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Supplementary Table 1

LFC > 1, s-value < 0.05

DDN | DDU | DND | DNN | DNU | DUN | NDN [ NDU | NND | NNN | NNU | NUD | NUN [ UDN [ UND | UNN [ UNU [ UUD | UUN
Down- |35 |0 0 0 0 0 93 |0 0 0 0 0 0 0 0 0 0 0 0
urev
Down_rev | 0 22 |0 0 0 0 0 55 |0 0 0 0 0 0 0 0 0 0 0
Up itrev | 0 0 0 0 0 0 0 0 0 0 0 0 64 |0 0 0 0 0 20
Up rev |0 0 0 0 0 0 0 0 0 0 0 58 |0 0 0 0 0 50 |0
No Effect |20 |18 |1 258 |50 |1 257 173 | 625 [13371]667 |102 | 110 |1 239 637 |5 143 |58
LFC > 1, s-value < 0.15, LFC batch < 0.05
DDN | DDU | DND | DNN | DNU [ DUN | NDN | NDU | NND | NNN | NNU | NUD | NUN | UDN [ UND | UNN [ UNU | UUD | UUN
Down- |51 |0 0 0 0 0 312 |0 0 0 0 0 0 2 0 0 0 0 0
urev
Down_rev | 0 68 |0 0 0 0 0 241 |0 0 0 0 0 0 0 0 0 0 0
Up itrev | 0 0 0 0 0 1 0 0 0 0 0 0 146 |0 0 0 0 0 82
Up rev |0 0 0 0 0 0 0 0 0 0 0 152 |0 0 0 0 0 225 |0
No Effect | 0 0 1 258 |50 |0 0 0 625 | 13371]667 |0 0 0 239 637 |5 0 0




Supplementary Table 1: Number of genes affected by age, by engraftment, and by the
niche, at different thresholds.

The column headers from left to right represent the effect of engraftment, the effect of age and
the effect of the niche. N represents no significant effect, U represents upregulation, D represents
downregulation. For example, DDN represents downregulated in engraftment, downregulated in
age and no significant change in the niche while UDN represents upregulated in engraftment,
downregulated in age and no significant change in the niche.



Supplementary Table 2

Groups of genes of interest

Downregulated Upregulated
All
roups All irreversible | reversible All irreversible | reversible
group downregulated upregulated
0.098 0.6845 0.7207 0.5773 0.0172 0.4102 0.0091
Gain | 1.2585 0.9071 0.8552 0.9774 1.6256 1.1466 1.9387
Genes 44 17 9 8 27 8 19
associated
to DMRs 02262  0.8703 0.6363 | 0.9305 0.0243 0.1903 | 0.0445
Loss | 1.1495 0.7651 0.9277 0.5728 1.5711 1.4214 1.6471
42 15 10 5 27 10 17

p-value
odds ratio
# of overlapping genes



Supplementary Table 2: Overlap between DMRs with genes upregulated and
downregulated with age

Number of DMRs overlapping with genes that are downregulated and upregulated in aging and
reversible and irreversible by the niche.



Supplementary Table 3

DESeq2 diff. peaks padj < 0.1 and LFC threshold 0.5

Groups of genes of interest

Al Downregulated Upregulated
Al . . . Al . . .
groups downregulated irreversible | reversible upregulated irreversible reversible
0.002215|  0.9567 0.8402 0.9305 | 547E-12 | 405E-07 | 2.63E-06
Upregilated ) 1243 0.8508 0.8856 0.8173 22598 23613 2.1263
Genes P 274 140 78 62 134 65 69
associated
to ATAC-
seq peaks 6.01E-08 | 437E-10 | 0.000136291 | 4.38E-07 | 0.402806702 | 0.732651158 | 0.20238199
Downgzgk‘;'ated 1.476 1.7093 1.5437 1.8637 1.0395 0.902 1.1695
P 319 234 120 114 85 36 49

p-value
odds ratio
# of overlapping genes



Supplementary Table 3: Overlap between ATAC-Seq peaks with genes upregulated and
downregulated with age

Number of ATAC-seq peaks overlapping with genes that are downregulated and upregulated in
aging and reversible and irreversible by the niche.



SSC-A

SSC-W

Young

Hoechst

SSC-A

1a° o CDas- CD11b. cpas
2 w7

CD11b-PerCP-Cy5.5

" CD45-BV785

ITGA7-AF647

satelte colls
44

CD11b-PerCP-Cy5.5

Scal-FITC

MuSCs

" F4/80-APC-Cy7

FAPs

(op

Supplementary Figure 1

Aged

FSC-W

s

Live Cells
152

SSC-A

10° 4 cas- co1-
o3t a7
636

CD11 b-!’erCl?—CyS.S

" ¢p45-BV785

ITGA7-AF647

sataltscolls

Maciophages.
27

CD11b-PerCP-Cy5.5

Macrophages

“ F4/80-APC-Cy7

Scal-FITC

Percent purity (%) <

@
g

N
[}
|§

MuSC M® FAP

—h

Expression (logcounts)

(@]

MuSCs

Macrophages

FAPs

ltga7*/VCAM cells 1
® ltga7*/VCAM: cells 2

Expression (logcounts)

-5

umApP 1 °

Itga7
ltga7*/VCAM- cells 1 )

{ FAPs i
| |
Macrophages
i |
Aged Young
Vcam1

Itga7*/VCAM:- cells 1

ltga7"VCAM: cells 2

FAPs
4
| Macrophages
|
i |
Aged Young

UMAP2

1
=N




Supplementary Fig. 1: Fluorescence Activated Cell Sorting (FACS) strategy for the
simultaneous isolation of pure populations of MuSCs, Fibro-Adipogenic Progenitor (FAPs)
cells and muscle-resident macrophages

a-b, Complete FACS sorting strategy for the simultaneous isolation of MuSCs (ITGA7*, CD31",
SCA1-, CD45°, CD11b-)!, macrophages (F4/80*, CD45*, CD11b*, CD31°)?, and FAPs (SCA1",
ITGA7-, CD45, CD11b", CD31)? from young (a) and aged (b) mice.

¢, Immunofluorescent staining of freshly sorted MuSCs, macrophages and FAPs with selected
representative markers (PAX7, PDGFRA, F4/80, respectively) of each population. (Scale bar =
25um)

d, Quantification of the percentage of pure freshly isolated cells based on immunofluorescence
of PAX7 in MuSCs (n=1 isolation, n=15 fields of view, n=440 cells counted), PDGFRA in FAPs
(n=2 isolations, n=7 fields of view, n=820 cells counted) and F4/80 in macrophages (n=2
isolations, n=19 fields of view, n=656 cells counted). Data are presented as mean values +/- SD.
e, UMAP plot of young and aged MuSC, FAP and macrophage scRNA-seq samples before
filtering out two ITGA7"/VCAMI- cell populations.

f-g, Violin plots showing the expression of Itga7 (f) and Vcaml (g) in young and aged MuSC,
FAP and macrophage scRNA-seq samples before filtering out two ITGA7*/VCAMI" cell
populations.

h, Gene expression plots in the UMAP embedding for muscle-specific genes (Pax7, Myf5,
Myodl, Myog, Itga7, Vcaml), and quiescence markers (Notch3, Notchl, Calcr, Chrdl2) in young
and aged MuSCs.
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Supplementary Fig. 2: Comparison of MuSC scRNA-Seq data with the Tabula Muris

Dataset
Correlation plot showing the concordance between our scRNA-Seq MuSC data and the Tabula

Muris* MuSC datasets by FACS and droplet methods. Comparison with Tabula Muris
macrophages was also included as a negative control.
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Supplementary Figure 3
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Supplementary Fig. 3: Genes involved in processes such as cytokine signaling and
extracellular matrix composition are perturbed in aged MuSCs and niche cells

a, Heat map of matrisome genes in young and aged FAPs (color scale denotes beta-coefficients.
b, Heat map of matrisome genes > in young and aged macrophages, FAPs, and MuSCs. (Color
scale represents beta-coefficients)

¢, Volcano plot of moderated LFC and s-value of the contract between FAP2 and FAP1 clusters.
Positive values show genes upregulated in FAP2 subpopulation.

d, Gene set enrichment analysis of positive markers of FAP1 and FAP2 subpopulations using
Hallmark gene sets .
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Supplementary figure 4: Aged MuSCs show deregulated cell cycle both at the gene
expression and protein level

a, Immunofluorescence of isolated EDL myofibers from 4-week-old and 26-month-old mice for
CCNDI and Pax7 at Oh and 48h post isolation.

b, Quantification of high, low, and negative CCND1 expression in Pax7+ MuSCs from young
and aged EDL myofibers at Ohr showing heterogeneity in protein expression in young MuSCs
(n=3 mice per group, n=42 fibers from young mice, n=39 fibers from aged mice, 2-tailed t-test).
Data are presented as mean values +/- SD. p=1.438¢% for high CCNDI expression, p=1.078¢"
906 for low CCNDI1 expression, p=1.421¢!7 for negative expression.

¢, Quantification of high, low, and negative CCND1 expression in Pax7+ MuSCs from young
and aged EDL myofibers after 48h in culture (n=3 mice per group, n=42 fibers from young mice,
n=45 fibers from aged mice, 2-tailed t-test). Data are presented as mean values +/- SD. p=7.065¢
13 for high CCNDI1 expression, p=1.687¢!! for low CCNDI1 expression, p=2.778¢%7 for
negative expression.

d, Cendl gene expression in the SCRNA-Seq UMAP embedding of young and aged MuSCs.

e, Immunofluorescence of isolated EDL myofibers from 4-week-old and 20-month-old mice,
cultured for 48 hours and stained for P21 (1:500, Abcam # ab188224) and Pax7.

f, Quantification of high and low P21 expression in Pax7+ MuSCs from young and aged EDL
myofibers. (n=3 mice per group, n=53 fibers from young mice, n=62 fibers from aged mice, 2-
tailed t-test). Data are presented as mean values +/- SD. p=0.0003775 for low p21 expression,
p=0.0003701 for high p21 expression.

g, Cdknla gene expression in the ScRNA-Seq UMAP embedding of young and aged MuSCs.
(n=3 mice per group).

15



Supplementary Figure 5
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Supplementary Fig. 5: Aged MuSCs display an altered expression profile of stress response

genes
a, Heat map showing the LFC relative to the average expression of stress-response genes 7 in

young compared to aged MuSCs.
b, Gene expression plots in the UMAP embedding for select stress-response genes that are

differentially expressed between young and aged MuSCs.
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Supplemental Figure 6
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Supplementary Fig. 6: Differential analysis of cell-cell interactions

Results for differential analysis of cell-cell interactions (CCI) using the scDiffCom package.
Labels are based on aged samples relative to young samples.

a, Plot of the log-transformed CCI scores for aged and young samples for all detected
interactions. Interactions with absolute log-fold changes greater than 2 are labelled.

b, Over-representation network demonstrating which Emitters (E), Receivers (R), and Emitter-
Receiver pairs are over-represented in a specific condition.
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Supplemental Figure 7

Biological Replicate # of MuSCs # of MuSCs Percentage (%)
Transplanted Reisolated Reisolated
Young 1 20,000 75 0.375
Young 2 20,000 20 0.10
Young 3 15,000 150 1.00
Young 4 20,000 73 0.365
Young 5 20,000 104 0.520
Aged 1 20,000 44 0.220
Aged 2 20,000 66 0.330
Aged 3 10,000 101 1.01
Aged 4 20,000 33 0.165
Aged 5 20,000 35 0.175
1.5
5 p=0.6846
(]
w 1.0- ° °
2
k9] -
m —
3
w
>S5
= (.54 hd
o
= i I
1 o0
°
0.0 , —
Young Aged




Supplementary Fig. 7: Age effect on donor MuSCs transplantation

a, Table of number and percentage of engrafted donor cells from young and aged in five
biological replicates.

b, Quantification of the percentage of reisolated MuSCs post-transplantation (# of MuSCs
isolated 21 days post-transplantation / # of MuSCs initially transplanted) (n=5 young and aged
mice, two-tailed t-test) showing no statistically significant age effect of donor cells on
engraftment efficiency. Data are presented as mean values +/- SD.
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Supplementary Figure 8
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Supplementary Fig. 8: Engrafted MuSCs are quiescent 21 days post-engraftment

a, Quantification of the number of K167+ and KI67- donor MuSCs per TA cross-section in
transplanted host mice (related to Figure 4E) (n=82 donor cells from n=3 mice). Data are
presented as mean values +/- SD. p=1.418¢e°!2,

b, Gene expression levels (RPM) of ki67, Pax7 and Myog in young and aged MuSCs before and
after transplantation into young hosts (n=3 mice per group). Data are presented as mean values
+/- SD.
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Cells FACS sorted SMART-Seq template

Supplementary Figure 9
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Supplementary Fig. 9: SMART-seq technology allows the generation of RNA-sequencing
libraries from rare cell types

a, Schematic diagram of library preparation method using SMART-seq® and Nextera XT°.
Briefly, MuSCs are sorted using FACS directly into SMART-seq reaction buffer, followed by
template switching reverse transcription and PCR. After Ampure XP size selection ata 1:1 (v:v)
ratio, cDNA is quantified and 0.15ng is used for Nextera XT tagmentation. After PCR addition
of Illumina sequencing adapters, libraries are once again purified using Ampure XP ata 1:0.9
(v:v) ratio and sequenced.

b, Number of PCR cycles used with SMART-seq depending on the number of cells sorted by
FACS.

¢, Representative photo of Ampure XP size selection at a 0.9x ratio on a DNA ladder, visualized
on an agarose gel, demonstrating its utility at removing primer dimers of <200bp. (size selection
was performed once on a DNA ladder and later validated on n=21 samples by bioanalyzer as
shown in d).

d, Example of bioanalyzer profiles of SMART-seq libraries created from 50-1000 cells (size
selection was performed independently on n=21 total samples).

e, Table of sequencing read information for SMART-seq libraries generated from different
numbers of cells.

f, Heat map of the top 6000 expressed genes in young and aged MuSC samples, at To and at T,
showing consistency within replicates.

g, Scatter plot of the LFCs of the effect of age from bulk RNA-seq and from scRNA-seq
showing high concordance of differentially expressed genes from both modalities. Coloring is
based on the size of the LFC effect of the allogeneic niche in bulk RNA-seq. Grey area
represents the 95% confidence interval for the mean.
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Downregulated in aging
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Supplementary Fig. 10: MuSCs are affected by age, engraftment, and the heterochronic
niche after transplantation into a young host

a, Heat map of the LFC due to engraftment, age, and the niche (left) and z-scores of irreversible
age-altered genes that are not affected by engraftment (control).

b, Heat map of the LFC due to engraftment, age, and the niche (left) and z-scores of irreversible
age-altered genes that are affected by engraftment (control).

¢, Heat map of the LFC due to engraftment, age, and the niche (left) and z-scores of reversible
age-altered genes that are not affected by engraftment (control).

d, Heat map of the LFC due to engraftment, age, and the niche (left) and z-scores of reversible
age-altered genes that are affected by engraftment (control).
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Supplementary Figure 11
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Supplementary Fig. 11: A number of genes in aged MuSCs can be restored to a youthful
condition after transplantation into a young niche

a-b, Representative IGV tracks of selected age-upregulated (a) or downregulated (b) genes
(Sparc, Coldal, Mmp2, Eya2, Gasl, Prdx2, Tshr) that are reversible to a youthful state by
exposure to the young niche in aged MuSCs.

¢, Representative IGV tracks of select control and housekeeping genes (Pax7, Gapdh, Actb,
Rps2) in young and aged MuSCs from SMART-seq analysis at To and Tz1.
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Supplementary Figure 12
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Supplementary Fig. 12: A portion of markers of MuSC Cluster 3 are partially restored in
aged MuSCs after engraftment into a young niche

a, UMAP (left) and bar plots representing the absolute expression (right) of Stmn1.

b, UMAP (left) and bar plots representing the absolute expression (right) of Acta?.

¢, UMAP (left) and bar plots representing the absolute expression (right) of Marcks/1.

d, UMAP (left) and bar plots representing the absolute expression (right) of Cks2.

e, UMAP (left) and bar plots representing the absolute expression (right) of Lgals|.

(batch 1: n=2-3 mice per group, batch 2: n=3 mice per group). Data are presented as mean values
+/- SD.
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Supplementary Figure 13
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Supplementary Fig. 13: Analysis of chromatin state by ATAC-seq from young and aged
MuSCs

a, Pileup of ATAC-seq reads around the TSS of protein-coding genes in young and aged MuSCs.
b, Aggregation plots (Averageograms) showing the position of peaks around the TSS for protein-
coding genes in young and aged MuSCs.

¢, Pileup of ATAC-seq reads around the TSS of all genes in young and aged MuSCs.

d, Aggregation plots (Averageograms) showing the position of peaks around the TSS for all
genes in young and aged MuSCs.

e, Pie charts showing proportions of ATAC-seq peaks throughout the genome in young and aged
MuSC samples (n=2 biological replicates per group).

f, Heat map showing the level of similarity between young and aged MuSC ATAC-seq samples
(n=2).
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Supplementary Fig. 14: Chromatin is a driver of the age-related changes in MuSCs.

a-c, Representative IGV tracks showing examples of chromosomal regions of equal DNA
methylation (a), increased methylation (b), and decreased methylation (c), in aged compared to
young MuSCs.

d-f, Representative IGV tracks of ATAC-seq reads for select example genes in young and aged
MuSCs showing equal chromatin accessibility (d), increased accessibility (e), and decreased
accessibility (f), in aging. Yellow boxes indicate peaks close to the TSS of each gene.
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BINDetect Volcano Plot

Supplementary Figure 15
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Supplementary Fig. 15: Transcription Factor foot printing between young and aged MuSCs

reveals differentially accessible TF binding sites.
Volcano plot showing transcription factor foot printing using TOBIAS!? of differentially

accessible sites between young an aged MuSCs.
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