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1. Supplementary Materials. 

N,N-Dimethylformamide (DMF), ethanol (≥99.0%), polyvinylpyrrolidone (PVP), silver 

trifluoroacetate, acetonitrile, trifluoroacetic acid (TFA), 4,4′−Dipyridyl and triethanolamine (≥99.0%) 

were obtained from Sigma Company and used without further purification. Tetrakis 

(4-carboxyphenyl) porphyrin (TCPP) was purchased from TCI America. All of the water used in this 

work was ultrapure water. 

 

2. Instrumentation and Methods. 

Transmission Electron Microscopy (TEM) 

TEM and high-resolution TEM (HR-TEM) were carried out in a JEOL JEM-2100F at a voltage of 

200 kV. The TEM samples were prepared by dropping sample solutions onto lacey carbon-coated 

copper or nickel grids. Energy-dispersive X-ray spectrometry (EDS) analysis and selected area 

electron diffraction (SAED) were also conducted in the TEM system to probe the distribution of 

chemical elements or crystal diffraction in Ag-AgMOM. 

 

Atomic Force Microscopy (AFM) 

The topography images and the corresponding height measurements of Ag-AgMOM samples were 

obtained on MultiMode 8 AFM (Bruker) in a tapping mode. Ag-AgMOM samples were placed on 

the Highest Grade V1 AFM Mica Discs (12 mm, Ted Pella, Inc.). The flatness of the mica discs is 

smaller than 1 nm, and the hardness is 80-105 shore test. 

 

Ultraviolet-visible (UV-Vis) Absorption Spectroscopy 
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The UV-Vis absorption spectra of solution samples were taken on a Cary 5000 UV-Vis 

spectrophotometer (Varian) in the range from 300 to 700 nm at 25 ºC. A 1 cm quartz cuvette was 

used for the measurements.  

 

Diffuse Reflectance Spectra (DRS) 

DRS measurements of powder samples were performed in a UV-Visible-PIR spectrometer (Perkin 

Elmer, Lambda 750) with an integrating sphere. The bandgap (Eg) of Ag-AgMOM and TCPP 

samples was determined from DRS and the Tauc plots were derived from these measurements. 

 

Raman Spectra 

The Raman spectra of TCPP, PVP and Ag-AgMOM samples were acquired by a Raman microscope 

(Renishaw, inVia Reflex), including an optical microscope (x5, x20 and x50) coupled to a Raman 

spectrometer. The excitation laser wavelength was 532 nm. The optical microscope is used to enlarge 

and identify the sample areas, and the Raman spectrometer measures the vibrations under excitation. 

 

Fourier-transform Infrared Spectroscopy (FTIR)  

FTIR spectra of samples were recorded on a Thermo Scientific spectrometer to identify the structure 

of samples from 400 to 4000 cm-1. 

 

Neutron Activation Analysis (NAA) 

NAA was carried out using a SLOWPOKE nuclear reactor to detect the concentration of Ag element 

in Ag-AgMOM samples. 

 

Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) 
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ICP-OES measurements were conducted on an Agilent Technologies, 5100 spectrometer for the 

determination of Ag mass percentage in Ag-AgMOM and Ag-CuMOM samples. The method 

consists of ionizing the sample by injecting an argon plasma (temperature ca. 6000K). The standard 

Ag plasma solution (Specpure®) was purchased from Alfa Aesar. The Ag-AgMOM solution was 

prepared by acidic digestion of Ag-AgMOM in 5% of HNO3 water solution. A clear aqueous 

solution containing the dissolved sample was obtained at the end. The solution was then injected into 

the plasma in the form of a fine aerosol, generated by a pneumatic device (nebulizer).  

 

X-ray Photoelectron Spectroscopy (XPS) 

XPS measurements of samples were performed on a VG Escalab 220i-XL equipped with an 

Al-KαX-ray source. The obtained spectra were calibrated using the C 1s peak at the position of 284.6 

eV. Operando XPS was conducted by combining it with a 420 nm light-emitting diode (LED, 20W) 

during measurements. 

 

Powder X-ray Diffraction (PXRD) 

PXRD (PANalytical X’Pert MRD) equipped with a Cu Kα radiation source (λ = 0.15406 nm) was 

used to explore the crystal structures of samples. PXRD analysis was conducted using the Reflex 

module in Materials Studio 2019. Two-dimensional PXRD simulation was conducted using 

numerical integration of real space of a finite system reported by literature.1 All 3D simulated PXRD 

patterns are generated with the default setting (i.e., no broadenings/shifts, standard Cu source) in 

Materials Studio.  

 

Brunauer-Emmett-Teller (BET) measurements 

Nitrogen adsorption-desorption isotherm measurements were conducted on Micromeritics Instrument 

Corporation TriStar II 3020 3.02 TriStar II 3020 from 0 to 1 atm at 77 K. The 

Brunauer-Emmett-Teller (BET) method was utilized to calculate the specific surface areas. And 
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non-local density functional theory (NLDFT) model was used to determine the pore sizes and 

volumes. The pore size distribution of simulated AgMOM was performed using software of 

PoreBlazer (v4.0). 

 

 

3. Results and Discussion. 

 
Supplementary Fig. 1 (a,b) Enlarged TEM images of Ag-AgMOM; the lattice of AgMOM can be 

observed. (c,d) HR-TEM images and crystal lattice of a single AgNP on MOM. Inset in (d) is the fast 

Fourier transform image of the AgNP.  

 

 

Supplementary Fig. 2 (a) TEM image of Ag-AgMOM and (b,c) HR-TEM images of Ag-AgMOM 

highlighted in a). The clear lattice of the AgMOM can be observed around Ag NPs, suggesting an 

ordered structure of the AgMOM.  
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Supplementary Fig. 9 (a-c) Typical TEM images of Ag-AgMOM and (d) the size distribution 

histogram of AgNPs synthesized under the conditions of mAg+/mTCPP=1:1 and reaction time of 1 h. 

 

    

Supplementary Fig. 10 (a) Typical TEM image of Ag-AgMOM and (b) the size distribution 

histogram of AgNPs synthesized under the conditions of mAg+/mTCPP=1:1 and reaction time of 4 h. 
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Supplementary Fig. 11 (a) Typical TEM images, (b) SAED of Ag-AgMOM, and (c) the size 

distribution histogram of AgNPs synthesized under the conditions of mAg+/mTCPP=1:1 and reaction 

time of 20 h. 

 

 

Supplementary Fig. 12 (a) Typical TEM image of Ag-AgMOM and (b) the size distribution 

histogram of AgNPs synthesized under the conditions of mAg+/mTCPP=1:1 and reaction time of 36 h. 
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Supplementary Fig. 13 (a,b) Typical TEM images of Ag-AgMOM and (c) the size distribution 

histogram of AgNPs synthesized under the conditions of mAg+/mTCPP=2:1 and reaction time of 28 h. 

      

Supplementary Fig. 14 (a) Typical TEM image of Ag-AgMOM and (b) the size distribution 

histogram of AgNPs synthesized under the conditions of mAg+/mTCPP=1:4 and reaction time of 28 h. 
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Supplementary Fig. 15 (a) Typical TEM image of Ag-AgMOM and (b) the size distribution 

histogram of AgNPs synthesized under the conditions of mAg+/mTCPP=1:2 and reaction time of 4 h. 

 

Supplementary Fig. 16 The statistically measured average size of AgNPs on Ag-porphyrin MOM 

synthesized under different reaction time and feeding ratios, without using any regulating agent. 

 

Supplementary Fig. 17 (a-c) Typical TEM images of Ag-AgMOM and (d) the size distribution of 

AgNPs under mAg+/mTCPP=1:1, reaction time of 28 h with 100 μL TFA as a regulating agent. 
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Supplementary Fig. 18 (a-c) Typical TEM images of Ag-AgMOM and (d) the size distribution 

histogram of AgNPs synthesized under the conditions of mAg+/mTCPP=1:1, reaction time of 28 h and 

with the introduction of 200 μL TFA. 

 

Supplementary Fig. 19 EDS spectrum of Ag-AgMOM synthesized under the conditions of 

mAg+/mTCPP=1:1, reaction time of 28 h and with the addition of 200 μL TFA (Cu comes from the 

TEM grid). 
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Supplementary Fig. 20 The statistically average size of AgNPs on MOM synthesized under 

different feeding ratios of mAg+ to mTCPP and amounts of TFA at the same reaction time of 28 h. 

 

Supplementary Fig. 21 (a,b) Typical TEM images of Ag nanocubes, which was synthesized under 

the same condition as that of Ag-AgMOM (28 h), except for the absence of TCPP ligands. 

 

Supplementary Fig. 22 (a,b) Typical TEM images of Ag-CuMOM synthesized under the conditions 

of mCu2+/mAg+/mTCPP=1:1:1 and reaction time of 28 h. Circles 1 and 2 in (a) denote the areas from 

which EDS was taken, as shown below in Supplementary Fig.23. 
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Supplementary Fig. 37 (a-e) More models optimized and considered for AgMOM. None of them 

have simulated PXRD patterns matching with the experimental PXRD pattern. While the simulation 

results of our model may also present a little mismatch with experimental data, same as most 

simulated PXRD2,3, it is self-consistent and provides an overarching explanation to the observed 

phenomena. 
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Supplementary Fig. 38 Experimental PXRD (the top one) and simulated PXRD patterns of the 

other models shown in Supplementary Fig. 37, under the assumption of AA-stacking with c-distance 

indicated in the legend. 
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Supplementary Fig. 39 Experimental PXRD (the top one) and simulated 2D PXRD patterns of the 

other models shown in Supplementary Fig. 37. 
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Supplementary Fig. 49 EDS spectrum of AgNPs (Ni comes from the TEM grid). 

 

 

 

 

 

 

 

Supplementary Fig. 50 TEM image of Ag-CuMOM. 

 

 

 

 

  

 

 

Supplementary Fig. 51 EDS spectrum of Ag-CuMOM. 
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Supplementary Fig. 57 (a) HAADF-STEM image of Ag-AgMOM. (b,c) Plasmon mapping of 

Ag-AgMOM in two different energy ranges. (d) HAADF-STEM image of AgNP. (e,f) Plasmon 

mapping of AgNP in two different energy ranges. Here, pure AgNP and AgNP on AgMOM have a 

similar size of ca. 40 nm, larger than that shown in Supplementary Fig. 51. 

 

Supplementary Fig. 58 (a) HAADF-STEM image of a representative small AgNP (6 nm) and (b) 

corresponding low-loss EELS spectrum after background subtraction. 

 

Supplementary Fig. 59. (a) Femtosecond transient absorption spectra at selected time delays of the 

Ag-AgMOM (28h) sample, taken with a pump wavelength of 400 nm. (b) Femtosecond transient 
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scattering data in the range of 389
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Supplementary Fig. 65 Top and side view of the Ag3-MOM model.  

 

Supplementary Table 1 CBM and VBM positions of CuMOM and Ag-AgMOM. 

 Band gap CBM (vs. NHE) VBM (vs. NHE) 

CuMOM 1.87 eV -0.46 eV 1.43 eV 

Ag-AgMOM 1.59 eV -1.01 eV 0.58 eV 

 

Supplementary Table 2 Metal-organic material (including MOFs) - based photocatalytic hydrogen 

generation. 

Photocatalyst H2 generation 

rate (μmol g-1 

h-1) 

Sacrificial 

reagent 

Solvent Reference No. 

Pt@MIL-125/Au 1743.0 

(380-800 nm) 

TEOA 18 mL CH3CN 

+ 0.3 mL water 

4 

NH2 -UiO-66/Pt 2230 (370-800 

nm) 

No mention H2O/methanol 

3:1 

5 

Pt@UiO-66- 

NH2 

257.38 TEOA 18 mL CH3CN 

+ 0.2 mL H2O 

6 

Co2@MIL-125-NH2 553 TEA 27.6 mL CH3CN 7 



S33 

 

+ 1 mL H2O 

UCNPs-Pt@MOM/Au 280 TEOA 18 mL CH3CN 

+ 0.2 mL H2O 

8 

Al-TCPP-0.1Pt 129 TEOA 18 mL CH3CN 

+ 

1 mL H2O 

9 

Pt/PCN-777 586 benzylamine 5 mL DMF+50 

L H2O 

10 

HNTM-Ir/Pt 201.9 TEOA 45 mL CH3CN 

+1 mL H2O 

11 

CdS@ZAVCl-MOM 420 ethanol 9.25 mL H2O 12 

Ni4P2@MOM 4400( 400 

nm) 

methanol H2O (pH 1.2) 13 

{[CuⅠ CuⅡ 2 

-(DCTP)2 ] MOM 

32 methanol 90 mL H2O 14 

Al-TCPP(Zn )/Pt 200 MeOH H2O 15 

Fe2 (µ-dcbdt)( CO)6 

/Ru (bpy)3 

280 No mention 1 M acetate 

buffer (pH 5) 

16 

Ni2P@UiO-66-NH2 409.1 TEA 20 mL CH3CN 

+ 0.2 mL 

deionized water 

17 

Mo3S13
2–/MIL-125-NH2 2094 (≥420 nm) TEA CH3CN:H2O 

(79.0:4.9 v/v) 

18 

Ni2P/MIL-125-NH2 1230 (≥420 nm) TEA 0.8 mL H2O + 

13.4 mL CH3CN 

19 

Pt1/SnO2/UiO-66-NH2 2167 (>380 nm) TEA 4.5 mL CH3CN + 

100 μL H2O 

20 

Al/Zn-PMOF 200 EDTA methyl viologen 21 
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solution 

Ag-AgMOM 1025 ( 420 

nm) 

TEOA H2O This work 

 

Ag-AgMOM 3153 ( 360 

nm) 

TEOA H2O This work 

 

Supplementary Table 3 Ag 3d
3/2 

and 3d
5/2

XPS peak positions and peak area ratio of Ag0-to-Ag ion 

in Ag-AgMOM (1h) and Ag-AgMOM (20h), which were obtained at the reaction time of 1h and 20h, 

respectively.  

 Ag0 3d
3/2 

(eV) 

Ag0 3d
5/2 

(eV) 

Ag ion 

3d
3/2 (eV) 

Ag ion 3d
5/2 

(eV) 

Ag0/Ag 

ion 

Ag-AgMOM (1h) 374.2 368.2 373.8 367.8 27/73 

Ag-AgMOM (20h) 374.2 368.2 373.6 367.6 68/32 

 

Supplementary Table 4 Extended X-ray absorption fine structure (EXAFS) fitting results. 

 
NO 

(4)* 

RO (Å) 

(1.997 Å)* 

NAg 

(12)* 

Rag (Å) 

(2.851 Å)* 
2 (Å2) E 

Ag-AgMOM 0.8 ± 0.2 2.13 ± 0.02 4.1 ± 0.4 2.857 ± 0.007 0.01 ± 0.001 -1.2 ± 0.8 

Fitted value for S0
2 = 0.85. * reference numbers expected for AgO and Ag0. (NO: the coordination 

number of O; RO: the distance of O and adjacent atoms; NAg: the coordination number of Ag; Rag: 

the distance of O and adjacent atoms; Debye-Waller factor (σ2) and photoelectron energy origin (E)). 
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