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S1 Isolate selection and DNA extraction

Madagascar

The Institut Pasteur de Madagascar hosts the Madagascar Programme National
de Lutte Contre la Tuberculose (National Tuberculosis Program), which pro-
vides reference drug susceptibility testing (DST) for tuberculosis (TB) patients
suspected of facing infection relapse or treatment failure. Culture-confirmed
multi-drug resistant (MDR) isolates were included. All MDR isolates were
matched with culture-confirmed drug-susceptible isolates referred during the
same period and from the same region of the country. All available isolates
were included for patients undergoing TB treatment and for which a follow-up
culture was positive.

DNA from M. tuberculosis culture was extracted using the cetyltrimethy-
lammonium bromide (CTAB) method previously described by Van Embden et
al. with minor modification.1 Briefly, samples were inactivated by heating at
80◦C for 30 minutes. Next, 10mg/ml of lysozyme was added to the suspension
and incubated for at least one hour at 37◦C. After adding proteinase K 10mg/ml
and sodium dodecyl sulphate (SDS) 10%, the suspension was incubated for 10
minutes at 65◦C. A mixture of CTAB and 5M NaCl preheated to 65◦C was then
added. The suspension was mixed until a milky mixture was obtained and incu-
bated for 10 minutes at 65◦C. Next, chloroform isoamyl alcohol (24:1) mixture
was added, followed by centrifugation for 5 minutes at 10,000rpm and 4◦C. The
upper phase was recovered, and DNA was precipitated by adding isopropanol
to the solution. The mixture was frozen for at least one hour then centrifuged
at 10,000rpm and 4◦C, for 5 minutes. The supernatant was discarded, and the
pellet was washed with 70% ethanol and centrifuged at 10,000rpm and 4◦C, for
5 minutes. The DNA pellet was dried with speed-vac for 2 minutes and resus-
pended in 1X TE. DNA was quantified using the Qubit dsDNA HS Assay Kit
(Thermo Fisher Scientific, USA).

South Africa

ClinicalM. tuberculosis isolates routinely collected in theWestern Cape Province
of South Africa, processed by the National Health Laboratory Service (NHLS)
and diagnosed as rifampicin-resistant TB, are biobanked at the South African
Medical Research Council Centre for Tuberculosis Research (SAMRC-CTR)
housed at the Division of Molecular Biology and Human Genetics at Stellen-
bosch University, South Africa. A convenience data set of 82 clinical M. tu-
berculosis isolates for which Illumina WGS data was available were selected for
Nanopore sequencing.

Clinical M. tuberculosis isolates were cultured on supplemented 7H10 solid
media under BSL3 conditions. Phenol-chloroform DNA extraction was per-
formed on heat-inactivated cultured isolates as previously described.2
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England

Total DNA was extracted from heat-inactivated, saline-washed Mycobacteria
growth indicator tube (MGIT) cultures using two rounds of mechanical cell
disruption, followed by DNA purification with 1x volume Agencourt AMPure
XP beads, as described previously.3

S2 Extended sequencing methods

S2.1 Overview

Illumina sequencing was performed as per the manufacturer’s instruction on
either the MiSeq, HiSeq 2500, or NextSeq500 platforms. Nanopore sequencing
was performed using the Ligation Sequencing Kit 1D (SQK-LSK108 or SQK-
LSK109) and the Native Barcoding Kit 1D (EXP-NBD103 or EXP-NBD104)
according to the manufacturer’s instructions on either the MinION or GridION
platform with R9·4·1 flow cells. In addition, 35 Malagasy isolates, including
drug-resistant strains, were sequenced on the PacBio CCS platform.

S2.2 Illumina

Madagascar

Illumina sequencing was carried out on the HiSeq 2500 platform at the Well-
come Trust Centre for Human Genetics, Oxford, and paired-end libraries were
prepared according to the manufacturer’s instruction.

England

Illumina sequencing was performed on a MiSeq instrument at Public Health
England (Birmingham) by Grace Smith, Esther Robinson and their team. Sam-
ple preparation and sequencing methodology were as described previously.3

South Africa

Paired-end genomic libraries were prepared using the Illumina Nextera XT li-
brary or NEBNext Ultra TM II FS DNA Library Preparation Kits (Illumina
Inc, San Diego, CA, USA) according to the manufacturers’ instructions. Pooled
samples were sequenced on an Illumina HiSeq2500 or NextSeq500 instrument.

S2.3 Nanopore

Madagascar

Nanopore library preparation was carried out using the Oxford Nanopore Tech-
nology (ONT) Ligation Sequencing Kit 1D (SQK-LSK108) and the Native Bar-
coding Kit 1D (EXP-NBD103) according to the ONT standard protocols. One
microgram of DNA was used as input for each library. Multiplexed sequencing
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was performed by pooling 6-8 barcoded DNA samples. Prepared libraries were
loaded onto an R9·4 flow cell and sequenced on a MinION device with ONT
MinKNOW software.

England

Nanopore sequencing libraries were prepared using the 1D genomic kit (SQK-
LSK108) with native barcoding kit (EXP-NBD103), according to the manufac-
turer’s protocol. End-repaired, barcoded DNA (∼ 8kb peak fragment lengths)
from 3 to 7 samples were pooled into a single sequencing library and sequenced
on a flow cell version R9·4·1 on either MinION or GridION.

South Africa

Remnant stored DNA used for Illumina WGS from each isolate was retrieved
from storage and used for Nanopore library preparation. Per isolate, one mi-
crogram of undigested DNA was prepared for Nanopore sequencing using the
ligation sequencing kit (SQK-LSK109). In addition, the native barcoding expan-
sion kit (EXP-NBD104) was used for multiplexing. The protocols for sequencing
genomic DNA by ligation and native barcoding were carried out according to
the manufacturer’s instructions. Multiplexed sequencing libraries consisted of
6-12 barcoded DNA samples, and all libraries were sequenced using SpotON
R9·4·1 flow cells on a MinION device.

S2.4 PacBio

Thirty-five of the Malagasy samples were sequenced and processed at the Next
Generation Genomics Core within Cold Spring Harbor Laboratory. Samples
were quantified with a Qubit dsDNA HS Assay Kit and quality controlled
through a Pulsed Field Gel Electrophoresis system. Samples were then sheared
at 10kb using a Megaruptor device and size-selected to 8-10 kb with a Blue
pippin instrument - followed by 0·45X ampure bead purification. The PacBio li-
brary protocol SMRTbell Express Template Prep Kit 2·0 was used for each sam-
ple. Briefly, the first step was the removal of single-stranded overhangs followed
by DNA Damage Repair, End-Repair/A-tailing, Ligation of overhang barcoded
adaptors and sample pooling. A total of 3 pools were produced: LID50532 (16
samples), LID50533 (10 samples), and LID50534 (9 samples). After pooling,
0·5X ampure bead clean up was performed. A Sequel I instrument was used to
sequence the 3 library pools. Libraries were annealed for an hour and bounded
for an hour using sequel binding kit 3·0. Bound SMRTbell complexes were then
purified with ampure beads. The run was set up as 10kb length for 10 hours
movie time. The Sequel 1M V2 SMRT cells were used for each library.

The circular consensus was called via the SMRTlink graphical user interface
version 6·0·0·47841.
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S3 Sequencing data preparation and quality con-
trol

S3.1 Overview

Nanopore data were basecalled and de-multiplexed using the ONT software
program Guppy (version 5·0·16). As a quality control, we removed non-M.
tuberculosis sequencing reads by aligning all reads to a database of common
contaminants.4 Decontaminated data with mean read depth less than 20/30
(Illumina/Nanopore) were excluded from the study, as were isolates for which a
single lineage could not be determined (as a proxy for potential contamination
with a second strain). Figure S1 shows a summary of the number of isolates we
began and ended the quality control process with.

S3.2 Details

All Nanopore data were basecalled and de-multiplexed with ONT’s software
guppy (version 5·0·16) using the ”super high-accuracy model” (dna r9.4.1

450bps sup prom.cfg), disabling quality score filtering and with barcode trim-
ming when de-multiplexing. Sequencing reads were first decontaminated us-
ing reference genomes from a wide range of organisms, including viral, human,
Mycobacterial and nasopharyngeal-associated bacteria as described previously.4

Then, any reads that aligned to the M. tuberculosis reference genome (acces-
sion: NC 000962.3; H37Rv) were retained. For Illumina, read-pairs with only
one of the pair mapped to the reference were retained. All read mapping was
performed using minimap2 (v2·22)5 for Nanopore and bwa mem (v0·7·17)6 for
Illumina. Isolates with decontaminated depth less than 30x (Nanopore) or 20x
(Illumina) were removed from subsequent analyses. All remaining decontam-
inated fastq files were randomly subsampled to a depth of 150x (Nanopore)
and 60x (Illumina) using rasusa (v0·6·0).7 Any isolate with depth below this
maximum threshold was left unchanged. In the last step of quality control
(QC), lineages were assigned for each isolate. A panel of lineage-defining sin-
gle nucleotide polymorphisms (SNPs) was used in conjunction with an isolate’s
Illumina variant calls for the lineage assignment as previously reported.8 If a
lineage could not be determined for an isolate, or if there were multiple (ma-
jor) lineages identified (indicating mixture), the isolate was not included in the
analysis.
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Figure S1: Flowchart of the number of isolates we began (left) and ended (right) the quality
control process with. Those lost to quality control are shown in red boxes.

S4 Variant calling

S4.1 Illumina

Illumina variant calls were made using the COMPASS pipeline9(https://gi
thub.com/oxfordmmm/CompassCompact) used by the United Kingdom Health
Security Agency (UKHSA).10 Briefly, reads were mapped to H37Rv (accession:
NC 000962.3), and samtools mpileup (v0·1·19) was used to identify SNPs.11

SNPs were filtered based on the following criteria: i) must have at least five
high-quality (> 25) supporting bases, ii) must have at least one read in each
direction, iii) 75% of reads must be high-quality, iv) the genotype, under a
diploid model, must be homozygous, v) fraction of reads supporting the major
allele must be at least 90%. In addition, any SNPs falling within a predefined
masked region, defined by aligning H37Rv to itself and identifying repetitive
regions12, were excluded. The mask can be found at https://github.com/m
bhall88/head to head pipeline/blob/master/analysis/baseline varia

nts/resources/compass-mask.bed.

S4.2 Nanopore

Nanopore reads were aligned to H37Rv using minimap2 (v2·22), with options
to produce SAM output and no secondary alignments (-a --secondary=no).
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The subsequent SAM file was provided as input to the BCFtools (v1·13;13)
subcommand mpileup with the following options: ignore read-pair overlaps
(-x), do not perform insertion and deletion (indel) calling (-I), minimum base
quality of 13 (-Q 13), a homopolymer error coefficient of 100 (-h 100), and
a maximum read length of 10,000 for the BAQ algorithm (-M 10000). The
resulting pileup was then used to call SNPs with bcftools call using the
multi-allelic caller with a haploid model and an option to skip indel variants (-m
--ploidy 1 -V indels).

Only SNPs passing the following criteria were kept: i) a quality score of at
least 25, ii) each strand must have at least 1% of read depth, iii) read depth at
least 20% of the isolate median read depth, iv) a variant distance bias (VDB; a
measure of whether a variant’s position is randomly distributed within the reads
supporting it) of at least 0·00001, v) fraction of reads supporting the called allele
of 90% or more, vi) read depth of at least 5 at the position, vii) mapping quality
of at least 30. SNPs were also masked in the same manner as Illumina data
outlined above (Section S4.1).

The selection of these filters was based on finding a balance between preci-
sion/recall in Section S5.1 - where we only have seven isolates - and the distance
correlation with Illumina in Section S10.

The code for all of this can be found here: https://github.com/mbhall8
8/head to head pipeline/tree/master/analysis/baseline variants.

S4.3 Pairwise SNP distances

To determine the distance between isolates, we first generated isolate consensus
sequences for both Nanopore and Illumina sequencing modalities. This con-
sensus sequence is obtained by applying the SNP calls (Section S4) to the M.
tuberculosis reference genome H37Rv. We exclude any positions where i) the
position failed filtering, ii) the genotype is null, or iii) the position is within the
reference mask (Section S4.1). A pairwise distance matrix was calculated using
psdm (v0·1·0).14

S5 Consensus genomic sequence assembly

The eight PacBio isolates with read depth over 30x were assembled using Flye
(v2·8)15 with one polishing iteration and input type --pacbio-hifi. Assembly
contigs were removed if they were classified by Centrifuge16 as not being part
of the M. tuberculosis complex (MTBC; taxon ID: 77643). During this contig
decontamination process, one isolate was found to have chromosomes for three
different species, and the PacBio data was therefore discarded leaving us with
seven PacBio assemblies. We built a gold-standard reference sequence for each
isolate using the unpolished PacBio assembly along with a mask for low-quality
regions identified by aligning the isolates’ Illumina reads to the PacBio assembly
and flagging any position with either less than 10 reads mapping to it or less
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than 90% agreement. These assemblies are used as a “truth” sequence for the
respective isolates when assessing SNP precision and recall.

We selected PacBio CCS as the basis for these truth sequences as it has
been shown to provide superior assemblies to Nanopore.17 However, since there
remain known issues for indel errors in PacBio assemblies (albeit at a lower
rate than in nanopore) we remap Illumina data to the PacBio assemblies and
mask out positions where there is disagreement, combining information from
the highest quality assembly with the highest quality reads. The only possible
remaining errors are in repeat sequence (where Illumina read mapping might
fail) which are anyway excluded from our analysis by a fixed mask applied to
the genome (Section S4.1). We thereby get as close as we can to the “truth”.

S5.1 Evaluation of precision and recall using PacBio as-
semblies as truth

Evaluation of precision and recall was done with varifier (v0·3·1)18 to gen-
erate a list of true (expected) variants between the isolate’s assembly and the
M. tuberculosis reference sequence, and using the tool hap.py (v0·3·14)19 to
evaluate precision and recall.

S6 Extended clustering metrics definitions

S6.1 Outline

We treat Illumina as the established standard when comparing clustering. We
define the Illumina clustering as I and the Nanopore clustering as N . To quan-
tify the recall and precision of the Nanopore clustering, we compared the clus-
tering graphs I and N with three similarity metrics.

We define the sample-averaged cluster recall (SACR) by calculating, for each
clustered isolate, s, in I, the proportion of isolates in its Illumina cluster (Cs,I)
also present in its Nanopore cluster (Cs,N ), and then averaging this over all
isolates. We likewise define the sample-averaged cluster precision (SACP) as
the proportion of isolates in Cs,N also present in Cs,I averaged over all isolates.
SACR indicates whether isolates have been missed by Nanopore clustering (false
negatives), and SACP reflects additional isolates being clustered by Nanopore
(false positives).

One shortcoming of SACR and SACP is that they do not account for Nanopore
clusters composed solely of Illumina singletons. Therefore, we define the excess
clustering rate (XCR) as the proportion of Illumina singletons that are clus-
tered by Nanopore. A value of 0·1 would indicate that 10 percent of Illumina
singletons were part of a Nanopore cluster.

S6.2 Details

As outlined above, to assess how closely Nanopore SNP-based clustering approx-
imates Illumina SNP-based clustering, we adapt a similarity measure on sets;
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the Tversky Index.20 We define the Illumina clustering as I and the Nanopore
clustering as N . We are interested in being able to quantify the recall and pre-
cision of the Nanopore clustering with respect to Illumina. In this sense, recall
describes the proportion of clustered samples (isolates) in I clustered with the
expected (correct) samples in N . Likewise, precision in this context tells us
when extra samples are added to existing clusters by N or when clusters in I
are joined in N .

In order to be able to define precision and recall when comparing two clus-
tering graphs I and N , we define the Tversky Index

TI(n, I,N) =
|Cn,I ∩ Cn,N |

|Cn,I ∩ Cn,N |+ α|Cn,I − Cn,N |+ β|Cn,N − Cn,I |
(S1)

where Cn,I is the cluster in I that sample n is a member of. If Cn,I is a
singleton, n is skipped. When α = 1 and β = 0 in Equation S1, we get a metric
analogous to recall - as described above. Therefore, we define recall, R, for a
single sample n as

R(n, I,N) =
|Cn,I ∩ Cn,N |

|Cn,I ∩ Cn,N |+ |Cn,I − Cn,N |
=

|Cn,I ∩ Cn,N |
|Cn,I |

(S2)

When α = 0 and β = 1 in Equation S1, we get a metric analogous to
precision. As such, we define precision P , for a single sample n as

P (n, I,N) =
|Cn,I ∩ Cn,N |

|Cn,I ∩ Cn,N |+ |Cn,N − Cn,I |
=

|Cn,I ∩ Cn,N |
|Cn,N |

(S3)

With these definitions for a single sample, we can assess the recall and preci-
sion of the Nanopore clustering, N , with respect to the Illumina clustering, I, by
averaging each metric over all samples in I. This gives us the Sample-Averaged
Cluster Recall (SACR)

SACR =

∑VI

n R(n, I,N)

|VI |
(S4)

where VI is the set of all non-singleton samples (nodes) in I (Illumina graph).
Likewise, we define the Sample-Averaged Cluster Precision (SACP) as

SACP =

∑VI

n P (n, I,N)

|VI |
(S5)

SACR states, on average, what proportion of the samples clustered together
in I are also clustered together in N (Nanopore) - it is a measure of how many
true positives Nanopore retains. Inversely, SACP states, on average, what pro-
portion of the samples clustered together in N are also clustered together in I
- it is a measure of how many extra samples Nanopore adds to clusters.

However, SACR and SACP do not inherently account for when N has clus-
ters containing only samples deemed non-clustered (singleton) in I. In order
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to quantify any extra clustering by N , we establish the Excess Clustering Rate
(XCR) as the proportion of singletons (disconnected nodes) in I that are con-
nected in N . We define XCR as

XCR =
|SI − SN |

|SI |
(S6)

where SI and SN are the sets of singletons in the respective graphs.

In short, when trying to minimise the number of isolates missed from their
cluster (as in the present work), it is desirable to improve SACR; for reducing
over-clustering (false epidemiological links), focus on SACP; and when trying
to reduce false clusters, one should aim to optimise XCR.
We assess the cluster similarities using the Python programming language with
the networkx library.21 For a given threshold, we create the Illumina clustering
(graph), I, and the Nanopore clustering, N - from the relevant distance matrix
- and use these to calculate the SACR, SACP, and XCR using Equation S4,
Equation S5, and Equation S6, respectively.

S7 Illustrated example of clustering metrics

Section S6 outlines three metrics - SACR, SACP and XCR - for evaluating the
similarity between two different strategies for transmission clustering. In order
to provide the reader with greater intuition for the purpose of each metric, we
present an illustrated example in Figure S2.

We take Figure S2a to be the truth clusters and Figure S2b to be test
clusters. These are akin to Illumina (I) and Nanopore clusters (N), respectively,
in Section S6. The individual recall and precision values (defined in Equation S2
and Equation S3) for each sample in Figure S2a are shown in Table S1. SACR
and SACP (defined in Equation S4 and Equation S5) are sample-averaged, so
their values for this example are 0·82 and 0·83 respectively.

To highlight the objective of SACR, we use the truth and test clusters con-
taining the sample F . Samples F , G, H and I are shared between both, but
J is missing from the test cluster. To calculate the individual recall for F , we
take the intersection size of the truth and test clusters it exists in and divide it
by the size of the truth cluster - 4

5 = 0·8. We do the same for the precision of
sample D, except we divide by the size of the test cluster - giving 2

3 = 0·66.
The relevance of the XCR metric is best exemplified by the test cluster con-

taining samples L and M . As we calculate SACR and SACP for all samples
in the truth clusters, these two samples would be ignored. However, they are
samples that - according to the truth - should not be part of any cluster (sin-
gletons). Therefore, SACR and SACP cannot capture these extra clusterings if
they do not contain clustered truth samples. XCR covers this limitation and
is the proportion of singletons in the truth that are clustered in the test (see
Equation S6). As Figure S2 does not show singletons, let us pretend there are
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(a) Truth clusters (b) Test clusters

Figure S2: Illustrative examples of transmission clustering. a) represents truth clusters,
while b) is clustering from some “test” method we would like to compare to a. The nodes
represent samples with the numbers on the edges connecting them indicating the distance be-
tween those two samples. The red nodes indicate samples with a clustering disparity between
the two clusterings. Note, we do not show singletons (disconnected nodes) - e.g., J is missing
from (b).

20 singletons in the truth (including samples L and M). This would give an
XCR of 2

20 = 0·1.

sample recall precision

A 1·0 1·0
B 1·0 1·0
C 1·0 1·0
D 1·0 0·66
E 1·0 0·66
F 0·8 1·0
G 0·8 1·0
H 0·8 1·0
I 0·8 1·0
J 0·0 0·0

sample-averaged 0·82 0·83
Table S1: Cluster recall and precision results for each sample in Figure S2.
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S8 Drug susceptibility testing methods

S8.1 Madagascar

Culture on Löwenstein-Jensen (LJ) is still the gold-standard method for M. tu-
berculosis identification and the detection of resistance. The indirect proportion
method on LJ medium was performed to test the susceptibility of positive cul-
tures against anti-M. tuberculosis drugs. 4µgmL−1, 0 · 2 µgmL−1, 40µgmL−1,
2 µgmL−1, 30µgmL−1, 30µgmL−1, and 40µgmL−1 were the critical concen-
trations used for streptomycin, isoniazid, rifampicin, ethambutol, kanamycin,
amikacin and capreomycin, respectively. The growth on a drug-free medium
was compared with the growth on a medium containing an anti-M. tuberculosis
agent. An isolate was identified as resistant if at least 1% of growth is present
at the critical concentration of the drug in the culture medium.

S8.2 South Africa

Isoniazid, ofloxacin, amikacin, and ethambutol (two concentrations) pheno-
typic DST was performed on Middlebrook 7H with critical concentrations 0 ·
2 µgmL−1, 2 · 0µgmL−1, 4 · 0 µgmL−1, and 7 · 5 µgmL−1 and 10 · 0 µgmL−1,
respectively.

The phenotypes available for those isolates that passed quality control (Sec-
tion S3) are shown in Figure S3. As an example of how to interpret Figure S3,
the second “column” (from the left) reveals that 40 isolates have phenotype in-
formation for isoniazid, rifampicin, ethambutol, and streptomycin. Additionally,
the second “row” (from the top) shows that 52 isolates have a DST phenotype
for capreomycin.
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Figure S3: Culture-based drug susceptibility data available for isolates. Each row is a drug,
and the columns represent a set of isolates that have phenotype information for those drugs
with a filled cell. The top panel shows the number of isolates in the set for that combination of
drugs. The bar plot in the left panel shows the number of isolates with phenotype information
for each drug. Phenotypic drug susceptibility testing was performed by clinical laboratories
according to local testing algorithms which included complementary molecular testing and
reflex sequential testing of second-line drugs. This explains why not all antibiotics were tested
on all isolates.
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S9 Drug resistance predictions with Mykrobe

We used Mykrobe (v0·10·0)22 to obtain predictions of each isolates’ drug sus-
ceptibility profile for 11 drugs - using the predict subcommand. For both
technologies, we used a haploid model (--ploidy haploid) and a proportion
of expected depth of 20% (--min proportion expected depth 0.2). We set
the expected error rate to 0·001 (-e 0.001) for Illumina and 0·08 (-e 0.08) for
Nanopore. (We did not use the preset Nanopore settings (--ont).)

With Illumina data, Mykrobe can improve resistance predictions by detect-
ing minor (low frequency, within-isolate) alleles, although this is not standard
practice in the community. Including minor alleles resulted in elevated levels of
discordance between Nanopore and Illumina, as many insertions and deletions
were only (erroneously) detected with the Nanopore data. We therefore used a
haploid model for both sequencing modalities.

S9.1 Mutation concordance

We assessed the concordance of Mykrobe’s Nanopore and Illumina genotypes
for each of the 66,537 nucleotide-level mutations. In order to get genotypic
information on all mutations in Mykrobe’s catalogue, we ran Mykrobe with the
-A option and --format json to output the results in the JSON format. For a
given isolate, we compare the genotype of each mutation in both the Illumina
and Nanopore JSON file. If there are any filters present (e.g., low coverage) for
the mutation in either technology’s output, we skip the mutation; otherwise, we
consider the mutation concordant if the genotype is exactly the same between
the two technologies.

In total, we found four genotype discordances (Table S3). Three of these
discrepant mutations were katG 1bp deletions at consecutive positions within a
homopolymer in katG, all in the same isolate, effectively describing one deletion
event - thus only affecting a single phenotype call. The other discrepancy was
a katG 1bp deletion in a separate isolate.

We then look at how these genotype differences translate into different pre-
dictions, which can differ subtly when there are no-calls (Table S3). There were
five false positive (FP) resistance calls made by Mykrobe with Nanopore data,
with respect to the Illumina predictions. Three of the FPs (amikacin, capre-
omycin, and kanamycin) are caused by one mutation (rrs a1401g) in a single
isolate, which confers resistance to multiple drugs. There was also a discordant
streptomycin call, due to rrs a514c. In both of these rrs FPs, the mutation
was in fact detected by Illumina, but was filtered out due to low coverage (17
percent and 19 percent of expected coverage, respectively); the Nanopore data
had very good depth for both of these mutations. This was not counted in the
discordance count in the previous paragraph, as that counted variants where
Illumina/Nanopore made actively conflicting genotype calls, whereas here there
was no Illumina call (the call was filtered). There was also one isoniazid dis-
cordance, due to a frameshift deletion in katG (mentioned above) erroneously
called by Nanopore. When consulting the DST phenotype for these discrep-
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ancies, Nanopore had the correct predictions for the two rrs mutations, and
Illumina had the correct prediction for the katG deletion. See Table S3 for a
full description of the Mykrobe genotypic and phenotype prediction discrepan-
cies.

S9.2 Genotypic resistance prediction concordance

Table 1 in the main text shows the concordance of genotypic resistance predic-
tions for Illumina and Nanopore.

To measure the agreement of the Illumina and Nanopore genotypic predic-
tions, we calculated the Cohen’s kappa coefficient (κ).23 We aggregated pre-
dictions across all drugs for each sequencing technology into a 2x2 contingency
matrix and supplied this to the cohens kappa function in the python package
statsmodels24 to get κ =0·9915 (p <0·001), with a 95% confidence interval
0·9840-0·9989, indicating near perfect agreement (1·0 is the maximum value for
κ).

S10 Full dataset distance plot

Figure S4 shows the pairwise SNP distance relationship between Illumina and
Nanopore. A two-sided linear least-squares regression was used to test the
relationship between the pairwise SNP distance of both technologies with the
Python package scipy.25 The line of best fit (red, dashed line) was y = 0·997x+
15·982. The overall regression was statistically significant with a coefficient of
determination (R2) of 0·988 and p < 0·001.
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Figure S4: Pairwise SNP distance relationship between Illumina (COMPASS; x-axis) and
Nanopore (bcftools; y-axis). Each point represents the SNP distance between two isolates.
The black, dashed line shows the identity line (i.e. y = x), while the red, dashed line shows
the line of best fit to the data. R2 is the coefficient of determination.
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S11 Selecting Nanopore SNP distance thresh-
olds

In order to select the Nanopore SNP distances that provide the most similar
clustering to Illumina, we calculate the SACR, SACP, and XCR for a range of
values (2-16). For the two Illumina distance thresholds 5 and 12, we create the
Illumina clusters for the relevant distance threshold and compare those to the
Nanopore clustering for each of values between 2 and 16. We then select the
Nanopore threshold that provides the best balance of SACR, SAP, and XCR for
the relevant Illumina threshold. Figure S5 shows the results of these threshold
evaluations. Based on these, we select Nanopore distance thresholds 6 and 12
to correspond to Illumina thresholds 5 and 12, respectively.
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Figure S5: Illumina and Nanopore (bcftools) transmission cluster similarity for various
SNP distance threshold. Each subplot compares the Nanopore clustering for the threshold on
the x-axis to the Illumina clustering based on the distance (threshold) in the subplot title.
SACR (red), SACP (blue), and 1−XCR are represented by the solid, dashed, and dotted
lines, respectively. SACR=sample-averaged cluster recall; SACP=sample-averaged cluster
precision; XCR=excess clustering rate.
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S12 Mixed modality self-distance

The “self-distance” for each isolate is the distance between an isolate’s Illumina
and Nanopore data. As the sequencing data in this study originate from the
same source, we know the self-distance for any isolate should be 0. However, we
also know there are major technical differences between Illumina and Nanopore;
therefore, small variability in self-distance is likely. We plot the self-distances
in Figure S6 and see that 68% (102/151) of the isolates have a distance of 0
between their Illumina (COMPASS) and Nanopore (bcftools) data, with 90%
(136/151) less than 3 SNPs apart. All isolates have a self-distance of less than 5,
except one isolate (mada 1-33), which has a self-distance of 10. We investigated
the possibility of a sample mix-up being the cause of this discrepancy but could
not find any such convincing evidence.

22



Figure S6: Mixed modality “self-distance”. This plot shows the SNP distance (x-axis)
between each isolate’s COMPASS (Illumina) and bcftools (Nanopore) VCF calls. Note, the
y-axis is log-scaled.
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S13 Mixed sequencing modality distance plot

Figure S7 shows the pairwise SNP distance relationship between Illumina and
mixed Illumina/Nanopore data. A point on the y-axis (mixed) represents the
distance between an isolate’s Illumina consensus sequence, and the other iso-
late’s Nanopore consensus sequence.

A two-sided linear least-squares regression was used to test the relationship
between the pairwise SNP distance of mixed data with Illumina - using the
Python package scipy.25 The line of best fit (red, dashed line) was y = 0·995x+
14·830. The overall regression was statistically significant with a coefficient of
determination (R2) of 0·992 and p < 0·001.

The outliers in the inset window of Figure S7 are due to discrepant SNP calls
between some isolate’s Illumina and Nanopore data in the gene ppe54. There are
some gaps in the genome mask in this gene, and nearly all of the discrepancies
lie within one of these gaps.

In general, what is happening is one isolate’s Illumina calls good quality
SNPs (or reference alleles) in these regions, but the same isolate’s Nanopore has
filtered calls for low quality and/or low fraction of read support for those sites.
Then, the inverse happens in the other isolate - i.e., the Illumina generally has
no coverage in the gaps but the Nanopore has good quality calls. So, when
you do the same-technology distances (Figure 3 in the main text), these sites
are all ignored due to filtering on one of the sequencing modalities, but when
we assessing mixed-modality distance, these sites lead to larger-than-expected
distances.
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Figure S7: Pairwise SNP distance relationship between Illumina (COMPASS; x-axis) and
mixed COMPASS-bcftools calls (y-axis). Each point represents the SNP distance between
two isolates. The black, dashed line shows the identity line (i.e., y=x), while the red, dashed
line shows the line of best fit to the data. R2 is the coefficient of determination. The zoomed
inset shows all pairs where the COMPASS distance is ≤ 20. The red area and points indicate
pairs with a mixed distance ≥ 12, but an Illumina distance ≤ 12. These pairs are deemed false
negative (FN) connections. The red area with stripes indicates pairs that are FN connections
at an Illumina threshold of 5 (mixed threshold 6), but not when the threshold is expanded
to 12. These pairs are shown as square points. The grey area and points is the inverse - i.e.,
false positive (FP) connections. Note, the y-axis in the inset window is log-scaled.

25



S14 Effect of Nanopore read depth on resistance
predictions

An important consideration when using Nanopore sequencing data for DST
prediction is how much data is needed. The quantity of data required has
implications for how long the Nanopore sequencing device needs to be run or
how many samples can be multiplexed in a single run in order to yield sufficient
data for reliable predictions. A previous study by Votintseva et al. found that
deep coverage is required of Nanopore to predict drug resistance accurately.26

As our dataset contains a broad range of Nanopore read depths (29-150x),
we explore whether this requirement of high coverage still holds. As Figure S8
illustrates, there is no relationship between Nanopore read depth and erroneous
predictions. If low read depth leads to poor resistance prediction, we would
expect the proportions of FPs (red) and FNs (purple) in the low-depth bins to
be greater than in the high-depth bins - which is not the case.

Given these results, we found no clear evidence that depth as low as 30x leads to
an increased level of false phenotype predictions. To put this low-depth result
into perspective, we can do a “back of the envelope” calculation to determine
how long a Nanopore device needs to be operated to achieve 30x coverage the-
oretically. First, we use a conservative yield from Smith et al. of 11 gigabases
(total) per 24 hours with six samples multiplexed on a single flow cell.27 As-
suming equal depth from each sample, this equates to 76·4Mb/hour/sample -
dividing by the M. tuberculosis genome size (4·41Mb) gives an hourly coverage
yield of 17·3x per sample. Finally, we divide our desired yield, 30x, by this
per-sample hourly yield to get a required device runtime of 1 hour and 45 min-
utes. In contrast, to get 100x of data (the target coverage in [27]), the Nanopore
device would need to be run for 5 hours and 47 minutes. Thus, in theory, one
can save 4 hours of sequencing, use more samples per flow cell, decrease costs
as a result, and still obtain reliable drug resistance predictions.
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(a)

(b)

Figure S8: Effect of Nanopore read depth on Mykrobe DST prediction. Each point indicates
the proportion (left y-axis) of classifications of that type at the read depth on the x-axis. The
blue bars indicate the number of samples (right y-axis) contained in each bin. (a) read depth,
d, is binned such that 40 is all samples where 40 ≤ d ≤ 50. (b) read depth bin 40 is all
samples where d ≥ 40. FP=false positive (red); TP=true positive (blue); FN=false negative
(purple); TN=true negative (grey).

27



S15 Genotypic drug resistance prediction con-
cordance with phenotype
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Drug Technology FN(R) FP(S) FNR(95% CI) FPR(95% CI) PPV(95% CI) NPV(95% CI)

Isoniazid Illumina 9(51) 3(48) 17·6% (9·6-30·3%) 6·2% (2·1-16·8%) 93·3% (82·1-97·7%) 83·3% (71·3-91·0%)
Isoniazid Nanopore 9(51) 4(48) 17·6% (9·6-30·3%) 8·3% (3·3-19·6%) 91·3% (79·7-96·6%) 83·0% (70·8-90·8%)
Rifampicin Illumina 6(48) 1(44) 12·5% (5·9-24·7%) 2·3% (0·4-11·8%) 97·7% (87·9-99·6%) 87·8% (75·8-94·3%)
Rifampicin Nanopore 6(48) 1(44) 12·5% (5·9-24·7%) 2·3% (0·4-11·8%) 97·7% (87·9-99·6%) 87·8% (75·8-94·3%)
Ethambutol Illumina 4(14) 14(77) 28·6% (11·7-54·6%) 18·2% (11·2-28·2%) 41·7% (24·5-61·2%) 94·0% (85·6-97·7%)
Ethambutol Nanopore 4(14) 14(77) 28·6% (11·7-54·6%) 18·2% (11·2-28·2%) 41·7% (24·5-61·2%) 94·0% (85·6-97·7%)
Streptomycin Illumina 4(8) 11(83) 50·0% (21·5-78·5%) 13·3% (7·6-22·2%) 26·7% (10·9-52·0%) 94·7% (87·2-97·9%)
Streptomycin Nanopore 3(8) 11(83) 37·5% (13·7-69·4%) 13·3% (7·6-22·2%) 31·2% (14·2-55·6%) 96·0% (88·9-98·6%)
Amikacin Illumina 1(11) 2(78) 9·1% (1·6-37·7%) 2·6% (0·7-8·9%) 83·3% (55·2-95·3%) 98·7% (93·0-99·8%)
Amikacin Nanopore 0(11) 2(78) 0·0% (0·0-25·9%) 2·6% (0·7-8·9%) 84·6% (57·8-95·7%) 100·0% (95·2-100·0%)
Capreomycin Illumina 1(1) 1(51) 100·0% (20·7-100·0%) 2·0% (0·3-10·3%) 0·0% (0·0-79·3%) 98·0% (89·7-99·7%)
Capreomycin Nanopore 1(1) 1(51) 100·0% (20·7-100·0%) 2·0% (0·3-10·3%) 0·0% (0·0-79·3%) 98·0% (89·7-99·7%)
Kanamycin Illumina 0(0) 1(52) - 1·9% (0·3-10·1%) 0·0% (0·0-79·3%) 100·0% (93·0-100·0%)
Kanamycin Nanopore 0(0) 1(52) - 1·9% (0·3-10·1%) 0·0% (0·0-79·3%) 100·0% (93·0-100·0%)
Ofloxacin Illumina 0(10) 4(77) 0·0% (-0·0-27·8%) 5·2% (2·0-12·6%) 71·4% (45·4-88·3%) 100·0% (95·0-100·0%)
Ofloxacin Nanopore 0(10) 4(77) 0·0% (-0·0-27·8%) 5·2% (2·0-12·6%) 71·4% (45·4-88·3%) 100·0% (95·0-100·0%)

Table S2: Comparison of WGS-based drug resistance predictions with culture-based phe-
notypes. For this comparison, we use phenotypic DST as the reference standard and evaluate
Mykrobe Illumina and Nanopore resistance predictions accordingly. FN=false negative, mean-
ing Nanopore does not detect resistance where Illumina does; R=number of resistant isolates;
FP=false positive, meaning Nanopore detects resistance where Illumina finds susceptible;
S=number of (Illumina) susceptible isolates; FNR=false negative rate; FPR=false positive
rate; PPV=positive predictive value; NPV=negative predictive value; CI=Wilson score con-
fidence interval.

Isolate Mutation Genotype Genotype discordant Phenotype (predicted) Phenotype discordant

mada 135 katG gc1037c 0 / 1 YES S / R YES
mada 135 katG cc1038c 0 / 1 YES S / R YES
mada 135 katG cc1039c 0 / 1 YES S / R YES
mada 1-41 katG cc1038c 0 / 1 YES R* / R NO*

R26791 rrs a1401g F / 1 NO† S / R YES
mada 1-3 rrs a514c F / 1 NO† S / R YES

Table S3: Discordances between Mykrobe genotype calls, and Mykrobe predicted phe-
notype when comparing Illumina and Nanopore. In the genotype column the Illumina and
Nanopore genotype calls are shown separated by a forward-slash Illumina/Nanopore. F =
call was filtered out; 0 = reference allele; 1 = alternate allele. The ”Genotype discordant”
column shows whether this difference was considered a discordance in our calculation. The
”Phenotypes (predicted)” column shows the Mykrobe predictions for Illumina/Nanopore: S =
susceptible; R = resistant. The ”Phenotype discordant” column shows whether the predicted
phenotypes in the previous column are the same.
*The isolate had other mutations in katG that cause isoniazid resistance.
†We skip mutations where either technology’s call is filtered (see Section S9.1).
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