Supplementary information # The person-to-person transmission landscape of the gut and oral microbiomes In the format provided by the authors and unedited #### SUPPLEMENTARY INFORMATION GUIDE ## The person-to-person transmission landscape of the gut and oral microbiomes Mireia Valles-Colomer^{1,*}, Aitor Blanco-Míguez¹, Paolo Manghi¹, Francesco Asnicar¹, Leonard Dubois¹, Davide Golzato¹, Federica Armanini¹, Fabio Cumbo¹, Kun D. Huang¹, Serena Manara¹, Giulia Masetti¹, Federica Pinto¹, Elisa Piperni², Michal Punčochář¹, Liviana Ricci¹, Moreno Zolfo¹, Olivia Farrant³, Adriana Goncalves³, Marta Selma-Royo^{1,4}, Ana G. Binetti⁵, Jimmy E. Becerra⁶, Bei Han⁷, John Lusingu⁸, John Amuasi⁹, Loredana Amoroso¹⁰, Alessia Visconti¹¹, Claire M. Steves¹¹, Mario Falchi¹¹, Michele Filosi¹, Adrian Tett^{1,12}, Anna Last³, Qian Xu^{13,14}, Nan Qin^{13,14}, Huanlong Qin¹³, Jürgen May¹⁵, Daniel Eibach¹⁵, Maria Valeria Corrias¹⁶, Mirco Ponzoni¹⁶, Edoardo Pasolli¹⁷, Tim D. Spector¹¹, Enrico Domenici^{1,18}, Maria Carmen Collado⁴, Nicola Segata^{1,2,*} - 1. Department CIBIO, University of Trento, Trento, Italy. - 2. Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy. - 3. Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom. - 4. Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Valencia, Spain. - 5. Instituto de Lactología Industrial (CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina. - 6. Grupo de Investigación Alimentación y Comportamiento Humano, Universidad Metropolitana Barranquilla, Colombia. - 7. School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China. - 8. National Institute for Medical Research, Tanga Centre, Tanzania. - 9. Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Ghana. - 10. Oncology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy. - 11. Department of Twin Research & Genetic Epidemiology, King's College London, London, United Kingdom. - 12. Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria. - 13. Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China. - 14. Realbio Genomics Institute, Shanghai, China. - 15. Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany. - 16. Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy. - 17. Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy. - 18. Centre for Computational and Systems Biology (COSBI), Microsoft Research Foundation, Rovereto, Italy. ^{*}Correspondence: mireia.vallescolomer@unitn.it (MV-C) and nicola.segata@unitn.it (NS). #### SUPPLEMENTARY TABLE LEGENDS - Table S1. Summary of the 9,715 samples included in the study by dataset. - Table S2. Metadata of the 9,715 samples included in the study. - Table S3. PERMANOVA on same vs different individual genetic distance separation for each prevalent gut SGB. - Table S4. List of profiled SGBs in stool samples, taxonomic classification, and strain identity thresholds. - Table S5. List of profiled SGBs in saliva samples, taxonomic classification, and strain identity thresholds. - Table S6. Exclusion of samples phylogenetically close (≤0.0015 SNV rate) to MAGs of microorganisms obtained from fermented foods. - Table S7. Post-hoc Dunn two-sided tests on gut microbiome person-to-person strain sharing rates across human relationships. Multiple testing-corrected P values (Benjamini–Hochberg procedure) are reported in the Padj column. - Table S8. Kruskal-Wallis tests and Post-hoc Dunn tests on gut strain- or species-level similarities (Bray-Curtis, Aitchison, and Jaccard) within households, in non-cohabiting individuals of the same population, and in individuals from different populations. - Table S9. Gut SGB mother-infant, household, and intrapopulation transmissibility. - Table S10. Post-hoc Dunn two-sided tests on mother-offspring gut strain sharing rates across offspring age categories. Multiple testing-corrected P values (Benjamini–Hochberg procedure) are reported in the Padj column. - Table S11. Wilcoxon rank-sum two-sided tests on stool microbiome observed richness (number of SGBs detected with MetaPhlAn) in age categories of offspring from wWsternized as compared to non-Westernized populations. - Table S12. Wilcoxon rank-sum two-sided tests on mother-offspring gut strain sharing rates in age categories of offspring from Westernized as compared to non-Westernized populations. - Table S13. Wilcoxon rank-sum two-sided tests on the number of shared strains between stool samples of mothers and offspring in age categories of offspring from Westernized as compared to non-Westernized populations. - Table S14. Wilcoxon rank-sum two-sided tests on mother-offspring gut strain sharing rates in age categories of offspring delivered by C-section as compared to vaginally-delivered offspring. - Table S15. Spearman's tests on consistency of gut SGB mother-infant transmissibility across datasets (two-sided). - Table S16. Gut SGB mother-infant transmissibility (Chi2 tests, two-sided). Table S17. Wilcoxon rank-sum two-sided tests on gut strain sharing rates by cohabiting individuals as compared to non-cohabiting individuals. Table S18. Post-hoc Dunn two-sided tests on gut strain sharing rates among family relationships. Multiple testing-corrected P values (Benjamini–Hochberg procedure) are reported in the Padj column. Table S19. Wilcoxon rank-sum two-sided tests on gut strain sharing rates between monozygotic twins (MZ) as compared to dizygotic twins (DZ) by 10-year age categories. Table S20. Gut SGB household transmissibility and twin transmissibility (Chi2 tests, two-sided). Table S21. Spearman's tests on consistency of gut SGB household transmissibility across datasets (two-sided). Table S22. Post-hoc Dunn two-sided tests on gut strain sharing rates within household members, within villages, within populations, and interpopulations. Multiple testing-corrected P values (Benjamini–Hochberg procedure) are reported in the Padj column. Table S23. Wilcoxon rank-sum two-sided tests on gut strain sharing rates among non-cohabiting individuals in the same village as compared to among villages. Table S24. Gut SGB intrapopulation transmissibility (Chi2 tests, two-sided). Table S25. Spearman's tests on consistency of gut SGB intrapopulation transmissibility across datasets (two-sided). Table S26. Kruskal-Wallis tests and Post-hoc Dunn tests on oral strain- or species-level similarities (Bray-Curtis, Aitchison, and Jaccard) within households, in non-cohabiting individuals of the same population, and in individuals from different populations. Table S27. Post-hoc Dunn two-sided tests on mother- and father-offspring oral strain sharing rates across age categories. Multiple testing-corrected P values (Benjamini–Hochberg procedure) are reported in the Padj column. Table S28. Post-hoc Dunn two-sided tests on oral strain sharing rates among family relationships. Table S29. Post-hoc Dunn two-sided tests on oral mother- as compared to father-offspring strain sharing rates by age categories. Multiple testing-corrected P values (Benjamini–Hochberg procedure) are reported in the Padj column. Table S30. Oral SGB mother-infant, household, and intrapopulation transmissibility. Table S31. Oral SGB mother-infant transmissibility (Chi2 tests, two-sided). Table S32. Oral SGB household transmissibility (Chi2 tests, two-sided). Table S33. Spearman's one-sided tests on SGB transmissibility and their median relative abundance and prevalence in metagenomes. Table S34. SGB predicted phenotypical traits. Table S35. Reproducibility assessment of the SGB-specific strain identity thresholds in independent FMT datasets. ## SUPPLEMENTARY TUTORIAL A tutorial describing the procedure we followed to assess strain sharing is available at https://github.com/biobakery/MetaPhlAn/wiki/Strain-Sharing-Inference