Supplemental Material

Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata

Eeva Sliz, Jaakko Tyrmi, Nilufer Rahmioglu, Krina T. Zondervan, Christian M. Becker, FinnGen, Outi Uimari*, Johannes Kettunen*

Content

Figure S1. Regional plot of the novel UL association on chr1 near EX01.	1
Figure S2. Regional plot of the novel UL association on chr1 near ZBTB18	2
Figure S3. Regional plot of the novel UL association on chr2 near MYOSLID	3
Figure S4. Regional plot of the novel UL association on chr3 near IGF2BP2.	4
Figure S5. Regional plot of the novel UL association on chr4 near METAP1 (EIF4E, ADH5).	5
Figure S6. Regional plot of the novel UL association on chr5 near HSPA4.	6
Figure S7. Regional plot of the novel UL association on chr6 near SESN1	7
Figure S8. Regional plot of the novel UL association on chr7 near NT5C3A.	8
Figure S9. Regional plot of the novel UL association on chr7 near CPED1 (WNT16)	9
Figure S10. Regional plot of the novel UL association on chr7 near LINC-PINT.	
Figure S11. Regional plot of the novel UL association on chr10 near SKIDA1 (DNAJC1).	
Figure S12. Regional plot of the novel UL association on chr10 near <i>RNLS</i>	
Figure S13. Regional plot of the novel UL association on chr11 near ENSG00000285769	
Figure S14. Regional plot of the novel UL association on chr20 near CTCFL/RBM38	
Figure S15, Regional plot of the novel UL association on chr21 near RUNX1	
Figure S16. Regional plot of the novel UL association on chr22 near MYH9.	
Figure S17, Regional plot of the novel UL association on chr10 near KCNMA1 [META-2]	
Figure \$18, Regional plot of the novel UL association on chr12 near <i>NUP107</i> [META-2].	
Figure \$19. Regional plot of the association signal at 10024.32 spanning to a 6MB region [META-2].	
Figure S20. Quantile-quantile plots of the P-values.	
Figure S21 Forest plot of the effect estimates of the association lead variants in the novel loci	19
Figure S22 MYOCD expression in tissues	20
Figure 523 The association of rs13039273-C with <i>RBM38</i> expression	21
Figure S24. Results of MAGMA tissue expression analysis.	
Figure \$25. MR scatter plots: UL as outcome other traits as exposure.	
Figure \$26. MR scatter plots: UL as exposure, other traits as outcome.	30
Figure \$27 Funnel plots of MR causal estimates vs their precision	31
Figure 528 Leave-one-out: exposure basal metabolic rate outcome III.	32
Figure 529 Leave-one-out: exposure body mass index (BMI) outcome III.	33
Figure \$30 Leave-one-out: exposure distrike blood pressure outcome III.	34
Figure S31: Leave-one-out: exposure HDL cholesterol, outcome III.	35
Figure S3: Leave-one-out: exposure impedance of whole body outcome III.	36
Figure S3: Leave-one-out: exposure waist circumference outcome III.	37
Figure S34: Leave-one-out: exposure whole body fat-free mass outcome ULL	38
Figure 53: Leave-one-out: exposure whole body water mass outcome III.	39
Table S1 Genome-wide similirant (n Sy10-8) or in MFTA-1	40
Table S2 Genome-wide significant ($n < 5x10^{-8}$) loci in MFTA-2	41
Table S3. Fine-mapping results of MFTA-1	43
Table S4. Fine-mapping results of MFTA-2	44
Table S5. Fine-mapping results of the secondary signals	45
Table S6 Regulation of the association lead variants pear MYOCD	46
Table S7. RegulateD2 annotation of the association lead variants near MYOS/JD	47
Table S8 (hIP-see data of rs10804157	48
Table S9. Regulated of 1950 of the association lead variants pear CDKN14	50
Table S10 Results of MAGMA enrichment analysis	51
Table S11. Genetic correlations of III, with 20 metabolic and anthronometric traits	
Table S12. Results of the hi-directional two-sample Mendelian randomization	53
Table S13. Results of multivariable MR	57
Table S14. Results of outlier-corrected MR-PRESSO	58
Table S15. Results of MRMix	59
References	

Figure S1. Regional plot of the novel UL association on chr1 near EXO1.

The plot on the top shows the result in META-1, and the plot on the bottom shows the result in META-2.

Figure S2. Regional plot of the novel UL association on chr1 near *ZBTB18.* The plot on the top shows the result in META-1, and the plot on the bottom shows the result in META-2.

Figure S3. Regional plot of the novel UL association on chr2 near MYOSLID.

The plot on the top shows the result in META-1, and the plot in the middle shows the result in META-2. *MYOSLID* location was unavailable for LocusZoom: it locates on chr2: 207,239,811-207,245,887 which is ~78kb downstream from *KLF7*, as indicated in the image extracted from UCSC Genome Browser (bottom).

Figure S4. Regional plot of the novel UL association on chr3 near *IGF2BP2***.** The plot on the top shows the result in META-1, and the plot on the bottom shows the result in META-2.

Figure S5. Regional plot of the novel UL association on chr4 near *METAP1 (EIF4E, ADH5).* The plot on the top shows the result in META-1, and the plot on the bottom shows the result in META-2.

Figure S7. Regional plot of the novel UL association on chr6 near SESN1.

The plot on the top shows the result in META-1, and the plot on the bottom shows the result in META-2.

Figure S8. Regional plot of the novel UL association on chr7 near *NT5C3A***.** The plot on the top shows the result in META-1, and the plot on the bottom shows the result in META-2.

Figure S9. Regional plot of the novel UL association on chr7 near *CPED1 (WNT16)*. The plot on the top shows the result in META-1, and the plot on the bottom shows the result in META-2.

Figure S10. Regional plot of the novel UL association on chr7 near *LINC-PINT*. The plot on the top shows the result in META-1, and the plot on the bottom shows the result in META-2.

Figure S11. Regional plot of the novel UL association on chr10 near *SKIDA1 (DNAJC1).* The plot on the top shows the result in META-1, and the plot on the bottom shows the result in META-2.

Figure S12. Regional plot of the novel UL association on chr10 near *RNLS***.** The plot on the top shows the result in META-1, and the plot on the bottom shows the result in META-2.

Figure S13. Regional plot of the novel UL association on chr11 near ENSG00000285769.

The plot on the top shows the result in META-1, and the plot in the middle shows the result in META-2. ENSG00000285769 location was unavailable for LocusZoom: it locates on chr11:112,637,324-112,761,375 which is ~200kb upstream from *NCAM1*, as indicated in the image extracted from UCSC Genome Browser (bottom).

Figure S14. Regional plot of the novel UL association on chr20 near *CTCFL/RBM38.* The plot on the top shows the result in META-1, and the plot on the bottom shows the result in META-2.

Figure S15. Regional plot of the novel UL association on chr21 near *RUNX1*.

The plot on the top shows the result in META-1, and the plot on the bottom shows the result in META-2.

Figure S16. Regional plot of the novel UL association on chr22 near *MYH9.* The plot on the top shows the result in META-1, and the plot on the bottom shows the result in META-2.

Figure S17. Regional plot of the novel UL association on chr10 near KCNMA1 [META-2].

Figure S18. Regional plot of the novel UL association on chr12 near NUP107 [META-2].

Figure S19. Regional plot of the association signal at 10q24.32 spanning to a 6MB region [META-2].

We conducted two sets of meta-analyses with data from FinnGen and a previous UL GWAS¹. META-1 was limited to the top 10,000 variants from the previous study resulting in an atypical distribution of p-values compared with standard genome-wide analyses (left). META-2 was conducted genome-widely (right). Genomic inflation factor obtained using LDSC software² and genome-wide results from META-2 was 1.105 suggesting minor inflation in the test statistics that was mostly accounted by a polygenic signal with the intercept being close to one (1.0066)².

Figure S21. Forest plot of the effect estimates of the association lead variants in the novel loci.

The effect estimates and p-values are extracted from the original genetic association results (FinnGen, Gallagher top 10,000 [Gallagher], Gallagher genome-wide [Gallagher-gw]) and the corresponding meta-analyses. The horizontal lines represent the 95% confidence intervals of the effect estimates.

FinnGen, n=123,579; Gallagher, n=302,979; Gallagher genome-wide (gw), n=244,324; META (with Gallagher, i.e. META-1), n=426,558; META (with Gallagher-gw, i.e. META-2), n=367,903.

Gene expression for MYOCD (ENSG00000141052.17)

Figure S22. MYOCD expression in tissues.

The data was extracted from the GTEx Portal³ on 02/10/2021. Expression values are shown in Transcripts Per Million (TPM); box plots are shown as median and 25^{th} and 75^{th} percentiles; points are displayed as outliers if they are above or below 1.5 times the interquartile range.

Artery – Aorta, n=432; Colon – Sigmoid, n=373; Artery – Tibial, n=663; Esophagus – Muscularis, n=515; Artery – Coronary, n=240; Esophagus – Gastroesophageal Junction, n=375; Uterus, n=142; Cervix – Ectocervix, n=9; Fallopian Tube, n=9; Bladder, n=21; Cervix – Endocervix, n=10; Colon – Transverse, n=406; Prostate, n=245; Ovary, n=180; Heart – Atrial Appendage, n=429; Vagina, n=156; Heart – Left Ventricle, n=423; Lung, n=578; Stomach, n=359; Adipose – Subcutaneous, n=663; Testis, n=361; Small Intestine – Terminal Ileum, n=187; Esophagus – Mucosa, n=555; Nerve – Tibial, n=619; Skin – Sun Exposed (lower leg), n=701; Adipose – Visceral (Omentum), n=541; Breast – Mammary Tissue, n=459; Thyroid, n=653; Skin – Not Sun Exposed (Suprapubic), n=604; Kidney – Medulla, n=4; Spleen, n=241; Muscle – Skeletal, n=803; Adrenal Gland, n=258; Pituitary, n=283; Minor Salivary Gland, n=162; Kidney – Cortex, n=85; Brain – Substantia nigra, n=139; Brain – Hypothalamus, n=202; Brain – Spinal cord (cervical c-1), n=159; Brain – Cortex, n=255; Brain – Caudate (basal ganglia), n=246; Brain – Putamen (basal ganglia), n=205; Brain – Amygdala, n=152; Brain – Cerebellum, n=241; Pancreas, n=328; Cells – Cultured fibroblasts, n=504; Brain – Hippocampus, n=197; Brain – Frontal Cortex (BA9), n=209; Liver, n=226; Brain – Cerebellum, n=241; Pancreas, n=328; Cells – Cultured fibroblasts, n=504; Brain – Cerebellar Hemisphere, n=215; Cells – EBV-transformed lymphocytes, n=174; Whole Blood, n=755.

Tissue	Sample	NES	n-value	m-value		Sing	le-tissu	Je eQTL					Sir Marcus M	ngle-tissue	eQTL p-valu	e		
Kidaau Castau	72	0.194	0.1	0.00		NES	(with s	3-70 CI)			1		versus m	anti-tissue	Postenor Pro	Juantity		- C
Attant Carrows	75	0.104	2.7- 2	0.00				_	_									
Artery - Coronary	215	0.101	0.01	0.00					_									
Addeenal Cland	222	0.101	0.01	0.00				1.5										0
Report - Mammany Ticque	205	0.0751	0.2	0.00							15							
Brain - Antonios cinculate cortex (BA24)	147	0.0730	0.03	0.00					_		15							
Brain - Anterior cingulate cortex (BA24)	197	0.0750	0.1	0.00														
Brain - Spinar cord (cervical C-1) Spinar	227	0.0600	0.4	0.00					_									
Adiante - Minternal (Omentum)	460	0.0000	0.5	0.00				1.										
Adipose - Visceral (Omentum)	469	0.0595	0.1	0.00														
Brain - Hypothalamus	110	0.0519	0.5	0.00				_	_									
Brain - Substantia nigra	706	0.0423	0.5	0.00														
Nexus Tibial	700	0.03/6	0.09	0.00														
Pasia Historean	165	0.0304	0.5	0.00														
Arteny - Tibial	105	0.0304	0.0	0.00														
Artery - Tiblai	584	0.0277	0.3	0.00														
Miner Coliner: Clead	208	0.0239	0.6	0.00														
Minor Salivary Gland	144	0.0231	0.8	0.00900														
Adipose - Subcutaneous	581	0.0228	0.5	0.00														
Whole Blood	206	0.0227	0.2	0.00							10 -							
Preart - Lert ventricle	380	0.0203	0.6	0.00														
Brain - Cortex	205	0.0151	0.7	0.00				-										
- resus	322	0.0120	0.0	0.00														
Stomach	324	0.00944	0.8	0.00				1										
Brain - Cerebellum	209	0.00199	1	0.00300														
Brain - Caudate (Dasai ganglia)	194	0.00020	21	0.00														
Glia Net Cortex (BA9)	1/5	0.00018	21	0.00				- C										
Skin - Not Sun Exposed (Suprapubic)	51/	-0.00388	50.9	0.00														
Skin - Sun Exposed (Lower leg)	170	-0.0108	0.7	0.00														
Brain - Putamen (basal ganglia)	170	-0.0131	0.7	0.00														0
Vagina	141	-0.0153	0.8	0.00														_
Pituitary	23/	-0.0259	0.6	0.00														
Colon - Sigmoid	318	-0.0261	0.3	0.00														
Colon - Transverse	368	-0.0334	0.1	0.00400														
Cells - Cultured fibroblasts	483	-0.0405	0.2	0.00700							5 -							0
Brain - Amygdala	129	-0.0451	0.5	0.0120				_										
Small Intestine - Terminal Teum	1/4	-0.0463	0.2	0.0260														
Esophagus - Mucosa	497	-0.0490	0.1	0.0250														
Prostate	221	-0.0507	0.2	0.0240			1	1										
 Brain - Nucleus accumpens (basal gangi 	12402	-0.0598	0.1	0.0390							(
Constanting	515	-0.0600	0.05	0.0470								0					0	
 Esophagus - Muscularis 	465	-0.0660	6.98-4	0.0830							0						•	
Costsesses Linetics	5/4	-0.06/8	0.02	0.0350			- 3				I							
 Esophagus - Gastroesophageal Junction 	330	-0.0776	1.5e-3	0.0960							-							
Brain - Cerebellar Hemisphere	175	-0.0873	0.1	0.0450				Π.			C							
Cells - EBV-transformed lymphocytes	147	-0.132	0.2	0.258							A							
 Heart - Atriai Appendage 	3/2	-0.165	3.1e-7	1.00							C C C		0					
- Uvary	167	-0.226	8.7e-6	1.00							8							
Dependence	129	-0.242	2.28-3	0.908	_		-				ob							
Pancreas	305	-0.586	∠.8e-16	1.00		_		1										_
					-0.6	-0.4	-0.2	-0.0	0.2	0.4	0.0		0.2	0.4	0.6	0.8		1.0
							NES					n-valı	e (Poste	arior Prol	ability fro	m METAS	DET)	
												- vait	e (Post	FIOI FIOI	ability 110	IL PIE I MOC	,	

Figure S23. The association of rs13039273-C with RBM38 expression.

'Samples' indicate the number of RNA-seq samples with genotype. Normalized effect size (NES) is the slope of the linear regression of the normalized data versus the three genotype categories using single-tissue expression quantitative trait (eQTL) analysis, representing eQTL effect size; the error bars represent the corresponding 95% confidence intervals. 'P-value' originates from a t-test that compares observed NES from single-tissue eQTL analysis to a null NES of 0 ($p=1.38\times10^{-19}$ for the meta-analyzed effects). 'M-value' indicates the posterior probability that an eQTL effect exists in each tissue tested in the cross-tissue meta-analysis. NES are given for the C allele that was the effect allele in the present study. The eQTL screening was considered exploratory and no multiple testing correction was applied.

Figure S24. Results of MAGMA tissue expression analysis.

MAGMA⁴ tissue expression analysis tests for a positive relationship between tissue-specific gene expression profiles and disease-gene associations. Tissue-specific gene expression data were from GTEx v8³. The analysis was conducted using FUMA⁵.

(Figure S25. Figure legend on page 26.)

MR Test

(Figure S25. Figure legend on page 26.)

(Figure S25. Figure legend on page 26.)

Figure S25. MR scatter plots: UL as outcome, other traits as exposure.

Genetic instruments for UL were extracted from the GWAS results obtained from FinnGen (n=123,579), and for other traits from the GWAS database provided by the MRC IEU as integrated in the TwoSampleMR R library (sample sizes are given below). LD pruning was completed using European population reference, threshold of r2=0.001, and clumping window of 10 kb. The error bars represent the 95% confidence intervals of the SNP effects.

Apolipoprotein A-I (ieu-b-107), n=393,193; Apolipoprotein B (ieu-b-108), n=439,214; Basal metabolic rate (ukb-b-16446), n=454,874; Body fat percentage (ukb-b-8909), n=454,633; Body mass index (BMI) (ukb-b-19953), n=461,460; C-reactive protein (bbj-a-14), n=75,391; Diastolic blood pressure (ieu-b-39), n=757,601; Fasting blood glucose adjusted for BMI (ebi-a-GCST007858), n=33,231, HDL cholesterol (ieu-b-1099, n=403,943; Hip circumference (ukb-b-15590), n=462,117; Impedance of whole body (ukb-b-19921), n=454,840; LDL cholesterol (ieu-b-110), n=440,546, Systolic blood pressure (ieu-b-38), n=757,601; Total cholesterol (ieu-a-301), n=187,365; Triglycerides (ieu-b-111), n=441,016; Waist circumference (ukb-b-9405), n=462,166; Waist-to-hip ratio (ieu-a-72), n=224,459; Whole body fat mass (ukb-b-19393), n=454,137; Whole body fat-free mass (ukb-b-13354), n=454,850, Whole body water mass (ukb-b-14540), n=454,888.

(Figure S26. Figure legend on page 30.)

(Figure S26. Figure legend on page 30.)

(Figure S26. Figure legend on page 30.)

Figure S26. MR scatter plots: UL as exposure, other traits as outcome.

Genetic instruments for UL were extracted from the GWAS results obtained from FinnGen (n=123,579), and for other traits from the GWAS database provided by the MRC IEU as integrated in the TwoSampleMR R library (sample sizes are given below). LD pruning was completed using European population reference, threshold of r2=0.001, and clumping window of 10 kb. The error bars represent the 95% confidence intervals of the SNP effects.

Apolipoprotein A-I (ieu-b-107), n=393,193; Apolipoprotein B (ieu-b-108), n=439,214; Basal metabolic rate (ukb-b-16446), n=454,874; Body fat percentage (ukb-b-8909), n=454,633; Body mass index (BMI) (ukb-b-19953), n=461,460; C-reactive protein (bbj-a-14), n=75,391; Diastolic blood pressure (ieu-b-39), n=757,601; Fasting blood glucose adjusted for BMI (ebi-a-GCST007858), n=33,231, HDL cholesterol (ieu-b-1099, n=403,943; Hip circumference (ukb-b-15590), n=462,117; Impedance of whole body (ukb-b-19921), n=454,840; LDL cholesterol (ieu-b-110), n=440,546, Systolic blood pressure (ieu-b-38), n=757,601; Total cholesterol (ieu-a-301), n=187,365; Triglycerides (ieu-b-111), n=441,016; Waist circumference (ukb-b-9405), n=462,166; Waist-to-hip ratio (ieu-a-72), n=224,459; Whole body fat mass (ukb-b-19393), n=454,137; Whole body fat-free mass (ukb-b-13354), n=454,850, Whole body water mass (ukb-b-14540), n=454,888.

Figure S27. Funnel plots of MR causal estimates vs. their precision.

Each data point corresponds to an individual genetic variant. The x-axis corresponds to the coefficient of the variant's UL association divided by the coefficient of the variant's exposure association, *i.e.*, Wald ratio. Genetic instruments for UL were extracted from the GWAS results obtained from FinnGen, and for other traits from the GWAS database provided by the MRC IEU as integrated in the TwoSampleMR R library. LD pruning was completed using European population reference, threshold of $r^2=0.001$, and clumping window of 10 kb.

Figure S28. Leave-one-out: exposure basal metabolic rate, outcome UL.

Figure S29. Leave-one-out: exposure body mass index (BMI), outcome UL.

Figure S30. Leave-one-out: exposure diastolic blood pressure, outcome UL.

Figure S31: Leave-one-out: exposure HDL cholesterol, outcome UL.

Figure S32: Leave-one-out: exposure impedance of whole body, outcome UL.

Figure S33: Leave-one-out: exposure waist circumference, outcome UL.

Figure S34: Leave-one-out: exposure whole body fat-free mass, outcome UL.

Figure S35: Leave-one-out: exposure whole body water mass, outcome UL.

Table S1. Genome-wide significant ($p < 5x10^{-8}$) loci in META-1.

The table reports distinct loci (more than 1Mb apart) containing at least one variant associated with uterine leiomyomata (UL) at $p < 5x10^{-8}$, *i.e.*, the standard threshold for genome-wide significance. META-1 was conducted in 53,534 UL cases and 373,024 female controls from FinnGen and a previous UL meta-analysis¹ using fixed-effect inverse variance-weighted method implemented in METAL. Due to data usage policies, META-1 was limited to the top 10,000 variants from the previous study.

Chr:Pos (hg38)	Nearest gene	Candidate gene	rsID	EA	NEA	EAF	OR (95% CI)	P-value	HetPVal
1:22141722	WNT4	WNT4	rs3820282	Т	С	0.154	1.15 (1.13-1.17)	2.60E-49	0.016
1:172162145	DNM3	DNM3	rs61807787	T	Ċ	0.290	1.04 (1.03-1.06)	3.89E-08	0.729
1:241860596	EXO1	EXO1.FH	rs4149909	G	Ā	0.033	1.13 (1.08-1.18)	1.16E-08	0.265
1:244151650	ZBTB18.Clorf100	ZBTB18	rs2183478	G	А	0.182	1.07 (1.05-1.09)	1.75E-11	0.774
1:248897507	PGBD2	ZNF692	rs4335411	Ā	G	0.760	1.06 (1.04-1.08)	4.12E-10	0.376
2:11540277	GREB1	GREB1	rs35417544	Т	Ē	0.735	1.08(1.07-1.10)	3.94E-24	0.716
2:28106534	BABAM2	BABAM2	rs74576866	G	Ā	0.080	1.09 (1.06-1.11)	7.74E-11	0.780
2:66863235	MEIS1	MEIS1	rs17631680	č	Т	0.100	0.93 (0.91-0.95)	1.93E-10	0.127
2:99454113	REV1	REV1	rs13392042	Ğ	Ā	0.577	1.05 (1.03-1.06)	4.21E-11	0.217
2:207258660	MYOSLID.KLF7	MYOSLID	rs10804157	Ē	Т	0.443	1.04 (1.03-1.05)	1.04E-08	0.143
2:241720139	ING5	ING5	rs34766121	T	Ċ	0.237	1.06 (1.04-1.08)	5.02E-10	0.278
3:4674530	ITPR1	ITPR1	rs3804984	Ċ	Ť	0.384	0.95 (0.93-0.96)	8.06E-15	0.021
3:24213259	THRB	THRB	rs1010961	А	Т	0.447	1.04 (1.03-1.06)	1.64E-10	0.109
3:27488262	SLC4A7	NEK10	rs35701251	A	T	0.243	1.05 (1.03-1.06)	1.59E-08	0.909
3:169768720	ACTRT3,TERC	TERC	rs35446936	А	G	0.252	0.94 (0.92-0.95)	1.01E-16	0.033
3:185807411	IGF2BP2	IGF2BP2	rs13060777	G	А	0.264	1.05 (1.04-1.07)	1.14E-11	0.595
4:53684007	LNX1	LNX1	rs62323682	С	Т	0.064	1.16 (1.13-1.19)	5.67E-25	0.498
4:69735020	SULT1B1	SULT1E1	rs12640488	G	А	0.475	1.07 (1.05-1.08)	6.21E-21	0.511
4:94572095	PDLIM5	BMPR1B	rs2452597	G	А	0.306	1.05 (1.03-1.06)	9.42E-11	0.781
4:99031559	METAP1,ADH5	ADH5	rs1037475	G	А	0.566	1.04 (1.03-1.05)	8.38E-09	0.707
5:1279913	TERT	TERT	rs2242652	А	G	0.205	1.12 (1.11-1.14)	5.86E-41	0.005
5:133099880	HSPA4	HSPA4	rs4367292	Т	С	0.266	0.96 (0.94-0.97)	2.49E-08	0.882
5:177023836	ZNF346	UIMC1,FGFR4	rs2456181	G	С	0.494	1.05 (1.04-1.07)	4.20E-12	0.059
6:34240996	HMGA1	HMGA1	rs41269026	Α	С	0.041	1.11 (1.07-1.15)	4.02E-09	0.998
6:36653670	CDKN1A	CDKN1A	rs10456443	А	G	0.203	0.95 (0.93-0.96)	2.67E-10	0.039
6:109054915	SESN1	SESN1	rs11153158	С	Т	0.126	0.93 (0.92-0.95)	1.05E-10	0.243
6:152241136	SYNE1	ESR1	rs58415480	G	С	0.178	1.22 (1.19-1.24)	1.86E-104	0.002
7:33008785	FKBP9,NT5C3A	BBS9	rs4723230	Т	С	0.797	1.05 (1.03-1.07)	4.68E-08	0.946
7:117273513	WNT2	WNT2	rs2270206	А	С	0.153	1.06 (1.04-1.08)	1.24E-09	0.525
7:121132432	CPED1,WNT16	WNT16	rs12706314	А	G	0.531	1.04 (1.03-1.06)	2.69E-10	0.777
7:130935964	LINC-PINT	LINC-PINT	rs35908158	С	Т	0.077	1.08 (1.05-1.10)	1.60E-08	0.883
8:30452819	RBPMS	RBPMS	rs13275869	С	Т	0.486	0.96 (0.95-0.97)	8.64E-09	0.520
8:128506035	LINC00824	LINC00824	rs1516980	С	А	0.248	0.96 (0.94-0.97)	2.72E-08	0.987
9:680714	KANK1,ANKRD15	KANK1	rs10815466	Α	G	0.168	1.10 (1.08-1.12)	9.51E-24	0.060
9:89639982	GADD45G,SEMA4D	GADD45G	rs28508285	G	А	0.091	1.07 (1.04-1.09)	1.49E-08	0.362
10:21517903	SKIDA1	DNAJC1	rs946711	С	А	0.331	1.05 (1.03-1.06)	2.96E-10	0.460
10:31678920	ZEB1,ARHGAP12	ZEB1	rs72784785	С	Т	0.225	0.93 (0.92-0.95)	2.35E-16	0.598
10:88331783	RNLS	RNLS	rs1426619	Т	С	0.445	1.04 (1.03-1.06)	4.92E-09	0.653
10:103918139	STN1	SH3PXD2A	rs4387287	С	А	0.842	0.91 (0.89-0.92)	5.61E-25	0.235
11:197557	ODF3,BET1L	PKP3	rs7103852	G	А	0.923	1.13 (1.10-1.16)	5.10E-21	0.575
11:30204981	FSHB	FSHB	rs11031006	А	G	0.150	0.91 (0.89-0.93)	1.62E-22	0.708
11:32342641	WT1	WT1	rs2057178	А	G	0.131	1.14 (1.12-1.17)	7.32E-41	3.23E-05
11:35062086	PDHX	CD44	rs2553773	G	С	0.561	1.07 (1.06-1.09)	1.19E-23	0.074
11:108444879	Cl1orf65	ATM	rs149934734	Т	С	0.021	1.36 (1.29-1.42)	4.74E-36	0.018
11:112703765	LOC105369496	LOC105369496	rs10891420	С	Т	0.421	1.05 (1.03-1.06)	1.38E-10	0.019
12:46402739	SLC38A2	SLC38A2	rs2131371	С	A	0.685	1.08 (1.06-1.09)	1.03E-23	0.462
12:70756878	PTPRR	PTPRR	rs11178393	C	Т	0.102	0.92 (0.90-0.95)	7.46E-12	0.402
12:123379073	KMT5A,PITPNM2	KMT5A	rs28583837	A	G	0.207	0.95 (0.93-0.96)	9.67E-10	0.379
13:40149807	FOXOI	FOXOI	rs117245733	A	G	0.021	1.42 (1.35-1.49)	1.78E-41	0.000
15:67922458	SKORI, PIASI	PIASI	rs12148374	C	Т	0.442	0.96 (0.95-0.97)	1.37E-09	0.832
16:50059327	HEATR3	BRD7	rs12599260	A	G	0.728	1.05 (1.04-1.07)	1.09E-11	0.002
16:5144/685	AC007344.1	AC00/344.1	rs66998222	A	G	0.193	0.94 (0.93-0.96)	7.53E-12	0.345
17:/668434	<i>1P53</i>	<i>TP53</i>	rs/83/8222	G	1	0.014	1.81 (1./1-1.92)	3.88E-86	1.50E-13
1/:12052500	MIUCD TNE257	MIOCD	rs12601765		G	0.299	1.04 (1.03-1.06)	3.08E-08	0.400
19:22032639	ZNF23/	ZNF23/	rs8105767	G	A	0.298	1.05 (1.03-1.06)	2.63E-09	0.143
20:596/581	MCM8 CTCEI		rs10991615	A	ы Т	0.052	1.12 (1.09-1.15)	3.13E-13	0.081
20:5/441016	CICFL STAN2	KBM38 SLC244DC	rs150592/5	U T		0.456	1.04(1.03-1.06)	3.08E-09	0.8/4
20:0303839/	SIMINJ DIMVI	SLC2A4KG DUNV1	rs/3091080	I G	с т	0.095	0.92(0.90-0.95)	1.19E-11 1.44E 00	0.044
21.330/2024	NUNAI MVH0 ADOLI	MVHO	182034/4/	U T	I C	0.502	0.90(0.94-0.97) 1.06(1.04-1.09)	1.44E-U8 7.80E 11	0.711
22:3026/309	ΜΙΠΥ,ΑΓΟLΙ ΤΝΡΟΚΡ	MITTY MVI 1	189010482	I T	C	0.189	1.00(1.04-1.08) 1.00(1.07,1.11)	/.07E-11 1.21E-26	0.534
ZZ:40209221 X:70029740	SIC743 MED12	MKLI FOYO4	18112231803 re5036604	I C	с т	0.223	1.09(1.0/-1.11) 0.03(0.01.0.04)	1.21E-20 1.00E 17	0.137
A./0920/40 X.132178061	FRMD7 RADAC	RAP2C	183730004 re5030554	Ċ	т Т	0.005	0.95 (0.91-0.94) 1 16 (1 1/ 1 18)	1.00E-17	0.008
A.1321/0001	TAMD/, NAF 2C	M/11 2 C	182720224	C	1	0.312	1.10 (1.14-1.10)	1.040-37	0.0007

Table S2. Genome-wide significant ($p < 5x10^{-8}$) loci in META-2.

The table reports distinct loci (more than 1Mb apart) containing at least one variant associated with uterine leiomyomata (UL) at $p < 5 \times 10^{-8}$, *i.e.*, the standard threshold for genome-wide significance. META-2 was conducted genome-widely in 38,466 uterine leiomyomata (UL) cases and 329,437 female controls from FinnGen and a previous UL meta-analysis¹ using fixed-effect inverse variance-weighted method implemented in METAL. Indented rows indicate the lead variants of the independent association signals that were observed after conditioning the association tests on the locus-specific lead variant on the preceding row. The loci spanning over the ±1Mb locus definition are marked with asterisk (*).

Chr:Pos (hg38)	Nearest gene	Candidate gene	rsID	EA	OA	EAFFinnGen	OR (95% CI)	P.value	HetPVal
1:22141722	WNT4	WNT4	rs3820282	t	c	0.157	1.16 (1.13-1.18)	4.11E-41	0.02952
1:172162145	DNM3	DNM3	rs61807787	t	c	0.258	1.05 (1.03-1.07)	8.45E-09	0.2702
1:241860596	EXO1	EXO1,FH	rs4149909	а	g	0.968	0.87 (0.83-0.91)	1.12E-08	0.4515
1:244151650	ZBTB18,C1orf100	ZBTB18	rs2183478	а	g	0.764	0.93 (0.91-0.95)	7.58E-12	0.4729
1:248897507	PGBD2	ZNF692	rs4335411	а	g	0.752	1.07 (1.04-1.09)	3.56E-09	0.1961
2:11562535	GREB1	GREB1	rs10929757	а	c	0.338	0.93 (0.92-0.95)	5.53E-17	0.4803
2:11515558	GREB1	GREB1	rs13407702	t	g	0.115	1.07 (1.04-1.09)	2.19E-08	n.a.
2:28213441	BABAM2	BABAM2	rs4637064	а	g	0.707	0.95 (0.93-0.97)	2.78E-09	0.1366
2:66863235	MEIS1	MEIS1	rs17631680	t	c	0.893	1.09 (1.06-1.12)	1.46E-10	0.3255
2:99447821	REV1	REV1	rs1451246	а	с	0.445	1.05 (1.03-1.07)	5.32E-10	0.2963
2:207258660	MYOSLID,KLF7	MYOSLID	rs10804157	t	с	0.595	0.95 (0.94-0.97)	3.50E-09	0.3833
2:207848303	PLEKHM3	MYOSLID	rs7584910	а	g	0.443	0.96 (0.94-0.97)	4.75E-08	n.a.
2:241710378	ING5	ING5	rs6437284	с	g	0.727	0.94 (0.92-0.96)	2.07E-09	0.2493
3:4674530	ITPR1	ITPR1	rs3804984	t	c	0.532	1.06 (1.04-1.08)	5.01E-13	0.0314
3:24213261	THRB	THRB	rs2017200	а	t	0.444	1.05 (1.03-1.07)	5.50E-10	0.2165
3:27488262	SLC4A7	NEK10	rs35701251	а	t	0.202	1.05 (1.04-1.07)	8.45E-09	0.6348
3:169768720	ACTRT3,TERC	TERC	rs35446936	а	g	0.272	0.93 (0.91-0.94)	1.33E-16	0.1353
3:185805582	IGF2BP2	IFG2BP2	rs66513933	t	c	0.709	0.95 (0.94-0.97)	3.40E-08	0.3404
4:53634371	LNX1	LNX1	rs4864806	а	g	0.051	1.17 (1.13-1.20)	5.00E-21	0.6683
4:52992781	SCFD2	LNX1	rs11735529	с	g	0.608	0.95 (0.94-0.97)	6.61E-09	n.a.
4:53301527	SCFD2	LNX1	rs188378292	a	g	0.002	1.97 (1.55-2.51)	2.98E-08	n.a.
4:69658940	UGT2A1	SULT1E1	rs4694227	a	t	0.687	1.07 (1.06-1.09)	3.99E-17	0.1984
4:69750098	SULT1B1	SULT1E1	rs41292311	t	c	0.016	0.80 (0.75-0.85)	6.82E-12	n.a.
4:94572095	PDLIM5	BMPR1B	rs2452597	a	σ	0.717	0.95(0.94-0.97)	5.05E-09	0.8824
5:1279675	TERT	TERT	rs10069690	t	c c	0.296	1.12(1.10-1.14)	1.60E-34	0.0054
5:177023836	ZNF346	UIMC1,FGFR4	rs2456181	c	σ	0.499	0.95(0.94-0.97)	2.38E-09	0.0382
6.108976313	ARMC2	SESN1	rs12196819	a	σ	0.150	0.94 (0.91-0.96)	2.62E-08	0.1554
6:152241136	SYNE1	SYNE1,ESR1	rs58415480	c	5 0	0.769	0.82 (0.81-0.84)	2.02E 00	0.0004
6.152551137	SYNE1	SYNE1.ESR1	rs9397523	a	5 0	0.542	0.94 (0.93-0.96)	1 33E-12	n a
6.152245912	SYNE1	SYNE1,ESR1	rs6901631	t	ь с	0.909	1.07(1.04-1.10)	4 02E-08	na
7.120807406	TSPAN12	WNT16	rs4730982	t	σ	0.674	0.95(0.94-0.97)	3.41E-08	0.0842
8:30444949	RBPMS	RBPMS	rs4545054	t	5 C	0.536	1.05(1.03-1.06)	6.29E-09	0.9012
8:129467485	GSDMC	LINC00824	rs11786929	t	c	0.550	0.95 (0.94-0.97)	5.12E-09	0.0224
9:680714	KANK1.ANKRD15	DMRT1.KANK1	rs10815466	я	σ	0.211	1 11 (1 09-1 14)	3.76E-25	0.4772
9.806912	DMRT1	DMRT1.KANK1	rs35469085	c	5 0	0.523	0.93(0.91-0.94)	3.31E-20	n a
9.854375	DMRT1	DMRT1.KANK1	rs7856727	t	5 0	0.581	0.95 (0.94-0.97)	4 75E-08	n.a.
10.21695031	MLLT10	DNAJC1	rs1243192	и а	5 C	0.302	$1.06(1.04 \cdot 1.07)$	2 39E-10	0 4954
10:21655051	ZEB1.ARHGAP12	ZEB1	rs7090544	u 9	a	0.728	1.00(1.04 1.07) 1.07(1.05-1.09)	2.57E 10	0.5477
10:76884502	KCNMA1	KCNMA1	rs2082415	t	5 0	0.520	$1.07 (1.03 \cdot 1.05)$ $1.05 (1.03 \cdot 1.05)$	2 80F-08	0.4600
*10.101726828	FGF8	SLK	rs189195982	t	5 C	0.030	1.05 (1.05 1.00)	2.00E 00	0.2851
*10:102788270	WBP1L	SLK	rs75731980	t	c	0.064	1.20 (1.17 1.30)	2.76E 16	0.2001
*10.102738270	OBFC1	SLK	rs182218101	ι +	0	0.004	0.66(0.61, 0.72)	2.42E-10	0.3644
10.103073024	OBFC1	SLK	rs/387287	ι 0	c	0.372	1.10(1.08, 1.12)	4.80E-20 2.44E-18	0.3044
10:103916155	OBFC1	SLK	rs188848367	a t	c	0.019	1.10(1.00-1.12) 1.31(1.20-1.43)	2.44E-10 3.92E-09	n 9
*10.105587387	SORCS3	SLK	rs17110101	t t	a	0.012	0.76(0.70-0.82)	5.92E-09	0.3142
*10.105587587	SORCS1	SLK	rs1336619	t t	g C	0.030	1.25(1.17-1.34)	3.48E-10	0.1272
11.107557	ODE3 RETII	PKP3	ro7102852	ι ο	c	0.030	1.23(1.17-1.34)	2.02E 10	0.1272
11.19/55/	SIRT3	PKP3	18/103652	a	g	0.078	0.87(0.83-0.90)	2.02E-19	0.99/4
11.224003	FSHR	FSHR	rs11021006	a	g	0.025	0.80(0.83-0.90)	1.99E-12	11.a.
11:30204981	WT1	WT1	rs11021721	a	g	0.103	0.92(0.90-0.94)	1.32E-13	0.3740
11.22242004	WT1	WT1	1811031/31	d	g	0.074	1.10(1.14-1.19) 1.07(1.05,1.09)	1.24E-3/ 2.46E-15	0.0005
11:3234/198	WT1	WT1	18220/348	a +	c	0.330	1.07 (1.03 - 1.08) 1.06 (1.04 + 1.08)	3.40E-13	n.a.
11:32323091	יי יי יי אחמ	,, 11 CD44	182030318	ι +	g	0.707	1.00(1.04-1.08)	2.13E-11 0.95E 10	11.a. 0.0700
11:33003900	Cllorf65	4TM	182333772	ι ≁	g	0.472	0.94(0.92-0.95)	9.0JE-18	0.0799
11:1084448/9	NP 4T	ATM	rs149934/34	ι	c	0.009	1.38(1.30-1.40)	1./4E-2/	0.0308
11:10817/255	INF AL	AIM	rs1519074	а	g	0.775	1.11 (1.09-1.13)	3./3E-23	n.a.

Chr:Pos (hg38)	Nearest gene	Candidate gene	rsID	EA	OA	EAF _{FinnGen}	OR (95% CI)	P.value	HetPVal
11:112703765	LOC105369496	LOC105369496	rs10891420	t	c	0.531	0.95 (0.94-0.97)	3.93E-10	0.0477
12:46410392	SLC38A2	SLC38A2	rs1472178	t	c	0.340	0.94 (0.92-0.95)	7.03E-15	0.9303
12:68692314	NUP107	MDM2	rs142808358	t	c	0.028	0.87 (0.83-0.91)	5.45E-09	0.9583
12:70756878	PTPRR	PTPRR	rs11178393	t	c	0.916	1.08 (1.05-1.11)	2.82E-09	0.3833
12:123405729	KMT5A	KMT5A	rs28576953	t	c	0.211	0.94 (0.92-0.96)	9.46E-10	0.1098
*13:38939164	STOML3	FOXO1	rs149775438	а	c	0.980	0.76 (0.70-0.83)	1.10E-09	0.8152
13:39726408	COG6	FOXO1	rs9548898	а	g	0.537	1.05 (1.04-1.07)	1.05E-11	n.a.
*13:40149807	FOXO1	FOXO1	rs117245733	а	g	0.030	1.46 (1.38-1.54)	9.16E-39	0.0013
13:40605661	FOXO1	FOXO1	rs7986407	а	g	0.642	0.93 (0.91-0.95)	1.79E-18	n.a.
13:39726408	COG6	FOXO1	rs9548898	а	g	0.537	1.05 (1.04-1.07)	1.45E-11	n.a.
13:40162152	FOXO1	FOXO1	rs6563799	t	с	0.245	1.06 (1.04-1.08)	1.04E-09	n.a.
13:39898446	COG6	FOXO1	rs9576914	t	с	0.554	0.95 (0.94-0.97)	2.84E-09	n.a.
15:68335825	ITGA11	PIAS1	rs2306022	t	с	0.088	1.09 (1.06-1.12)	1.68E-09	0.4266
16:50056732	HEATR3	HEATR3,BRD7	rs62033024	с	g	0.181	0.93 (0.92-0.95)	1.81E-12	0.0009
16:50048520	CNEP1R1	HEATR3,BRD7	rs2058814	t	g	0.198	0.94 (0.92-0.96)	2.05E-10	n.a.
16:51447685	AC007344.1	AC007344.1	rs66998222	а	g	0.153	0.93 (0.91-0.95)	2.12E-12	0.824
*17:7668434	TP53	TP53	rs78378222	t	g	0.983	0.51 (0.47-0.54)	9.36E-86	4.19E-09
*17:8767403	SPDYE4	TP53	rs74876186	а	g	0.013	1.40 (1.26-1.56)	1.10E-09	0.5213
17:7796745	DNAH2	TP53	rs138420351	t	с	0.039	1.38 (1.31-1.46)	1.15E-30	n.a.
17:12656880	MYOCD	MYOCD	rs12449987	t	с	0.560	0.96 (0.94-0.97)	2.05E-08	0.1577
19:22032639	ZNF257	ZNF257	rs8105767	а	g	0.682	0.95 (0.94-0.97)	9.89E-09	0.2546
20:5967581	MCM8	MCM8	rs16991615	а	g	0.021	1.14 (1.09-1.18)	9.96E-12	0.1533
20:63638397	STMN3	SLC2A4RG	rs75691080	t	с	0.114	0.93 (0.90-0.95)	2.38E-08	0.0181
22:28779069	CCDC117	?? Sakaue	rs71758825	t	tctc	0.096	1.13 (1.08-1.18)	1.07E-08	0.5253
22:36287509	MYH9,APOL1	MYH9	rs9610482	t	c	0.172	1.06 (1.04-1.08)	1.37E-09	0.5066
22:40269221	TNRC6B	MKL1	rs112251865	t	c	0.252	1.10 (1.08-1.12)	1.20E-23	0.3355
X:70762863	TEX11	FOXO4	rs5936980	а	g	0.424	1.09 (1.07-1.11)	1.52E-15	0.0201
X:132178061	FRMD7,RAP2C	RAPC2	rs5930554	t	c	0.684	0.87 (0.85-0.89)	8.36E-39	7.58E-06

n.a. = not available

Table S3. Fine-mapping results of META-1.

We applied the FinnGen finemapping pipeline (available at <u>https://github.com/FINNGEN/finemapping-pipeline</u>, accessed on 2/2/2022) with default parameters. In brief, the pipeline calculates linkage disequilibrium within the regions of interest with LDstore2⁶ using FinnGen samples, generates 99 % credible sets using the SUm of Single Effects (SuSiE)⁷ and provides a summary for the results.

rsid	position	nearest gene	credible set size	interval (bp)	start (bp)	end (bp)
rs3820282	1:22141722	WNT4	6	45495	22096228	22141722
rs61807787	1:172162145	DNM3	106	248185	171970150	172218334
rs4149909	1:241860596	EXO1	13	18808	241848042	241866849
rs2183478	1:244151650	ZBTB18	2	61549	244151650	244213198
rs4335411	1:248897507	PGBD2	4	35798	248861710	248897507
rs35417544	2:11540277	GREB1	24	23381	11522052	11545432
rs74576866	2:28106534	BABAM2	20	142094	28077447	28219540
rs17631680	2:66863235	MEIS1	1	1	66863235	66863235
rs13392042	2:99454113	REV1	138	204163	99314447	99518609
rs10804157	2:207258660	MYOSLID	7	608387	207257277	207865663
rs34766121	2:241720139	ING5	2	6294	241720139	241726432
rs3804984	3:4674530	ITPRI	1	1	4674530	4674530
rs1010961	3:24213259	THRB	7	9101	24209772	24218872
rs35701251	3:27488262	SLC4A7	107	133939	27377371	27511309
rs35446936	3:169/68/20	ACTRT3	27	51018	169/59/18	169810735
rs13060777	3:18580/411	IGF2BP2	58	52911	1857/0515	185823425
rs62323682	4:53684007	LNXI	14	49637	53634371	53684007
rs12640488	4:69/35020	SULTIBI	32	123121	69658940	69/82060
rs2452597	4:945/2095	PDLIMS	41	136859	9453/299	946/415/
rs103/4/5	4:99031559	METAPI	32	95051	98961982	99057032
rs2242652	5:12/9913	IERI	2	239	12/96/5	12/9913
rs436/292	5:133099880	HSPA4	83	/0426	133039643	133110068
rs2456181	5:1//023836	ZNF340	55 57	1/0805	1/689629/	1//06/101
rs41269026	6:34240996	HMGAI	5/	196/91	3419/5/4	34394364
rs10450445	0:30033070	CDKNIA	10	9344	30030303	30039700
rs11155158	0:109034913	SESNI SVNE1	37 1	95257	108900208	109055444
1838413480	0:132241130	SINEI	1	1	132241130	132241130
184/25250	7.117272512	Γ Κ.D.Γ.Υ ΜΛΙΤΆ	105	61234 5925	117267680	117272512
rs12706214	7.121122422	WN12 CRED1	5	3623	11/20/089	121226008
$r_{\rm s}^{1512/00514}$	7:121152452	UNC DINT	00	40/085	120016924	121220008
rs12275860	7.130933904 8.20452810		9 25	12339	20106778	20550474
rs1516080	8.128506035	LINCO0824	134	220942	128208031	128510872
rs10815466	0.120500055 0.680714	KANKI	13	138136	667680	805815
rs28508285	9.89639982	GADD45G	3	138334	89501649	89639982
rs946711	10.21517903	SKID41	35	205612	21494705	21700316
rs72784785	10:31678920	ZER1	34	56512	31624962	31681473
rs1426619	10.88331783	RNLS	71	169136	88294511	88463646
rs4387287	10:103918139	STN1	7	7443	103915096	103922538
rs7103852	11:197557	ODF3.BET1L	16	67925	197557	265481
rs11031006	11:30204981	FSHB	18	118370	30204809	30323178
rs2057178	11:32342641	WT1	9	23547	32325288	32348834
rs2553773	11:35062086	PDHX	27	14634	35062086	35076719
rs149934734	11:108444879	Cl1orf65	4	213682	108272729	108486410
rs10891420	11:112703765	LOC105369496	1	1	112703765	112703765
rs2131371	12:46402739	SLC38A2	68	73721	46389870	46463590
rs11178393	12:70756878	PTPRR	10	12875	70751752	70764626
rs28583837	12:123379073	KMT5A	110	1265069	123129018	124394086
rs117245733	13:40149807	FOXO1	1	1	40149807	40149807
rs12148374	15:67922458	SKOR1,PIAS1	38	445721	67890105	68335825
rs12599260	16:50059327	HEATR3	46	75529	50028661	50104189
rs66998222	16:51447685	AC007344.1	51	1425558	50028661	51454218
rs78378222	17:7668434	TP53	1	1	7668434	7668434
rs12601765	17:12652500	MYOCD	7	14865	12643623	12658487
rs8105767	19:22032639	ZNF257	173	538899	21938656	22477554
rs16991615	20:5967581	MCM8	1	1	5967581	5967581
rs13039273	20:57441016	CTCFL	4	4528	57441016	57445543
rs75691080	20:63638397	STMN3	1	1	63638397	63638397
rs2834747	21:35072824	RUNXI	7	16610	35072753	35089362
rs9610482	22:36287509	MYH9	8	28715	36287509	36316223
rs112251865	22:40269221	TNRC6B	18	186456	40135641	40322096
rs5936604	23:70889039	SLC7A3	6	38152	70888397	70926548
rs5930554	23:132178061	FRMD7	16	80267	132117298	132197564

Table S4. Fine-mapping results of META-2.

We applied the FinnGen finemapping pipeline (available at <u>https://github.com/FINNGEN/finemapping-pipeline</u>, accessed on 2/2/2022) with default parameters. In brief, the pipeline calculates linkage disequilibrium within the regions of interest with LDstore2⁶ using FinnGen samples, generates 99 % credible sets using the SUm of Single Effects (SuSiE)⁷ and provides a summary for the results.

rsid	position	nearest gene	credible set size	interval (bp)	start (bp)	end (bp)
rs3820282	1:22141722	WNT4	6	45495	22096228	22141722
rs61807787	1:172162145	DNM3	73	215801	172002534	172218334
rs4149909	1:241860596	EXO1	2	10366	241860596	241870961
rs2183478	1:244151650	ZBTB18	2	93	244151558	244151650
rs4335411	1:248897507	PGBD2	4	45077	248861710	248906786
rs10929757	2:11562535	GREB1	1	1	11562535	11562535
rs4637064	2:28213441	BABAM2	61	1181058	27156503	28337560
rs17631680	2:66863235	MEIS1	1	1	66863235	66863235
rs1451246	2:99447821	REV1	69	178093	99314447	99492539
rs10804157	2:207258660	MYOSLID	8	8720	207257277	207265996
rs6437284	2:241710378	ING5	37	61383	241667096	241728478
rs3804984	3:4674530	ITPR1	1	1	4674530	4674530
rs2017200	3:24213261	THRB	10	33694	24185179	24218872
rs35701251	3:27488262	NEK10	99	133939	27377371	27511309
rs35446936	3:169768720	TERC	26	51018	169759718	169810735
rs66513933	3:185805582	IFG2BP2	64	59017	185770515	185829531
rs4864806	4:53634371	LNX1	28	49637	53634371	53684007
rs4694227	4:69658940	SULT1B1	23	123121	69658940	69782060
rs2452597	4:94572095	PDLIM5	42	126001	94548157	94674157
rs10069690	5:1279675	TERT	1	1	1279675	1279675
rs2456181	5:177023836	ZNF346	62	170805	176896297	177067101
rs12196819	6:108976313	ARMC2	160	98740	108956705	109055444
rs58415480	6:152241136	SYNE1	1	1	152241136	152241136
rs4730982	7:120807406	TSPAN12	41	109929	120770147	120880075
rs4545054	8:30444949	RBPMS	24	107076	30443399	30550474
rs11786929	8:129467485	GSDMC	9	18602	129448884	129467485
rs10815466	9:680714	KANK1	3	2717	680714	683430
rs1243192	10:21695031	MLLT10	30	205612	21494705	21700316
rs7090544	10:31666087	ZEB1	36	61057	31624962	31686018
rs2082415	10:76884502	KCNMA1	4410	2999032	75385239	78384270
rs189195982	10:101726828	FGF8	12	433026	101726828	102159853
rs75731980	10:102788270	WBP1L	3	160004	102788270	102948273
rs182218101	10:103873824	OBFC1	2	29588	103844237	103873824
rs17119191	10:105587387	SORCS3	15	642130	105095632	105737761
rs1336619	10:106822067	SORCS1	24	582458	106329275	106911732
rs7103852	11:197557	ODF3	16	67925	197557	265481
rs11031006	11:30204981	FSHB	18	118370	30204809	30323178
rs11031731	11:32343884	WT1	2	14004	32329881	32343884
rs2553772	11:35063906	PDHX	26	20058	35056662	35076719
rs149934734	11:108444879	Cllorf65	4	213682	108272729	108486410
rs10891420	11:112703765	LOC105369496	28	29522	112693680	112723201
rs1472178	12:46410392	SLC38A2	79	73721	46389870	46463590
rs142808358	12:68692314	NUP107	3	243755	68564481	68808235
rs11178393	12:70756878	PTPRR	18	27874	70751752	70779625
rs28576953	12:123405729	KMT5A	136	320052	123108835	123428886
rs149775438	13:38939164	STOML3	2	399980	38939164	39339143
rs117245733	13:40149807	FOXO1	1	1	40149807	40149807
rs2306022	15:68335825	ITGA11	13	17113	68318713	68335825
rs62033024	16:50056732	HEATR3	67	112294	49991896	50104189
rs66998222	16:51447685	AC007344.1	9	21780	51432439	51454218
rs78378222	17:7668434	TP53	1	1	7668434	7668434
rs74876186	17:8767403	SPDYE4	2	130623	8636781	8767403
rs12449987	17:12656880	MYOCD	27	15266	12643623	12658888
rs8105767	19:22032639	ZNF257	216	570782	21906773	22477554
rs16991615	20:5967581	MCM8	1	1	5967581	5967581
rs75691080	20:63638397	STMN3	16	61305	63577093	63638397
rs71758825	22:28779069	CCDC117	124	874010	28224596	29098605
rs9610482	22:36287509	MYH9	8	28715	36287509	36316223
rs112251865	22:40269221	TNRC6B	15	186456	40135641	40322096
rs5936980	X:70762863	TEX11	8	163686	70762863	70926548
rs5930554	X:132140742	FRMD7	19	80267	132117298	132197564

cs_size: the size of the credible set

Table S5. Fine-mapping results of the secondary signals.

We applied the FinnGen finemapping pipeline (available at <u>https://github.com/FINNGEN/finemapping-pipeline</u>, accessed on 2/2/2022) with default parameters. In brief, the pipeline calculates linkage disequilibrium within the regions of interest with LDstore2⁶ using FinnGen samples, generates 99 % credible sets using the SUm of Single Effects (SuSiE)⁷ and provides a summary for the results.

cond.	rsid	position	nearest gene	credible set size	interval (bp)	start (bp)	end (bp)
1	rs13407702	2:11515558	GREB1	17	58841	11475067	11533908
1	rs7584910	2:207848303	PLEKHM3	48	138584	207819617	207958200
1	rs11735529	4:52992781	SCFD2	16	35728	52957054	52992781
2	rs188378292	4:53301527	SCFD2	1	1	53301527	53301527
1	rs41292311	4:69750098	SULT1B1	3	35313	69738255	69773567
1	rs9397523	6:152551137	SYNE1	1	1	152551137	152551137
2	rs6901631	6:152245912	SYNE1	11	28999	152217850	152246848
1	rs35469085	9:806912	DMRT1	14	9155	804231	813385
2	rs7856727	9:854375	DMRT1	1	1	854375	854375
1	rs4387287	10:103918139	OBFC1	6	6351	103916188	103922538
2	rs188848367	10:103895645	OBFC1	16	1515494	102560691	104076184
1	rs12222188	11:224063	SIRT3	17	22829	202017	224845
2	rs2038318	11:32325691	WT1	1	1	32325691	32325691
1	rs2207548	11:32347198	WT1	3	8523	32338676	32347198
1	rs1519074	11:108177255	NPAT	27	382360	108112369	108494728
1	rs7986407	13:40605661	FOXO1	13	74954	40573021	40647975
2	rs9548898	13:39726408	COG6	68	116924	39661542	39778465
3	rs6563799	13:40162152	FOXO1	3	4292	40160593	40164884
4	rs9576914	13:39898446	COG6	45	29226	39898446	39927671
1	rs2058814	16:50048520	CNEP1R1	1	1	50048520	50048520
1	rs138420351	17:7796745	DNAH2	1	1	7796745	7796745

cond: the number of variants the signal is conditioned for

Table S6. RegulomeDB annotation of the association lead variants near MYOCD.

The RegulomeDB probability score is ranging from 0 to 1, with 1 being most likely to be a regulatory variant. 'Ranking' refers to following evidence: 1a, eQTL + TF binding + matched TF motif + matched DNase Footprint + DNase peak; 1b, eQTL + TF binding + any motif + DNase Footprint + DNase peak; 1c, eQTL + TF binding + matched TF motif + DNase peak; 1d, eQTL + TF binding + any motif + DNase peak; 1e, eQTL + TF binding + matched TF motif; 1f, eQTL + TF binding / DNase peak; 2a, TF binding + matched TF motif + matched DNase Footprint + DNase peak; 2b, TF binding + any motif + DNase Peak; 3a, TF binding + matched TF motif + DNase Peak; 3a, TF binding + any motif + DNase peak; 3b, TF binding + matched TF motif; 4, TF binding + DNase peak; 5, TF binding or DNase peak; 6, Motif hit; 7, Other. RegulomeDB ranking < 3 and/or probability score > 0.8 can be considered as evidence for altered regulatory consequences. Data was downloaded from RegulomeDB 02/10/2021.

Rsids	Probability	Ranking
rs11871444	0.60906	4
rs12601765	0.0	5
rs12601724	0.13454	5
rs4792271	0.00167	6
rs4792272	0.13454	5
rs11870377	0.58955	5
rs72811248	0.58955	5

Table S7. RegulomeDB annotation of the association lead variants near MYOSLID.

The RegulomeDB probability score is ranging from 0 to 1, with 1 being most likely to be a regulatory variant. 'Ranking' refers to following evidence: 1a, eQTL + TF binding + matched TF motif + matched DNase Footprint + DNase peak; 1b, eQTL + TF binding + any motif + DNase Footprint + DNase peak; 1c, eQTL + TF binding + matched TF motif + DNase peak; 1d, eQTL + TF binding + any motif + DNase peak; 1e, eQTL + TF binding + matched TF motif; 1f, eQTL + TF binding / DNase peak; 2a, TF binding + matched TF motif + matched DNase Footprint + DNase peak; 2b, TF binding + any motif + DNase Peak; 3a, TF binding + matched TF motif + DNase Peak; 3a, TF binding + any motif + DNase peak; 3b, TF binding + matched TF motif; 4, TF binding + DNase peak; 5, TF binding or DNase peak; 6, Motif hit; 7, Other. RegulomeDB ranking < 3 and/or probability score > 0.8 can be considered as evidence for altered regulatory consequences. Data was downloaded from RegulomeDB 02/10/2021.

Probability	Ranking
0.60906	4
1.0	2b
0.18412	7
0.60906	4
0.18412	7
0.13454	5
	Probability 0.60906 1.0 0.18412 0.60906 0.18412 0.13454

Table S8. ChIP-seq data of rs10804157.

The variant rs10804157 showed the highest probability (1.0) of being a regulatory variant among the variants showing genome-wide significant ($p < 5x10^{-8}$) association with UL at 2q33.3. ChIP-seq data for this variant was extracted from RegulomeDB on 02/10/2021.

Method	Peak location	Biosample	Targets	Organ	Dataset	File	Value	Strand
ChIP-seq	chr2:208123084208123749	A549	SP1	lung	ENCSR000BPE	ENCFF348RKC	326.58420	-
ChIP-seq	chr2:208123107208123712	A549	EP300	lung	ENCSR000BPW	ENCFF002CFV	287.620948909819	-
ChIP-seq	chr2:208123262208123522	A549	NR3C1	lung	ENCSR000BHF	ENCFF648ZNE	244.46238	-
ChIP-seq	chr2:208123094208123709	A549	TCF12	lung	ENCSR000BQQ	ENCFF672FQU	221.07448	-
ChIP-seq	chr2:208123378208123656	MCF-7	FOS	mammary gland	ENCSR569XNP	ENCFF965AIZ	206.29520	-
ChIP-seq	chr2:208123332208123669	A549	FOSL2	lung	ENCSR000BQO	ENCFF374ZCG	187.18388	-
ChIP-seq	chr2:208123364208123572	A549	FOXA1	lung	ENCSR000BRD	ENCFF755AXA	170.22291	-
ChIP-seq	chr2:208123171208123507	MCF-7	ESRRA	mammary gland	ENCSR954WVZ	ENCFF044NEB	156.03072	-
ChIP-seq	chr2:208123287208123667	A549	MAFK	lung	ENCSR541WQI	ENCFF530ZTE	139.13663	-
ChIP-seq	chr2:208123361208123595	HEK293	ZBTB17	kidney	ENCSR631WAA	ENCFF047LUI	114.24409	-
ChIP-seq	chr2:208123179208123669	MCF-7	ZNF217	mammary gland	ENCSR465XQW	ENCFF567MGV	99.76437	-
ChIP-seq	chr2:208123231208123661	MCF-7	ZNF579	mammary gland	ENCSR018MQH	ENCFF854CXA	98.09751	-
ChIP-seq	chr2:208123265208123545	A549	NR3C1	lung	ENCSR000BHG	ENCFF913WFD	97.82031	-
ChIP-seq	chr2:208123181208123801	A549	SIN3A	lung	ENCSR513XQX	ENCFF172VGB	94.53579	-
ChIP-seq	chr2:208123210208123666	MCF-7	MNT	mammary gland	ENCSR663ZZZ	ENCFF628SBD	84.80959	-
ChIP-seq	chr2:208123135208123675	A549	BCL3	lung	ENCSR000BQH	ENCFF325WAV	84.05348	-
ChIP-seq	chr2:208123311208123581	IMR-90	MAFK	lung	ENCSR000EFH	ENCFF593MEB	83.58383	-
ChIP-seq	chr2:208123232208123622	MCF-7	FOXA1	mammary gland	ENCSR126YEB	ENCFF596OJV	82.25613	-
ChIP-seq	chr2:208123208208123618	MCF-7	CTBP1	mammary gland	ENCSR636EYA	ENCFF785ZQF	81.59685	-
ChIP-seq	chr2:208123147208123591	liver	RXRA	liver	ENCSR098XMN	ENCFF189HPG	75.54675	-
ChIP-seq	chr2:208123227208123697	A549	ZBTB33	lung	ENCSR000BPZ	ENCFF639NGJ	68.14892	-
ChIP-seq	chr2:208123237208123541	A549	NR3C1	lung	ENCSR000BJR	ENCFF080RMP	63.97341	-
ChIP-seq	chr2:208123188208123618	HEK293	KLF1	kidney	ENCSR859BMR	ENCFF620ZDF	61.18339	-
ChIP-seq	chr2:208123153208123417	A549	ESRRA	lung	ENCSR473SUA	ENCFF266ORV	60.61061	-
ChIP-seq	chr2:208123318208123702	MCF-7	MAZ	mammary gland	ENCSR288IJC	ENCFF492DZG	58.62570	-
ChIP-seq	chr2:208123059208123459	endothelial cell of umbilical vein	FOS	vein, vasculature, epithelium, blood vessel	ENCSR000EVU	ENCFF390MXI	56.59256	-
ChIP-seq	chr2:208123235208123645	MCF-7	NFIB	mammary gland	ENCSR702BYX	ENCFF817RST	56.19887	-
ChIP-seq	chr2:208123294208123578	IMR-90	BHLHE40	lung	ENCSR957KYB	ENCFF942FBW	53.93919	-
ChIP-seq	chr2:208122889208123613	K562	FOSL1	blood, bodily fluid	ENCSR239ZLZ	ENCFF692PVV	52.28088	-
ChIP-seq	chr2:208123124208123544	liver	NR2F2	liver	ENCSR338MMB	ENCFF266KLW	50.28680	-
ChIP-seq	chr2:208123248208123738	A549	REST	lung	ENCSR000BQP	ENCFF136RBA	49.93059	-
ChIP-seq	chr2:208123340208123630	A549	ZFP36	lung	ENCSR294JWV	ENCFF418DRY	49.62579	-
ChIP-seq	chr2:208123096208123416	SK-N-SH	JUND	brain	ENCSR000BSK	ENCFF598ZLV	49.00620	-
ChIP-seq	chr2:208123233208123757	A549	YY1	lung	ENCSR000BPM	ENCFF713ISJ	48.03768	-
ChIP-seq	chr2:208123332208124008	22Rv1	CTCF	prostate gland	ENCSR857PBV	ENCFF030BPR	44.66346	-
ChIP-seq	chr2:208123056208123476	liver	JUND	liver	ENCSR837GTK	ENCFF804UDG	44.66249	-
ChIP-seq	chr2:208123048208123638	MCF-7	FOSL2	mammary gland	ENCSR546KCN	ENCFF331KNS	43.40140	-
ChIP-seq	chr2:208123246208123730	A549	ATF3	lung	ENCSR000BPS	ENCFF913MUA	43.04867	-

Method	Peak location	Biosample	Targets	Organ	Dataset	File	Value	Strand
ChIP-seq	chr2:208123340208124040	22Rv1	CTCF	prostate gland	ENCSR847XGE	ENCFF259XYR	41.50506	-
ChIP-seq	chr2:208123167208123671	liver	SP1	liver	ENCSR386YIH	ENCFF017YUI	41.36437	-
ChIP-seq	chr2:208123257208123587	T47D	EP300	mammary gland	ENCSR000BLM	ENCFF002CNZ	39.636132175516	-
ChIP-seq	chr2:208123176208123640	liver	RXRA	liver	ENCSR352QSB	ENCFF651LIG	39.78583	-
ChIP-seq	chr2:208123138208123628	liver	NR2F2	liver	ENCSR168SMX	ENCFF168INE	38.88749	-
ChIP-seq	chr2:208123233208123877	HEK293	TRIM28	kidney	ENCSR618HNF	ENCFF034GYQ	37.81934	-
ChIP-seq	chr2:208123305208123735	MCF-7	ZNF687	mammary gland	ENCSR899BKM	ENCFF955YVT	37.18623	-
ChIP-seq	chr2:208123250208123560	MCF-7	MYC	mammary gland	ENCSR000DMQ	ENCFF695IQU	37.15063	-
ChIP-seq	chr2:208123277208123697	A549	ELF1	lung	ENCSR000BPT	ENCFF533NIV	37.00036	-
ChIP-seq	chr2:208122967208123727	MCF-7	KLF4	mammary gland	ENCSR265WJC	ENCFF463ZWH	34.95441	-
ChIP-seq	chr2:208123205208123815	IMR-90	POLR2A	lung	ENCSR000EFK	ENCFF002CVJ	33.0223703871219	-
ChIP-seq	chr2:208123269208123669	endothelial cell of umbilical vein	FOS	vein, vasculature, epithelium, blood vessel	ENCSR000EVU	ENCFF390MXI	32.41105	-
ChIP-seq	chr2:208123383208123623	IMR-90	NFE2L2	lung	ENCSR197WGI	ENCFF641RNZ	31.19285	-
ChIP-seq	chr2:208123247208123678	Caco-2	HNF4A	intestine, large intestine	TSTSR342350	TSTFF265946	30	-
ChIP-seq	chr2:208123293208123583	T47D	GATA3	mammary gland	ENCSR000BMX	ENCFF058XAD	29.56353	-
ChIP-seq	chr2:208123281208123601	A549	NR3C1	lung	ENCSR000BJT	ENCFF495YRW	29.31897	-
ChIP-seq	chr2:208123261208123531	A549	NR3C1	lung	ENCSR000BHE	ENCFF841IFL	29.14627	-
ChIP-seq	chr2:208123248208123838	MCF-7	FOSL2	mammary gland	ENCSR546KCN	ENCFF331KNS	29.01817	-
ChIP-seq	chr2:208123298208123598	MCF 10A	MYC	mammary gland	ENCSR000DOM	ENCFF002CZA	24.1612783298454	-
ChIP-seq	chr2:208123121208123685	IMR-90	CHD1	lung	ENCSR000EFC	ENCFF441IFB	24.73066	-
ChIP-seq	chr2:208123247208123517	A549	USF1	lung	ENCSR000BHX	ENCFF002CGC	23.8430557308026	-
ChIP-seq	chr2:208123084208123749	A549	SP1	lung	ENCSR000BPE	ENCFF348RKC	23.40951	-
ChIP-seq	chr2:208123079208123399	HeLa-S3	JUND	uterus	ENCSR000EDH	ENCFF002CSP	22.3246370112007	-
ChIP-seq	chr2:208123359208123703	GM12878	BCL3	blood, bodily fluid	ENCSR000BNQ	ENCFF625SHY	20.58068	-
ChIP-seq	chr2:208123138208123394	HeLa-S3	FOS	uterus	ENCSR000EZE	ENCFF002CSB	19.8552135147245	-
ChIP-seq	chr2:208123318208123638	SK-N-SH	JUND	brain	ENCSR000BSK	ENCFF598ZLV	19.05498	-
ChIP-seq	chr2:208123375208123631	A549	USF1	lung	ENCSR000BJB	ENCFF002CGD	18.2821813113775	-
ChIP-seq	chr2:208123323208123739	Caco-2	CDX2	intestine, large intestine	TSTSR586454	TSTFF910843	18	-
ChIP-seq	chr2:208123114208123530	liver	ATF3	liver	ENCSR480LIS	ENCFF975PTM	17.59478	-
ChIP-seq	chr2:208122865208123405	MCF 10A	POLR2A	mammary gland	ENCSR000DPA	ENCFF755ZCF	17.14568	-
ChIP-seq	chr2:208123302208123558	MCF 10A	STAT3	mammary gland	ENCSR000DOZ	ENCFF807JAC	14.95877	-
ChIP-seq	chr2:208123094208123714	A549	TCF12	lung	ENCSR000BQQ	ENCFF672FQU	11.69204	-
ChIP-seq	chr2:208123257208123677	liver	JUND	liver	ENCSR837GTK	ENCFF804UDG	10.18840	-

Table S9. RegulomeDB annotation of the association lead variants near CDKN1A.

The RegulomeDB probability score is ranging from 0 to 1, with 1 being most likely to be a regulatory variant. 'Ranking' refers to following evidence: 1a, eQTL + TF binding + matched TF motif + matched DNase Footprint + DNase peak; 1b, eQTL + TF binding + any motif + DNase Footprint + DNase peak; 1c, eQTL + TF binding + matched TF motif + DNase peak; 1d, eQTL + TF binding + any motif + DNase peak; 1e, eQTL + TF binding + matched TF motif; 1f, eQTL + TF binding / DNase peak; 2a, TF binding + matched TF motif + matched DNase Footprint + DNase peak; 2b, TF binding + any motif + DNase Footprint + DNase peak; 2c, TF binding + matched TF motif + DNase peak; 3a, TF binding + any motif + DNase peak; 3b, TF binding + matched TF motif; 4, TF binding + DNase peak; 5, TF binding or DNase peak; 6, Motif hit; 7, Other. RegulomeDB ranking < 3 and/or probability score > 0.8 can be considered as evidence for altered regulatory consequences. Data was downloaded from RegulomeDB 02/10/2021.

Rsids	Probability	Ranking
rs6457932	0.60906	4
rs9349003	0.49417	3a
rs9366912	0.55436	1f
rs112297876	0.58955	5
rs12524435	0.38284	5
rs10947616	0.58955	5
rs4713993	0.13454	5
rs6915170	0.30943	6
rs4464789	0.6893	3a
rs10456441	0.49737	3a
rs10456442	0.60906	4
rs10456443	0.61652	2b
rs12210094	0.60906	4
rs12528913	0.08	5
rs12530170	0.84573	2b
rs12203953	0.96944	la
rs6920453	0.60906	4
rs75420281	0.60906	4
rs3176348	0.86655	2b
rs150499251	0.58955	5
rs9357241	0.04578	5
rs6921165	0.60906	4
rs9394413	0.98162	5
rs7741267	0.60906	4
rs7751412	0.30476	3a

Table S10. Results of MAGMA enrichment analysis.

We conducted MAGMA⁴ gene-set enrichment analysis as implemented in FUMA⁵ using genome-wide summary statistics from META-2. Gene-based p-values were computed for protein-coding genes by mapping variants to genes with default parameters, 1000 Genomes European population, and SNP-wide mean model, and subsequent enrichment analyses were performed for the significant genes using 4728 curated gene sets and 6166 GO terms as reported in MsigDB⁸. The table shows the results for the gene sets significant after false discovery rate (FDR) correction ($p_{FDR} < 0.05$).

G0_bp:go_regulation_of_male_gonad_development 8 2.34 0.35 1.15E-11 1.78E-07 G0_cc:go_telomere_cap_complex 13 1.43 0.26 1.39E-08 0.00011 G0_bp:go_regulation_of_nuclear_transcribed_mrna_catabolic_ 20 1.15 0.22 1.03E-07 0.00053 process_deadenylation_dependent_decay 7 <td< th=""></td<>
GO_cc:go_telomere_cap_complex 13 1.43 0.26 1.39E-08 0.00011 GO_bp:go_regulation_of_nuclear_transcribed_mrna_catabolic_ 20 1.15 0.22 1.03E-07 0.00053 process_deadenylation_of_gonad_development 18 1.10 0.22 4.52E-07 0.0017 GO_bp:go_sex_determination 21 0.86 0.18 1.73E-06 0.0048 Curated_gene_sets:pid_angiopoietin_receptor_pathway 49 0.60 0.13 1.85E-06 0.0048
GO_bp:go_regulation_of_nuclear_transcribed_mrna_catabolic_ process_deadenylation_dependent_decay201.150.221.03E-070.00053GO_bp:go_regulation_of_gonad_development181.100.224.52E-070.0017GO_bp:go_sex_determination210.860.181.73E-060.0048Curated_gene_sets:pid_angiopoietin_receptor_pathway490.600.131.85E-060.0048
process_deadenylation_dependent_decay 18 1.10 0.22 4.52E-07 0.0017 G0_bp:go_regulation_of_gonad_development 18 1.10 0.22 4.52E-07 0.0017 G0_bp:go_sex_determination 21 0.86 0.18 1.73E-06 0.0048 Curated_gene_sets:pid_angiopoietin_receptor_pathway 49 0.60 0.13 1.85E-06 0.0048
GO_bp:go_regulation_of_gonad_development 18 1.10 0.22 4.52E-07 0.0017 GO_bp:go_sex_determination 21 0.86 0.18 1.73E-06 0.0048 Curated_gene_sets:pid_angiopoietin_receptor_pathway 49 0.60 0.13 1.85E-06 0.0048
GO_bp:go_sex_determination 21 0.86 0.18 1.73E-06 0.0048 Curated_gene_sets:pid_angiopoietin_receptor_pathway 49 0.60 0.13 1.85E-06 0.0048
Curated_gene_sets:pid_angiopoietin_receptor_pathway490.600.131.85E-060.0048
GO_bp:go_positive_regulation_of_heart_growth 37 0.74 0.16 2.33E-06 0.0052
GO_mf:go_translation_regulator_activity 132 0.32 0.07 3.48E-06 0.0063
Curated_gene_sets:nikolsky_breast_cancer_5p15_amplicon 26 1.08 0.24 3.80E-06 0.0063
Curated_gene_sets:pid_telomerase_pathway680.490.114.57E-060.0063
GO_bp:go_respiratory_system_development 195 0.31 0.07 4.87E-06 0.0063
GO_bp:go_kidney_mesenchyme_development 19 1.06 0.24 4.91E-06 0.0063
GO_bp:go_metanephric_mesenchyme_development 15 1.18 0.27 5.81E-06 0.0065
GO_bp:go_positive_regulation_of_gonad_development 10 1.50 0.34 5.89E-06 0.0065
GO_bp:go_posttranscriptional_regulation_of_gene_expression 581 0.16 0.04 1.03E-05 0.0097
GO_bp:go_type_i_pneumocyte_differentiation 5 2.09 0.49 1.04E-05 0.0097
GO_bp:go_diaphragm_development 9 1.43 0.34 1.06E-05 0.0097
Curated_gene_sets:wu_hbx_targets_3_dn 13 1.05 0.25 1.58E-05 0.013
Curated_gene_sets:tsai_dnajb4_targets_dn61.720.411.60E-050.013
GO_bp:go_regulation_of_cell_cycle 1151 0.10 0.03 3.82E-05 0.028
GO_bp:go_positive_regulation_of_organ_growth 48 0.55 0.14 3.91E-05 0.028
Curated_gene_sets:pid_plk1_pathway 44 0.53 0.13 3.99E-05 0.028
GO_bp:go_cell_proliferation_involved_in_metanephros_ 10 1.34 0.34 4.28E-05 0.028
development
Curated_gene_sets:lindvall_immortalized_by_tert_up 65 0.46 0.12 4.32E-05 0.028
GO_bp:go_connective_tissue_development 266 0.22 0.06 4.81E-05 0.030
Curated_gene_sets:reactome_cellular_senescence1710.270.075.20E-050.031
GO_bp:go_chondroblast_differentiation 5 1.44 0.37 5.45E-05 0.031
GO_bp:go_regulation_of_biomineral_tissue_development 86 0.40 0.10 5.60E-05 0.031
Curated_gene_sets:biocarta_egfr_smrte_pathway111.170.305.75E-050.031
GO_bp:go_regulation_of_nuclear_transcribed_mrna_poly_a_tail_ 14 1.06 0.28 5.95E-05 0.031
shortening
Curated_gene_sets:phon_kin_targets_un 1980 0.08 0.02 0.12E-05 0.031
GO_{brigg} positive_regulation_ol_cell_cycle 380 0.17 0.04 7.11E-05 0.034
GO_brigo_centular_response_to_starvation 146 0.27 0.07 7.71E-05 0.036
$GO_pp:go_regulation_of_epidermis_development$ $SZ = 0.41 = 0.11 = 8.89E-05 = 0.040$
GO_bp:go_regulation_of_neart_growth 65 0.44 0.12 9.49E-05 0.041
GO_brigo_regulation_of_cellular_amide_metabolic_process 3/5 0.17 0.04 9.65E-05 0.041
$GO_{prigo_positive_regulation_ol_mrna_catabolic_process$ 4/ 0.4/ 0.13 9.82E-05 0.041
GU_DP:g0_llegalive_legulation_or_gonau_development 0 1.56 0.57 0.00010 0.042
$\begin{array}{c} \text{Curated} \ \text{gene} \ \text{sets: blocarta_rna_pathway} \\ \text{CO} \ \text{have a sets: blocarta_rna_pathway} \\ \text{CO} \ $
GO_{brigg} centular_response_to_extracentular_stimulus 259 0.20 0.05 0.00012 0.047
GU_DD:g0_Cell_Cycle 1/66 0.08 0.02 0.00013 0.048
Curated_gene_sets:addefinitionsen_elavi4_targets 16 0.79 0.22 0.00013 0.049
transcription
$CO \text{ bn:go adrenal gland development} \qquad 24 \qquad 0.74 \qquad 0.20 \qquad 0.00014 \qquad 0.049$
10_{0} by so negative regulation of telemere maintenance via 20 0.74 0.20 0.00014 0.049
telomerase
GO mf:go dna binding transcription factor activity 1661 0.09 0.02 0.00015 0.049
GO bp:go male sex determination 13 0.89 0.25 0.00015 0.049
GO bp:go positive regulation of cardiac muscle cell proliferation 25 0.72 0.20 0.00015 0.049
GO bp:go stress induced premature senescence 8 1.06 0.29 0.00016 0.049
GO_bp:go_organ_growth 176 0.25 0.07 0.00016 0.049

Table S11. Genetic correlations of UL with 20 metabolic and anthropometric traits.

We used LDSC software² to estimate genetic correlations (r_g) of UL with 20 metabolic and anthropometric traits extracted from the GWAS database provided by the MRC Integrative Epidemiology Unit (<u>https://gwas.mrcieu.ac.uk/</u>). For UL, genome-wide data from META-2 was used in the r_g estimation. We run LDSC using standard settings described at <u>https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation</u>. Genetic correlations passing false discovery rate (fdr) correction were deemed significant (p_{fdr}<0.05).

Trait	Trait ID	Sample size	N SNPs	rg	se	р	Pfdr
Triglycerides	ieu-b-111	441016	12321875	0.1609	0.0276	5.52E-09	1.10E-07
Waist circumference	ukb-b-9405	462166	9851867	0.1012	0.0243	3.08E-05	1.23E-04
Diastolic blood pressure	ieu-b-39	757601	7160619	0.0978	0.0248	8.27E-05	2.76E-04
Waist-to-hip ratio	ieu-a-72	224459	2562516	0.0953	0.0381	0.012	0.020
Body mass index (BMI)	ukb-b-19953	461460	9851867	0.0912	0.0250	0.0003	7.63E-04
Basal metabolic rate	ukb-b-16446	454874	9851867	0.0841	0.0251	0.0008	0.002
Whole body water mass	ukb-b-14540	454888	9851867	0.0832	0.0253	0.001	0.002
Whole body fat-free mass	ukb-b-13354	454850	9851867	0.0810	0.0252	0.001	0.003
Systolic blood pressure	ieu-b-38	757601	7088083	0.0605	0.0239	0.011	0.020
Whole body fat mass	ukb-b-19393	454137	9851867	0.0566	0.0238	0.017	0.026
Hip circumference	ukb-b-15590	462117	9851867	0.0513	0.0242	0.034	0.048
Total cholesterol	ieu-a-301	187365	2446982	0.0416	0.0399	0.297	0.371
Body fat percentage	ukb-b-8909	454633	9851867	0.0346	0.0242	0.153	0.204
Apolipoprotein B	ieu-b-108	439214	12321875	0.0126	0.0332	0.705	0.720
LDL cholesterol	ieu-b-110	440546	12321875	-0.0201	0.0367	0.584	0.649
C-reactive protein	bbj-a-14	75391	6108953	-0.0445	0.1240	0.720	0.720
Fasting blood glucose adjusted for BMI	ebi-a- GCST007858	33231	105585	-0.0882	0.1187	0.457	0.538
Apolipoprotein A-I	ieu-b-107	393193	12321875	-0.1100	0.0260	2.26E-05	1.13E-04
Impedance of whole body	ukb-b-19921	454840	9851867	-0.1299	0.0270	1.56E-06	1.04E-05
HDL cholesterol	ieu-b-109	403943	12321875	-0.1386	0.0245	1.48E-08	1.48E-07

Table S12. Results of the bi-directional two-sample Mendelian randomization.

Bi-directional two-sample Mendelian randomization of UL risk and 20 metabolic and anthropometric traits was completed using TwoSampleMR R library¹². To avoid possible bias from overlapping samples, we extracted genetic instruments for UL from the GWAS results obtained in FinnGen, and for other, mostly UKBB-based traits, from the GWAS database provided by the MRC IEU and integrated in TwoSampleMR. LD pruning was completed using European population reference, threshold of r^2 =0.001, and clumping window of 10 kb. We considered inverse variance weighted (IVW) method as the primary analysis for which false discovery rate (fdr) correction was applied to adjust for multiple comparisons. MR Egger analysis was considered exploratory and multiple testing correction was not applied.

11				Causal	Caucal						Eggor	
Direction	Trait	Method	NSNP	scale	estimate	CI95L	CI95U	Р	P _{FDR}	Pheterogeneity	intercept	Ppleiotropy
Trait -> UL	apolipoprotein A-I id:ieu-b-107	IVW	250	OR	0.97	0.89	1.05	0.4178	0.6693	3.70E-11		
Trait -> UL	apolipoprotein A-I id:ieu-b-107	MR Egger	250	OR	1.00	0.88	1.15	0.9580		3.40E-11	-0.0015	0.4731
UL -> Trait	apolipoprotein A-I id:ieu-b-107	IVW	26	beta	-0.0192	-0.0348	-0.0036	0.0156	0.0626	1.04E-10		
UL -> Trait	apolipoprotein A-I id:ieu-b-107	MR Egger	26	beta	-0.0379	-0.0647	-0.0110	0.0107		2.40E-09	0.0031	0.1124
Trait -> UL	apolipoprotein B id:ieu-b-108	IVW	167	OR	1.03	0.96	1.12	0.3912	0.6693	8.15E-05		
Trait -> UL	apolipoprotein B id:ieu-b-108	MR Egger	167	OR	1.08	0.97	1.19	0.1758		8.87E-05	-0.0023	0.2829
UL -> Trait	apolipoprotein B id:ieu-b-108	IVW	26	beta	-0.0036	-0.0169	0.0097	0.5970	0.7701	2.89E-05		
UL -> Trait	apolipoprotein B id:ieu-b-108	MR Egger	26	beta	-0.0035	-0.0275	0.0206	0.7810		1.71E-05	-2.07E-05	0.9904
Trait -> UL	Basal metabolic rate id:ukb-b-16446	IVW	487	OR	1.24	1.08	1.43	0.0022	0.0205	2.00E-39		
Trait -> UL	Basal metabolic rate id:ukb-b-16446	MR Egger	487	OR	1.36	0.98	1.89	0.0673		1.67E-39	-0.0014	0.5563
UL -> Trait	Basal metabolic rate id:ukb-b-16446	IVW	26	beta	0.0198	0.0009	0.0388	0.0401	0.1070	5.49E-55		
UL -> Trait	Basal metabolic rate id:ukb-b-16446	MR Egger	26	beta	0.0386	0.0055	0.0717	0.0316		6.66E-51	-0.0031	0.1921
Trait -> UL	Body fat percentage id:ukb-b-8909	IVW	351	OR	0.99	0.88	1.13	0.9379	0.9619	0.00066		
Trait -> UL	Body fat percentage id:ukb-b-8909	MR Egger	351	OR	1.07	0.71	1.63	0.7370		0.00060	-0.0011	0.7052
UL -> Trait	Body fat percentage id:ukb-b-8909	IVW	26	beta	-0.0041	-0.0139	0.0058	0.4183	0.6693	2.86E-05		
UL -> Trait	Body fat percentage id:ukb-b-8909	MR Egger	26	beta	0.0042	-0.0132	0.0216	0.6369		4.97E-05	-0.0014	0.2686
Trait -> UL	Body mass index (BMI) id:ukb-b-19953	IVW	399	OR	1.13	1.03	1.24	0.0084	0.0373	3.42E-06		
Trait -> UL	Body mass index (BMI) id:ukb-b-19953	MR Egger	399	OR	1.14	0.89	1.46	0.3014		2.92E-06	-0.00011	0.9615
UL -> Trait	Body mass index (BMI) id:ukb-b-19953	IVW	26	beta	0.0038	-0.0171	0.0246	0.7217	0.8248	2.15E-24		
UL -> Trait	Body mass index (BMI) id:ukb-b-19953	MR Egger	26	beta	0.0253	-0.0111	0.0617	0.1852		2.49E-22	-0.0036	0.1734

				Causal estimate	Causal						Fager	
Direction	Trait	Method	Nsnp	scale	estimate	CI95L	CI95U	Р	P _{FDR}	Pheterogeneity	intercept	Ppleiotropy
Trait -> UL	C-Reactive protein level id:ieu-b-35	IVW	52	OR	1.01	0.93	1.10	0.8251	0.9168	0.0024		
Trait -> UL	C-Reactive protein level id:ieu-b-35	MR Egger	52	OR	0.99	0.87	1.11	0.8305		0.0020	0.0019	0.6141
UL -> Trait	C-Reactive protein level id:ieu-b-35	IVW	19	beta	0.0090	-0.0173	0.0354	0.5016	0.7166	0.0275		
UL -> Trait	C-Reactive protein level id:ieu-b-35	MR Egger	19	beta	0.0076	-0.1014	0.1166	0.8932		0.0190	0.0002	0.9786
Trait -> UL	diastolic blood pressure id:ieu-b-39	IVW	415	OR	1.02	1.01	1.03	0.0026	0.0205	4.75E-21		
Trait -> UL	diastolic blood pressure id:ieu-b-39	MR Egger	415	OR	1.01	0.99	1.04	0.3482		3.70E-21	0.00081	0.7317
UL -> Trait	diastolic blood pressure id:ieu-b-39	IVW	24	beta	0.3687	0.1493	0.5882	0.0010	0.0205	2.08E-30		
UL -> Trait	diastolic blood pressure id:ieu-b-39	MR Egger	24	beta	0.6254	0.2022	1.0486	0.0084		9.05E-28	-0.0386	0.1813
Trait -> UL	Fasting blood glucose adjusted for BMI id:ebi-a-GCST007858	IVW	9	OR	0.91	0.62	1.34	0.6353	0.7701	0.019		
Trait -> UL	Fasting blood glucose adjusted for BMI id:ebi-a-GCST007858	MR Egger	9	OR	0.88	0.34	2.28	0.8067		0.010	0.0011	0.9490
UL -> Trait	Fasting blood glucose adjusted for BMI id:ebi-a-GCST007858	IVW	6	beta	0.0014	-0.0322	0.0349	0.9371	0.9619	0.4507		
UL -> Trait	Fasting blood glucose adjusted for BMI id:ebi-a-GCST007858	MR Egger	6	beta	-0.0686	-0.1656	0.0284	0.2381		0.6528	0.0091	0.2065
Trait -> UL	HDL cholesterol id:ieu-b-109	IVW	298	OR	0.89	0.82	0.97	0.0075	0.0373	3.21E-18		
Trait -> UL	HDL cholesterol id:ieu-b-109	MR Egger	298	OR	0.99	0.86	1.13	0.8460		1.46E-17	-0.0040	0.0420
UL -> Trait	HDL cholesterol id:ieu-b-109	IVW	26	beta	-0.0152	-0.0310	0.0005	0.0584	0.1461	3.85E-12		
UL -> Trait	HDL cholesterol id:ieu-b-109	MR Egger	26	beta	-0.0389	-0.0652	-0.0126	0.0078		1.43E-09	0.0039	0.0431
Trait -> UL	Hip circumference id:ukb-b-15590	IVW	377	OR	1.05	0.96	1.16	0.2888	0.5624	1.31E-07		
Trait -> UL	Hip circumference id:ukb-b-15590	MR Egger	377	OR	0.97	0.75	1.26	0.8429		1.19E-07	0.0016	0.5255
UL -> Trait	Hip circumference id:ukb-b-15590	IVW	26	beta	0.0114	-0.0106	0.0334	0.3093	0.5624	1.35E-27		
UL -> Trait	Hip circumference id:ukb-b-15590	MR Egger	26	beta	0.0336	-0.0048	0.0721	0.0994		2.14E-25	-0.0037	0.1836
Trait -> UL	Impedance of whole body id:ukb-b- 19921	IVW	463	OR	0.79	0.69	0.91	0.0010	0.0205	3.80E-44		
Trait -> UL	Impedance of whole body id:ukb-b- 19921	MR Egger	463	OR	0.58	0.41	0.84	0.0034		1.89E-43	0.0049	0.0691
UL -> Trait	Impedance of whole body id:ukb-b- 19921	IVW	26	beta	-0.0135	-0.0389	0.0119	0.2970	0.5624	1.62E-77		
UL -> Trait	Impedance of whole body id:ukb-b- 19921	MR Egger	26	beta	-0.0342	-0.0791	0.0107	0.1487		7.37E-74	0.0034	0.2856
Trait -> UL	LDL cholesterol id:ieu-b-110	IVW	144	OR	0.99	0.90	1.09	0.9099	0.9619	3.25E-06		
Trait -> UL	LDL cholesterol id:ieu-b-110	MR Egger	144	OR	1.06	0.92	1.22	0.4124		4.13E-06	-0.0031	0.2217

				Causal	Causal						Fagor	
Direction	Trait	Method	N _{SNP}	scale	estimate	CI95L	CI95U	Р	P _{FDR}	Pheterogeneity	intercept	Ppleiotropy
UL -> Trait	LDL cholesterol id:ieu-b-110	IVW	26	beta	-0.0029	-0.0149	0.0090	0.6296	0.7701	0.0013		
UL -> Trait	LDL cholesterol id:ieu-b-110	MR Egger	26	beta	-0.0061	-0.0278	0.0155	0.5831		0.0009	0.0005	0.7289
Trait -> UL	systolic blood pressure id:ieu-b-38	IVW	405	OR	1.01	1.00	1.01	0.0261	0.0948	1.34E-14		
Trait -> UL	systolic blood pressure id:ieu-b-38	MR Egger	405	OR	1.01	1.00	1.03	0.0543		1.58E-14	-0.0027	0.2574
UL -> Trait	systolic blood pressure id:ieu-b-38	IVW	23	beta	0.3458	-0.0854	0.7771	0.1160	0.2578	1.41E-38		
UL -> Trait	systolic blood pressure id:ieu-b-38	MR Egger	23	beta	-0.0863	-0.9173	0.7446	0.8406		4.29E-36	0.0653	0.2479
Trait -> UL	Total cholesterol id:ieu-a-301	IVW	79	OR	1.01	0.94	1.09	0.7106	0.8248	0.015		
Trait -> UL	Total cholesterol id:ieu-a-301	MR Egger	79	OR	1.07	0.96	1.20	0.2351		0.018	-0.0041	0.2204
UL -> Trait	Total cholesterol id:ieu-a-301	IVW	17	beta	0.0111	-0.0238	0.0460	0.5333	0.7356	0.1610		
UL -> Trait	Total cholesterol id:ieu-a-301	MR Egger	17	beta	-0.0145	-0.1602	0.1312	0.8477		0.1276	0.0027	0.7272
Trait -> UL	Triglycerides id:ieu-a-302	IVW	53	OR	1.09	0.97	1.22	0.1395	0.2936	2.17E-05		
Trait -> UL	Triglycerides id:ieu-a-302	MR Egger	53	OR	1.12	0.94	1.34	0.2214		1.63E-05	-0.0018	0.6903
UL -> Trait	Triglycerides id:ieu-a-302	IVW	17	beta	0.0078	-0.0234	0.0390	0.6239	0.7701	0.2008		
UL -> Trait	Triglycerides id:ieu-a-302	MR Egger	17	beta	0.0628	-0.0637	0.1894	0.3460		0.1944	-0.0058	0.3929
Trait -> UL	Waist circumference id:ukb-b-9405	IVW	326	OR	1.19	1.05	1.35	0.0052	0.0334	2.61E-09		
Trait -> UL	Waist circumference id:ukb-b-9405	MR Egger	326	OR	1.25	0.88	1.77	0.2118		2.14E-09	-0.00077	0.7821
UL -> Trait	Waist circumference id:ukb-b-9405	IVW	26	beta	0.0127	-0.0028	0.0282	0.1085	0.2554	4.49E-14		
UL -> Trait	Waist circumference id:ukb-b-9405	MR Egger	26	beta	0.0287	0.0016	0.0558	0.0486		7.41E-13	-0.0027	0.1741
Trait -> UL	Waist-to-hip ratio id:ieu-a-72	IVW	29	OR	1.26	1.01	1.57	0.0388	0.1070	0.320		
Trait -> UL	Waist-to-hip ratio id:ieu-a-72	MR Egger	29	OR	1.42	0.52	3.89	0.4966		0.277	-0.0031	0.8070
UL -> Trait	Waist-to-hip ratio id:ieu-a-72	IVW	19	beta	-0.0001	-0.0344	0.0342	0.9946	0.9946	0.0016		
UL -> Trait	Waist-to-hip ratio id:ieu-a-72	MR Egger	19	beta	-0.0695	-0.2096	0.0705	0.3443		0.0021	0.0075	0.3306
Trait -> UL	Whole body fat mass id:ukb-b-19393	IVW	387	OR	1.04	0.94	1.14	0.4634	0.7120	5.68E-05		
Trait -> UL	Whole body fat mass id:ukb-b-19393	MR Egger	387	OR	1.17	0.90	1.52	0.2382		5.77E-05	-0.0023	0.3258
UL -> Trait	Whole body fat mass id:ukb-b-19393	IVW	26	beta	0.0056	-0.0099	0.0210	0.4806	0.7120	1.41E-10		
UL -> Trait	Whole body fat mass id:ukb-b-19393	MR Egger	26	beta	0.0242	-0.0023	0.0507	0.0862		3.41E-09	-0.0031	0.1084

				Causal	Carral						F	
Direction	Trait	Method	NSNP	scale	estimate	CI95L	CI95U	Р	P _{FDR}	Pheterogeneity	intercept	Ppleiotropy
Trait -> UL	Whole body fat-free mass id:ukb-b- 13354	IVW	486	OR	1.24	1.08	1.42	0.0024	0.0205	6.68E-33		
Trait -> UL	Whole body fat-free mass id:ukb-b- 13354	MR Egger	486	OR	1.40	1.01	1.93	0.0422		6.53E-33	-0.0018	0.4187
UL -> Trait	Whole body fat-free mass id:ukb-b- 13354	IVW	26	beta	0.0203	0.0014	0.0392	0.0353	0.1070	7.97E-62		
UL -> Trait	Whole body fat-free mass id:ukb-b- 13354	MR Egger	26	beta	0.0383	0.0052	0.0715	0.0328		1.26E-57	-0.0030	0.2097
Trait -> UL	Whole body water mass id:ukb-b- 14540	IVW	500	OR	1.22	1.06	1.40	0.0058	0.0334	3.19E-35		
Trait -> UL	Whole body water mass id:ukb-b- 14540	MR Egger	500	OR	1.33	0.97	1.84	0.0814		2.74E-35	-0.0014	0.5321
UL -> Trait	Whole body water mass id:ukb-b- 14540	IVW	26	beta	0.0204	0.0013	0.0396	0.0367	0.1070	1.13E-63		
UL -> Trait	Whole body water mass id:ukb-b- 14540	MR Egger	26	beta	0.0387	0.0050	0.0723	0.0336		2.24E-59	-0.0030	0.2108

Table S13. Results of multivariable MR.

The multivariable effects of whole-body fat-free mass, whole-body fat mass, and estradiol level on the risk of uterine leiomyomata (UL) were evaluated using TwoSampleMR R library¹². We extracted genetic instruments for UL from the GWAS results obtained in FinnGen, for whole-body fat-free mass and fat mass from the UKBB as provided by the MRC IEU and integrated in TwoSampleMR, and for estradiol from a study by Ruth *et al*¹³. LD pruning was completed using European population reference, threshold of r^2 =0.001, and clumping window of 10 kb.

exposure	outcome	n _{snp}	b	se	pval
Estradiol	Uterine leiomyomata	13	0.616	0.520	0.235
Whole body fat-free mass id:ukb-b-13354	Uterine leiomyomata	415	0.271	0.114	0.018
Whole body fat mass id:ukb-b-19393	Uterine leiomyomata	207	-0.061	0.106	0.567

Table S14. Results of outlier-corrected MR-PRESSO.

We derived causal estimates using outlier-corrected MR-PRESSO¹⁴ for the traits showing a significant IVW-based causal effect on the risk of uterine leiomyomata. As in the primary analyses, we extracted genetic instruments from the GWAS completed in FinnGen and for other traits from the MRC-IEU database. Also, to ensure comparability and the usage of the same genetic instruments, LD pruning was completed as previously, *i.e.*, using European population reference, threshold of $r^2=0.001$, and clumping window of 10 kb. The analysis was considered exploratory and no multiple testing correction was applied.

Causal Estimate	Sd	T-stat	P-value	pheno	id.exposure
0.1634	0.0548	2.9802	0.0030	Basal metabolic rate	ukb-b-16446
0.1143	0.0430	2.6599	0.0081	BMI	ukb-b-19953
0.0112	0.0045	2.5060	0.0126	Diastolic BP	ieu-b-39
0.1685	0.0553	3.0460	0.0024	Fat-free mass	ukb-b-13354
-0.1244	0.0394	-3.1564	0.0018	HDL-C	ieu-b-109
-0.1610	0.0524	-3.0729	0.0022	Impedance	ukb-b-19921
0.1870	0.0581	3.2209	0.0014	Waist circumference	ukb-b-9405
0.1409	0.0562	2.5085	0.0124	Water mass	ukb-b-14540

Table S15. Results of MRMix.

We derived causal estimates using MRMix¹⁵ method for the traits showing a significant IVWbased causal effect on the risk of uterine leiomyomata. As in the primary analyses, we extracted genetic instruments from the GWAS completed in FinnGen and for other traits from the MRC-IEU database. Also, to ensure comparability and the usage of the same genetic instruments, LD pruning was completed as previously, *i.e.*, using European population reference, threshold of $r^2=0.001$, and clumping window of 10 kb. The analysis was considered exploratory and no multiple testing correction was applied.

theta	setheta	р	trait	Id.exposure
0.11	0.089	0.217	Basal metabolic rate	ukb-b-16446
0.11	0.067	0.101	BMI	ukb-b-19953
0.08	0.110	0.468	Diastolic BP	ieu-b-39
0.13	0.111	0.240	Fat-free mass	ukb-b-13354
-0.12	0.054	0.027	HDL-C	ieu-b-109
-0.13	0.108	0.227	Impedance	ukb-b-19921
0.12	0.094	0.200	Waist circumference	ukb-b-9405
0.13	0.090	0.149	Water mass	ukb-b-14540

Supplementary References

- Gallagher, C. S. *et al.* Genome-wide association and epidemiological analyses reveal common genetic origins between uterine leiomyomata and endometriosis. *Nat. Commun.* 10, 1–11 (2019).
- 2. Bulik-Sullivan, B. *et al.* LD score regression distinguishes confounding from polygenicity in genome-wide association studies. *Nat. Genet.* **47**, 291–295 (2015).
- 3. Lonsdale, J. *et al.* The Genotype-Tissue Expression (GTEx) project. *Nat. Genet.* **45**, 580–5 (2013).
- 4. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: Generalized Gene-Set Analysis of GWAS Data. *PLoS Comput. Biol.* **11**, 1–19 (2015).
- 5. Watanabe, K., Taskesen, E., Van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. *Nat. Commun.* **8**, 1–11 (2017).
- 6. Benner, C. *et al.* Prospects of Fine-Mapping Trait-Associated Genomic Regions by Using Summary Statistics from Genome-wide Association Studies. *Am. J. Hum. Genet.* **101**, 539–551 (2017).
- 7. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. *J. R. Stat. Soc. Ser. B Stat. Methodol.* **82**, 1273–1300 (2020).
- 8. Liberzon, A. *et al.* Molecular signatures database (MSigDB) 3.0. *Bioinformatics* **27**, 1739–1740 (2011).
- 9. Giambartolomei, C. *et al.* Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics. *PLoS Genet.* **10**, (2014).
- 10. Zhu, Z. *et al.* Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. *Nat. Genet.* **48**, 481–487 (2016).
- 11. Cuellar-Partida, G. *et al.* Complex-Traits Genetics Virtual Lab: A community-driven web platform for post-GWAS analyses. *bioRxiv* 518027 (2019). doi:10.1101/518027
- 12. Hemani, G. *et al.* The MR-base platform supports systematic causal inference across the human phenome. *Elife* **7**, 1–29 (2018).
- 13. Ruth, K. S. *et al.* Using human genetics to understand the disease impacts of testosterone in men and women. *Nat. Med.* **26**, 252–258 (2020).
- 14. Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. *Nat. Genet.* **50**, 693–698 (2018).
- 15. Qi, G. & Chatterjee, N. Mendelian randomization analysis using mixture models for robust and efficient estimation of causal effects. *Nat. Commun.* **10**, 1–10 (2019).