	Weight:	0.00 %	E_diff:	-8.233 eV
Orbital	49 (HOMO-7)	Weight:	0.00 %	E_diff:	-8.315 eV
Orbital	48 (HOMO-8)	Weight:	0.00 %	E_diff:	-8.334 eV
Orbital	47 (HOMO-9)	Weight:	0.00 %	E_diff:	-9.145 eV

Total weight of above listed orbitals: 100.00 %

1f

HOMO energy:	-0.315474 a.u.	-8.584 eV
LUMO energy:	0.007142 a.u.	0.194 eV
Chemical potential:	-0.154166 a.u.	-4.195 eV
Delta parameter:	0.066000 a.u.	1.796 eV

The "E_diff" in below output denotes difference between orbital energy with respect to chemical potential

Orbital	42 (LUMO)	Weight:	68.26 %	E_diff:	4.389 eV
Orbital	43 (LUMO+1)	Weight:	25.63 %	E_diff:	4.736 eV
Orbital	44 (LUMO+2)	Weight:	6.10 %	E_diff:	5.201 eV
Orbital	45 (LUMO+3)	Weight:	0.01 %	E_diff:	7.028 eV
Orbital	46 (LUMO+4)	Weight:	0.00 %	E_diff:	7.391 eV
Orbital	47 (LUMO+5)	Weight:	0.00 %	E_diff:	8.108 eV
Orbital	48 (LUMO+6)	Weight:	0.00 %	E_diff:	8.857 eV
Orbital	49 (LUMO+7)	Weight:	0.00 %	E_diff:	9.548 eV
Orbital	50 (LUMO+8)	Weight:	0.00 %	E_diff:	9.643 eV
Total weig	ht of above listed	orbitals: 10	0.00 %		
10 Highest	weights in orbital	-weighted	f-		
Orbital	41 (HOMO)	Weight:	71.98 %	E_diff:	-4.389 eV
Orbital	40 (HOMO-1)	Weight:	28.02 %	E_diff:	-4.723 eV
Orbital	39 (HOMO-2)	Weight:	0.00 %	E_diff:	-7.773 eV
Orbital	38 (HOMO-3)	Weight:	0.00 %	E_diff:	-8.661 eV
Orbital	37 (HOMO-4)	Weight:	0.00 %	E_diff:	-8.781 eV

Orbital	36 (HOMO-5)	Weight:	0.00 %	E_diff:	-9.585 eV
Orbital	35 (HOMO-6)	Weight:	0.00 %	E_diff:	-10.861 eV
Orbital	34 (HOMO-7)	Weight:	0.00 %	E_diff:	-10.877 eV
Orbital	33 (HOMO-8)	Weight:	0.00 %	E_diff:	-11.102 eV
Orbital	32 (HOMO-9)	Weight:	0.00 %	E_diff:	-11.493 eV

Total weight of above listed orbitals: 100.00 %

1g

HOMO energy:	-0.313335 a.u.	-8.526 eV
LUMO energy:	0.008771 a.u.	0.239 eV
Chemical potential:	-0.152282 a.u.	-4.144 eV
Delta parameter:	0.066000 a.u.	1.796 eV

The "E_diff" in below output denotes difference between orbital energy with respect to chemical potential

10 Highest weights in orbital-weighted f+

Orbital	38 (LUMO)	Weight:	72.63 %	E_diff:	4.382 eV
Orbital	39 (LUMO+1)	Weight:	25.08 %	E_diff:	4.758 eV
Orbital	40 (LUMO+2)	Weight:	2.28 %	E_diff:	5.511 eV
Orbital	41 (LUMO+3)	Weight:	0.00 %	E_diff:	7.134 eV
Orbital	42 (LUMO+4)	Weight:	0.00 %	E_diff:	7.329 eV
Orbital	43 (LUMO+5)	Weight:	0.00 %	E_diff:	8.103 eV
Orbital	44 (LUMO+6)	Weight:	0.00 %	E_diff:	8.787 eV
Orbital	45 (LUMO+7)	Weight:	0.00 %	E_diff:	9.154 eV
Orbital	46 (LUMO+8)	Weight:	0.00 %	E_diff:	9.638 eV

Total weight of above listed orbitals: 100.00 %

Orbital	37 (HOMO)	Weight:	70.44 %	E_diff:	-4.382 eV
Orbital	36 (HOMO-1)	Weight:	29.56 %	E_diff:	-4.691 eV
Orbital	35 (HOMO-2)	Weight:	0.00 %	E_diff:	-7.855 eV
Orbital	34 (HOMO-3)	Weight:	0.00 %	E_diff:	-8.158 eV

Orbital	33 (HOMO-4)	Weight:	0.00 %	E_diff:	-8.673 eV
Orbital	32 (HOMO-5)	Weight:	0.00 %	E_diff:	-9.268 eV
Orbital	31 (HOMO-6)	Weight:	0.00 %	E_diff:	-10.661 eV
Orbital	30 (HOMO-7)	Weight:	0.00 %	E_diff:	-10.905 eV
Orbital	29 (HOMO-8)	Weight:	0.00 %	E_diff:	-10.961 eV
Orbital	28 (HOMO-9)	Weight:	0.00 %	E_diff:	-11.434 eV

Total weight of above listed orbitals: 100.00 %

1r

HOMO energy:	-0.326010 a.u.	-8.871 eV
LUMO energy:	-0.016123 a.u.	-0.439 eV
Chemical potential	l: -0.171067 a.u.	-4.655 eV
Delta parameter:	0.066000 a.u.	1.796 eV

The "E_diff" in below output denotes difference between orbital energy with respect to chemical potential

10 Highest weights in orbital-weighted f+

Orbital	58 (LUMO)	Weight:	84.48 %	E_diff:	4.216 eV
Orbital	59 (LUMO+1)	Weight:	12.84 %	E_diff:	4.884 eV
Orbital	60 (LUMO+2)	Weight:	2.67 %	E_diff:	5.377 eV
Orbital	61 (LUMO+3)	Weight:	0.00 %	E_diff:	7.284 eV
Orbital	62 (LUMO+4)	Weight:	0.00 %	E_diff:	7.951 eV
Orbital	63 (LUMO+5)	Weight:	0.00 %	E_diff:	8.774 eV
Orbital	64 (LUMO+6)	Weight:	0.00 %	E_diff:	9.082 eV
Orbital	65 (LUMO+7)	Weight:	0.00 %	E_diff:	9.328 eV
Orbital	66 (LUMO+8)	Weight:	0.00 %	E_diff:	9.465 eV

Total weight of above listed orbitals: 100.00 %

Orbital	57 (HOMO)	Weight:	77.80 %	E_diff:	-4.216 eV
Orbital	56 (HOMO-1)	Weight:	22.20 %	E_diff:	-4.671 eV
Orbital	55 (HOMO-2)	Weight:	0.00 %	E_diff:	-7.624 eV

Orbital	54 (HOMO-3)	Weight:	0.00 %	E_diff:	-8.273 eV
Orbital	53 (HOMO-4)	Weight:	0.00 %	E_diff:	-8.511 eV
Orbital	52 (HOMO-5)	Weight:	0.00 %	E_diff:	-9.499 eV
Orbital	51 (HOMO-6)	Weight:	0.00 %	E_diff:	-9.730 eV
Orbital	50 (HOMO-7)	Weight:	0.00 %	E_diff:	-10.037 eV
Orbital	49 (HOMO-8)	Weight:	0.00 %	E_diff:	-10.139 eV
Orbital	48 (HOMO-9)	Weight:	0.00 %	E_diff:	-10.240 eV

Total weight of above listed orbitals: 100.00 %

1t

HOMO energy:	-0.319853 a.u.	-8.704 eV
LUMO energy:	-0.027371 a.u.	-0.745 eV
Chemical potenti	al: -0.173612 a.u.	-4.724 eV
Delta parameter:	0.066000 a.u.	1.796 eV

The "E_diff" in below output denotes difference between orbital energy with respect to chemical potential

10 Highest weights in orbital-weighted f+

Orbital	57 (LUMO)	Weight:	95.49 %	E_diff:	3.979 eV
Orbital	58 (LUMO+1)	Weight:	4.34 %	E_diff:	5.080 eV
Orbital	59 (LUMO+2)	Weight:	0.16 %	E_diff:	6.033 eV
Orbital	60 (LUMO+3)	Weight:	0.01 %	E_diff:	6.810 eV
Orbital	61 (LUMO+4)	Weight:	0.00 %	E_diff:	7.135 eV
Orbital	62 (LUMO+5)	Weight:	0.00 %	E_diff:	7.625 eV
Orbital	63 (LUMO+6)	Weight:	0.00 %	E_diff:	8.043 eV
Orbital	64 (LUMO+7)	Weight:	0.00 %	E_diff:	8.080 eV
Orbital	65 (LUMO+8)	Weight:	0.00 %	E_diff:	8.524 eV

Total weight of above listed orbitals: 100.00 %

Orbital	56 (HOMO)	Weight:	67.46 %	E_diff:	-3.979 eV
Orbital	55 (HOMO-1)	Weight:	30.33 %	E_diff:	-4.291 eV

Orbital	54 (HOMO-2)	Weight:	1.61 %	E_diff:	-5.280 eV
Orbital	53 (HOMO-3)	Weight:	0.59 %	E_diff:	-5.580 eV
Orbital	52 (HOMO-4)	Weight:	0.01 %	E_diff:	-6.721 eV
Orbital	51 (HOMO-5)	Weight:	0.00 %	E_diff:	-6.839 eV
Orbital	50 (HOMO-6)	Weight:	0.00 %	E_diff:	-7.391 eV
Orbital	49 (HOMO-7)	Weight:	0.00 %	E_diff:	-7.585 eV
Orbital	48 (HOMO-8)	Weight:	0.00 %	E_diff:	-8.096 eV
Orbital	47 (HOMO-9)	Weight:	0.00 %	E_diff:	-8.150 eV

Total weight of above listed orbitals: 100.00 %

1u

HOMO energy:	-0.323670 a.u.	-8.807 eV
LUMO energy:	-0.025742 a.u.	-0.700 eV
Chemical potential	: -0.174706 a.u.	-4.754 eV
Delta parameter:	0.066000 a.u.	1.796 eV

The "E_diff" in below output denotes difference between orbital energy with respect to chemical potential

10 Highest weights in orbital-weighted f+

Orbital	49 (LUMO)	Weight:	94.88 %	E_diff:	4.054 eV
Orbital	50 (LUMO+1)	Weight:	5.08 %	E_diff:	5.086 eV
Orbital	51 (LUMO+2)	Weight:	0.03 %	E_diff:	6.492 eV
Orbital	52 (LUMO+3)	Weight:	0.00 %	E_diff:	7.136 eV
Orbital	53 (LUMO+4)	Weight:	0.00~%	E_diff:	7.358 eV
Orbital	54 (LUMO+5)	Weight:	0.00~%	E_diff:	7.828 eV
Orbital	55 (LUMO+6)	Weight:	0.00~%	E_diff:	8.164 eV
Orbital	56 (LUMO+7)	Weight:	0.00~%	E_diff:	8.391 eV
Orbital	57 (LUMO+8)	Weight:	0.00~%	E_diff:	8.798 eV

Total weight of above listed orbitals: 100.00 %

10 Highest weights in orbital-weighted f-

Orbital 48 (HOMO) Weight: 51.14 % E_diff: -4.054 eV

Orbital	47 (HOMO-1)	Weight:	47.20 %	E_diff:	-4.085 eV
Orbital	46 (HOMO-2)	Weight:	1.30 %	E_diff:	-5.319 eV
Orbital	45 (HOMO-3)	Weight:	0.36 %	E_diff:	-5.694 eV
Orbital	44 (HOMO-4)	Weight:	0.00 %	E_diff:	-6.997 eV
Orbital	43 (HOMO-5)	Weight:	0.00 %	E_diff:	-7.217 eV
Orbital	42 (HOMO-6)	Weight:	0.00 %	E_diff:	-7.669 eV
Orbital	41 (HOMO-7)	Weight:	0.00 %	E_diff:	-8.008 eV
Orbital	40 (HOMO-8)	Weight:	0.00 %	E_diff:	-8.376 eV
Orbital	39 (HOMO-9)	Weight:	0.00 %	E_diff:	-8.544 eV

Total weight of above listed orbitals: 100.00 %

1v

HOMO energy:	-0.313889 a.u.	-8.541 eV
LUMO energy:	-0.025042 a.u.	-0.681 eV
Chemical potentia	l: -0.169465 a.u.	-4.611 eV
Delta parameter:	0.066000 a.u.	1.796 eV

The "E_diff" in below output denotes difference between orbital energy with respect to chemical potential

10 Highest weights in	orbital-weighted f+
-----------------------	---------------------

Orbital	49 (LUMO)	Weight:	94.37 %	E_diff:	3.930 eV
Orbital	50 (LUMO+1)	Weight:	5.62 %	E_diff:	4.954 eV
Orbital	51 (LUMO+2)	Weight:	0.01 %	E_diff:	6.824 eV
Orbital	52 (LUMO+3)	Weight:	0.00 %	E_diff:	7.022 eV
Orbital	53 (LUMO+4)	Weight:	0.00 %	E_diff:	7.140 eV
Orbital	54 (LUMO+5)	Weight:	0.00 %	E_diff:	7.630 eV
Orbital	55 (LUMO+6)	Weight:	0.00 %	E_diff:	7.809 eV
Orbital	56 (LUMO+7)	Weight:	0.00 %	E_diff:	8.029 eV
Orbital	57 (LUMO+8)	Weight:	0.00 %	E_diff:	8.490 eV

Total weight of above listed orbitals: 100.00 %

Orbital	48 (HOMO)	Weight:	80.06 %	E_diff:	-3.930 eV
Orbital	47 (HOMO-1)	Weight:	18.23 %	E_diff:	-4.496 eV
Orbital	46 (HOMO-2)	Weight:	1.42 %	E_diff:	-5.334 eV
Orbital	45 (HOMO-3)	Weight:	0.29 %	E_diff:	-5.798 eV
Orbital	44 (HOMO-4)	Weight:	0.00 %	E_diff:	-7.146 eV
Orbital	43 (HOMO-5)	Weight:	0.00 %	E_diff:	-7.346 eV
Orbital	42 (HOMO-6)	Weight:	0.00 %	E_diff:	-7.766 eV
Orbital	41 (HOMO-7)	Weight:	0.00 %	E_diff:	-8.316 eV
Orbital	40 (HOMO-8)	Weight:	0.00 %	E_diff:	-8.416 eV
Orbital	39 (HOMO-9)	Weight:	0.00 %	E_diff:	-8.742 eV

Total weight of above listed orbitals: 100.00 %

4. Cartesian coordinates (in Å) of related structures

1a			
С	0.44192400	-2.17775900	0.00000000
С	-0.84465500	-1.67806600	0.00000000
С	-1.05790800	-0.31258200	0.00000000
С	0.00000000	0.59855500	0.00000000
С	1.28755400	0.05750000	0.00000000
С	1.51152100	-1.30535700	0.00000000
F	-2.32631600	0.07178400	0.00000000
F	-1.87633400	-2.51385500	0.00000000
F	2.36700400	0.82482400	0.00000000
F	2.75158900	-1.77848700	0.00000000
F	0.64844500	-3.48283200	0.00000000
С	-0.17475000	2.08581900	0.00000000
0	0.74208400	2.86280700	0.00000000
0	-1.44936600	2.44980100	0.00000000
С	-1.68724000	3.86368100	0.00000000
Н	-2.76691200	3.97852700	0.00000000

Н	-1.25650500	4.31847600	0.89068300
Н	-1.25650500	4.31847600	-0.89068300
1f			
С	0.00000000	0.00000000	1.11013300
С	0.00000000	1.19810300	0.41972800
С	0.00000000	1.18261100	-0.96291800
С	0.00000000	0.00000000	-1.67231300
С	0.00000000	-1.18261100	-0.96291800
С	0.00000000	-1.19810300	0.41972800
Н	0.00000000	0.00000000	-2.75404400
F	0.00000000	2.35144400	-1.60386600
F	0.00000000	2.34755200	1.08783200
F	0.00000000	-2.35144400	-1.60386600
F	0.00000000	-2.34755200	1.08783200
F	0.00000000	0.00000000	2.43711500
lg			
С	0.69073826	0.67916883	0.00000169
С	1.37125386	-0.52609775	0.00000658
С	0.69430112	-1.72606836	0.00000179
С	-0.69429152	-1.72604169	0.00000187
С	-1.37125717	-0.52609969	0.00000371
С	-0.69072835	0.67916546	-0.00000244
F	2.70766002	-0.49029634	-0.00000114
F	-2.70767253	-0.49028942	-0.00000235
F	-1.35131623	1.83338009	-0.00000502
F	1.35132101	1.83339332	-0.0000026
Н	-1.25639535	-2.64989702	0.00000005
Н	1.25636770	-2.64995262	-0.0000038

1r

С	-2.12150615	-0.05876700	-0.00006100
С	-1.38041110	-1.22738409	0.00001900
С	-0.00427000	-1.15253808	0.00004000
С	0.66307705	0.06538900	-0.00010600
С	-0.09818901	1.22366409	-0.00007100
С	-1.48120410	1.16434508	-0.00007700
F	0.69024005	-2.28480417	0.00030300
F	-1.99235514	-2.40286417	0.00011700
F	0.45401903	2.42858317	0.00002600
F	-2.19229116	2.28339516	-0.00007100
F	-3.44161025	-0.11461801	-0.00007600
С	2.16874715	0.04193900	-0.00005700
F	2.63918019	-0.60047205	1.07519008
F	2.63917019	-0.60404805	-1.07314808
F	2.70615119	1.25706309	-0.00213200
1t			
С	2.11401518	-0.75534543	0.06773984
С	0.79225441	-1.16756122	0.02487437
С	-0.23771519	-0.24123108	-0.06437972
С	0.08348029	1.11584159	-0.10862149
С	1.39629415	1.51506779	-0.07181828
С	2.42212075	0.58853011	0.01739663
F	0.57419759	-2.47545957	0.09145074
F	1.72205187	2.80808574	-0.12133613
F	3.68729722	0.97914914	0.05498339
F	3.08824362	-1.65267474	0.15876187
Н	-0.69216313	1.86502501	-0.18046990
С	-1.66007894	-0.69194162	-0.13104360
0	-2.00353404	-1.82232254	-0.35848544

Ο	-2.50166998	0.31304229	0.08288489
С	-3.90683011	-0.00629817	0.01059193
Н	-4.11519170	-0.42544124	-0.97415340
Н	-4.12632740	-0.76513751	0.76218282
С	-4.67614151	1.26465830	0.25477964
Н	-4.44146414	2.01342713	-0.50234472
Н	-5.74425206	1.05021721	0.20805022
Н	-4.44947630	1.67392450	1.23968455
1u			
С	-1.54124079	-1.16171861	0.00000000
С	-1.31279412	0.19481888	0.00000000
С	0.00000000	0.65318424	0.00000000
С	1.07072969	-0.23463907	0.00000000
С	0.80625875	-1.58599852	0.00000000
С	-0.49194608	-2.06443672	0.00000000
F	1.80018894	-2.47655053	0.00000000
F	-0.72812426	-3.37108677	0.00000000
F	-2.78397379	-1.64766744	0.00000000
Н	2.09672126	0.10453456	0.00000000
С	0.21587102	2.13016615	0.00000000
Ο	-0.67995714	2.93511233	0.00000000
О	1.50399905	2.45623951	0.00000000
Н	-2.14699103	0.88323602	0.00000000
С	1.79231552	3.85899929	0.00000000
Н	1.37725988	4.32876297	0.89063019
Н	2.87543285	3.93937757	0.00000000
Н	1.37725988	4.32876297	-0.89063019
1v			
С	1.81561675	-1.15455115	0.00000000

С	1.35516142	0.14929429	0.00000000
С	0.00000000	0.46457980	0.00000000
С	-0.91495927	-0.59124700	0.00000000
С	-0.47176680	-1.88910221	0.00000000
С	0.88625709	-2.16856341	0.00000000
F	-1.33755172	-2.90836185	0.00000000
F	1.28028858	-3.43982384	0.00000000
F	2.27740051	1.11187211	0.00000000
Н	-1.97877259	-0.40019029	0.00000000
С	-0.47120450	1.87819278	0.00000000
0	0.24525689	2.84475654	0.00000000
0	-1.80177396	1.95094496	0.00000000
С	-2.35253360	3.27208388	0.00000000
Н	-2.03718213	3.81349375	0.89075855
Н	-2.03718213	3.81349375	-0.89075855
Н	2.87535068	-1.37112507	0.00000000
Н	-3.43074013	3.14141617	0.00000000

References

- (1) K. Sakai, K. Oisaki and M. Kanai, Synthesis 2020, 52, 2171–2184.
- (2) M. A. Cismesia and T. P. Yoon, Chem. Sci. 2015, 6, 5426–5434.
- (3) C. G. Hatchard and C. A. Parker, P. Roy. Soc. A-Math. Phy. 1956, 235, 518–536.
- (4) W. C. Hartley, F. Schiel, E. Ermini and P. Melchiorre, *Angew. Chem. Int. Ed.* 2022, 61, e2022047; Angew. Chem. 2022, 134, e202204735.
- (5) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. FoX, Gaussian 16 Revision C. 01. 2016; Gaussian Inc. Wallingford CT 2016.
- (6) Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215–241.
- (7) A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829-5835.
- (8) A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.
- (9) T. Lu and Q. Chen, in Conceptual Density Functional Theory, 2022, pp. 631-647.
- (10) T. Lu and F. Chen, J. Comput. Chem. 2012, 33, 580–592.
- (11) W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph. 1996, 14, 33–38.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 f1 (ppm)

///// / *п*-Вι 3ga
 Image: Problem in the second secon -140.33 -140.37 -140.37 -140.34 -140.40 -140.40 -140.51 -140.55 -140.55 -140.55 -140.55 -140.55 -140.55 -142.21 -142.21 -142.21 -142.21 -142.23 -142.23 -142.23 -56.35 -56.41 -56.46 *п*-Вι 3ga
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y

192.13 145.75 145.56 145.55 145.55 145.55 145.55 145.55 145.55 145.55 145.55 145.55 145.65 145.12 145.12 145.02 145.02 145.02 142.55 143.17 14

160.11 160.11 160.03 146.04 146.04 146.05 146.05 145.58

160.01 159.96 159.96 146.06 146.06 146.06 146.07 145.69 145.65 145.65 145.65 145.65 145.65 145.65 145.65 145.65 145.65 145.65 145.65 143.24 143.21 143.22 143.23 143.22 143.07 143.23 143.25 143.07 143.25 143.07 143.25 143.07 143.25 143.07 143.07 143.07 143.25 143.07 145.07 145.07 145.07 145.07 145.07 145.07 145.07 145.07 145.07 145.07 14

160.08 160.08 160.04 160.05 145.00 145.05 145.56 145.55 14

4.4.83 4.4.83 4.4.81 4.4.81 4.4.81 4.4.81 4.4.81 4.4.81 4.4.82 4.4.81 4.4.81 4.4.82 4.4.81 4.

S145

S149

S154

