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ABSTRACT Potential energy landscapes are useful models in describing events such as protein folding and binding. While
single-molecule fluorescence resonance energy transfer (smFRET) experiments encode information on continuous potentials
for the system probed, including rarely visited barriers between putative potential minima, this information is rarely decoded
from the data. This is because existing analysis methods often model smFRET output assuming, from the onset, that the system
probed evolves in a discretized state space to be analyzed within a hidden Markov model (HMM) paradigm. By contrast, here,
we infer continuous potentials from smFRET data without discretely approximating the state space. We do so by operating within
a Bayesian nonparametric paradigm by placing priors on the family of all possible potential curves. As our inference accounts for
a number of required experimental features raising computational cost (such as incorporating discrete photon shot noise), the
framework leverages a structured-kernel-interpolation Gaussian process prior to help curtail computational cost. We show that
our structured-kernel-interpolation priors for potential energy reconstruction from smFRET analysis accurately infers the poten-
tial energy landscape from a smFRET binding experiment. We then illustrate advantages of structured-kernel-interpolation
priors for potential energy reconstruction from smFRET over standard HMM approaches by providing information, such as bar-
rier heights and friction coefficients, that is otherwise inaccessible to HMMs.
SIGNIFICANCE We introduce structured-kernel-interpolation priors for potential energy reconstruction from single-
molecule fluorescence resonance energy transfer data, a tool for inferring continuous potential energy landscapes,
including barrier heights and friction coefficients, from single-molecule fluorescence resonance energy transfer data. We
benchmark on synthetic and experimental data.
INTRODUCTION

Potential energy landscapes are useful continuous space
model reductions employed across biophysics (1–6). For
example, potentials can model dynamics along smooth reac-
tion coordinates (3, 7–10), including the celebrated protein
folding funnel (3,8,11). They also provide a natural lan-
guage from which to calculate thermodynamic quantities
(12–14). Furthermore, shapes of landscapes, including bar-
rier heights and friction coefficients, can provide insight into
molecular function (15,16), such as molecular motor dy-
namics (16). As such, inferring accurate potentials is a
crucial step toward gaining insight into biophysical systems.

One way by which to decode potential energy landscapes
from biological systems is through single-molecule fluores-
cence resonance energy transfer (smFRET) experiments
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(17–21). Most commonly, smFRET works by tagging two
locations of a biomolecule with pairs of fluorophores.
When in proximity, the fluorophore excited by the laser
(the donor) may transfer its excitation, via dipole-dipole
coupling, over to the acceptor fluorophore (22). As the dis-
tance between the donor and acceptor fluorophores change,
so too does the efficiency of dipole-dipole energy transfer,
resulting in higher donor emission rates when fluorophores
are further apart. Conversely, more photons are emitted from
the acceptor when fluorophores are in close proximity (22).
As such, it is common to use the proportion of donor and
acceptor photons counted in a given time window, the
FRET efficiency, to estimate the pair fluorophore dis-
tance (17,23).

To deduce energies from smFRET data, it is common to
immediately assume a discrete state space and invoke
hidden Markov models (HMMs) in the ensuing analysis
(24–28). HMMs work by partitioning the observed
smFRET efficiencies into discrete levels coinciding
with distinct states. One can then use smFRET data to
infer the number of states in addition to the associated
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FIGURE 1 Cartoon description of SKIPPER-FRET. At the top, we see a

protein switching between two conformations over time. The protein is

labeled with donor and acceptor fluorophores. As the protein changes

configuration, the FRET efficiency between the fluorophores also changes.

In the middle panel, we illustrate a typical trace containing the number of

red and green photons over time. In the bottom panel, we show the outcome

of SKIPPER-FRET analysis used to infer the potential energy landscape

along the reaction coordinate probed. To see this figure in color, go online.
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transition rate parameters and pair distances (2,27),
which in turn can be used to infer the potential
energy of the states using the Boltzmann distribu-
tion (2,29).

The above approach is useful in gaining quantitative
insight into systems well approximated by discrete states
(10,25,26,28). However, the above formulation is not appro-
priate when the dynamics occur along a continuous reaction
coordinate poorly approximated by well-separated discrete
states (5,11).

Furthermore, while HMMs can be used to infer each
state’s relative energies (though parametric HMMs require
a specification in the number of states (30)), they cannot
reveal energy barriers between states without preexisting
knowledge of internal system parameters, such as the land-
scape curvature and internal friction, due to loss of informa-
tion inherent to the discretization process (2,31). The
inability to infer accurate potential energy barriers from a
single data set without the knowledge of hidden internal
parameters is an important limitation of HMMs applied
to smFRET data. Furthermore, as we will see shortly,
analyzing a continuous system with discrete states may
introduce important biases in the expected distances
defining the FRET states.

As such, a method capable of inferring potential energy
landscapes, including barrier heights and friction coeffi-
cients, along a continuous coordinate would greatly
enhance the resolution with which we can probe biophysi-
cal systems and lend deeper insight into protein folding
(11), protein binding (3), and the physics of molecular mo-
tors (16).

Here, we develop a method to decode a continuous poten-
tial from smFRET data without resorting to discrete state-
space assumptions inherent to HMM modeling. We do so
by incorporating a detailed, physics-informed likelihood dis-
tribution describing the relationship between measurements
and a potential energy landscape. We then infer the most
probable potential energy landscape within the Bayesian
nonparametric paradigm by placing a prior on the potential
energy landscape with support over the family of all putative
continuous curves. Our prior distribution is built upon the
structured-kernel-interpolation Gaussian process (32), which
allows for inference of continuous potentials while simulta-
neously avoiding the costly cubic scaling of conventional
Gaussian process regression. Cubic scaling becomes espe-
cially problematic as we insist on incorporating realistic mea-
surement features into our likelihood.

We show that our structured-kernel-interpolation priors
for potential energy reconstruction from smFRET (SKIPPER-
FRET) analysis unveils the full potential energy landscape,
including barrier heights and friction coefficients within
reasonable computational times. The essence of SKIPPER-
FRET is described in cartoon form in Fig. 1. We benchmark
SKIPPER-FRET on synthetic/simulated data as well as
experimental data.
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MATERIALS AND METHODS

Our goal is to learn potentials given photon arrival data from two channels

assuming continuous illumination smFRET data. Generalization to pulsed

data is possible and addressed in the data acquisition. In this section, we

present a forward model describing how a potential gives rise to the data

we collect. Next, we describe an inverse model allowing us to infer the po-

tential directly from the data, along with a numerical algorithm developed

to sample from our high-dimensional posterior. We conclude by summari-

zing the experiment we use to validate our method.
Forward model

In our framework, we imagine placing donor and acceptor fluorophores

at two points whose relative distance varies with time. That is, we envi-

sion either monitoring a molecule undergoing configurational changes

along a reaction coordinate or a pair of molecules binding and unbind-

ing; in either case, our formulation is identical. The dynamics of the

probes with respect to each other are dictated by a potential we wish

to deduce. The labeled system is exposed to continuous illumination

in which both fluorophores will be excited. Donor excitations have a po-

sition-dependent probability of FRET transfer, whereas acceptor excita-

tions are treated as a source of background. We describe this process in

detail in this section.
Pair distance

We begin by assuming that the distance of interest evolves according to

Langevin dynamics (5,29)

z
dx

dt
¼ f ðxÞ þ rðtÞ (1)
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with unknown constant z (the friction coefficient) and unknown spatially

dependent force ðf ¼ � VUÞ. In the above, rðtÞ is the thermal noise

whose moments read

CrðtÞD ¼ 0 and (2)

CrðtÞrðt0ÞD ¼ 2zkTdðt � t0Þ: (3)
Here, kT is the usual thermal energy, and C.D denotes an average over

thermal noise realizations. Note that our model assumes a constant friction

coefficient.

Under the Ito approximation (33), we can evaluate Eq. 1 on a fine grid of

time levels,

z

Dt
ðxnþ1 � xnÞ ¼ f ðxnÞ þ

ffiffiffiffiffiffiffiffiffiffi
2zkT

Dt

r
en; (4)

where xn is the distance at time level n, Dt is the time step size, and en is a

normally distributed random variable with mean 0 and variance 1. We can
rewrite the probability of xnþ1 as follows:

P ðxnþ1jxn; z;UÞ ¼ Normal

�
xnþ1; xn þDt

z
f ðxnÞ; 2DtkT

z

�
;

(5)

which reads ‘‘the probability of xnþ1 given z, U, and the previous position

ðxnÞ is a normal distribution with mean xn þ Dt
z
f ðxnÞ and variance 2DtkT

z
’’.
Here, we let N be the number of time levels and let x1:N represent the set

of all positions at those time levels. Note that the time step, Dt, must be cho-

sen to be small enough that the Ito approximation be valid but, in principle,

need not coincide with the measurement time scale.

Another important note is in order. When analyzing data from binding

experiments, we envision a donor-tagged immobilized biomolecule inter-

acting with an acceptor-tagged binding agent. In this setup, we interpret

the pair distance, x, as the distance between the donor fluorophore and

the nearest acceptor fluorophore with the understanding that the identity

of the acceptor fluorophore may change over time.
Photon measurements

To model photon counts, we make a number of physically reasonable

assumptions. First, we assume that timescales over which pair distances

vary are much slower than fluorophore excited-state relaxation times

(23) (microseconds or slower versus nanoseconds (2,10)). Secondly,

we assume that the small absorption cross section of the fluorophores

results in a low excitation rate compared with the relaxation rate.

Thus, the interphoton arrival time is dominated by the excitation rate,

lX (23).

As the pair distance is assumed to remain constant over the whole time

step (see Eq. 5), the FRET rate will also be assumed constant (with changes

approximated as occurring when time levels change). Thus, photon arrival

times and the order of photon colors within a time step provide no

additional information. In this regime, the probability of the number of

measured green, gn, and red, rn, photons are drawn from a Poisson distribu-

tion (see supplemental information section S0.5):

P ðgnÞ ¼ Poisson
�
gn;DtDg

�
lXfgðxnÞþ lg

��
and (6)

P ðrnÞ ¼ Poisson ðrn;DtDrðlXfrðxnÞþ lrÞÞ; (7)
where lX is the donor excitation rate; lg is the green photon background

rate; lr is the red photon background rate (which includes the direct
acceptor excitation rate); Dg and Dr are detector efficiencies; and fgðxnÞ
and frðxnÞ are the fractions of photons emitted by the FRET pair detected

in the green and red channels, respectively, calculated from the FRET effi-

ciency as a function of position, FRETðxÞ. The cross talk matrix, which en-

codes the efficiency at which a red photon is measured to be green, and vice

versa, reads as follows:

FRETðxÞ ¼ 1

1þ
�

x
R0

�6 and (8)

�
fgðxÞ

� �
Cgg Cgr

��
1 � FRETðxÞ �
frðxÞ ¼
Crg Crr FRETðxÞ ; (9)

where R0 is the characteristic distance for the acceptor donor pair at which

the FRETefficiency is 0.5 and Cij is the probability that a photon with color

i is detected by detector j. For example, Crg is the probability that a red

photon is detected by the green photon detector.
Inverse model

Our goal is the create a probability distribution for the potential energy

landscape, UðxÞ, the pair distance trajectory, x1:N , the excitation rate,

lX , the background photon rates, lr and lg, and the friction coefficient,

z, given a series of photon measurements, g1:N and r1:N . Note that detector

efficiencies, Dg and Dr , and the cross talk matrix can be calibrated sepa-

rately and therefore do not need to be inferred. Using Bayes’ theorem,

write

P
	
U; x1:N; lX; lg; lr; z



g1:N; r1:N�f
P
	
g1:N; r1:N



U; x1:N; lX; lg; lr; z
�
P
	
U; x1:N; lX; lg; lr; z

�
:

(10)

The first term on the right side of Eq. 10 is called the likelihood and is

equal to the product of Eqs. 6 and 7 for each time level. The second term

is called the prior and can further be decomposed as follows

P
	
U; x1:N; lX; lg; lr; z

� ¼
 YN

n ¼ 2

P ðxnjxn� 1U; zÞ
!

P ðx1ÞP ðUÞP ðzÞP ðlXÞP
	
lg
�
P ðlrÞ: (11)

The first term on the right-hand side, P ðxnjxn� 1;U;zÞ, is the discretized
Langevin equation (3.3) (Equation 5). We are free to choose the remaining

priors over P ðx1Þ, P ðUÞ, P ðzÞ, P ðlXÞ, P ðlgÞ, and P ðlrÞ.
We start by placing priors on our photon rates and friction coefficient. We

know that our excitation rate, lX , is strictly positive, and as such, an accept-

able choice of prior is the gamma distribution, which has nonzero probabil-

ity density along the positive real line

P ðlXÞ ¼ Gamma ðlX; klX ; qlX Þ; (12)

where klX ¼ 2 is chosen to make the mode of the distribution diffuse (i.e.,

create an uninformative prior) and qlX is chosen so as to give a mean ex-
pected value close to the average number of observed photons per frame.

Similarly, we set a gamma prior on our background photon rates

P ðlrÞ ¼ Gamma
	
lr; kprior:lr ; qlr

�
and (13)

P
	
lg
� ¼ Gamma

	
lg; kprior:l ; ql

�
; (14)
g g
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where we again choose klr ¼ klg ¼ 2 and choose values for qlr and qlg
that give mean values close to the measured background rates. Similarly,

because z is strictly positive, the gamma distribution is also a good choice.

As a prior over the friction coefficient, we choose

P ðzÞ ¼ Gamma ðz; kz; qzÞ; (15)

where kz ¼ 2 and qz ¼ 5; 000 ag/ns are chosen to be minimally

informative. In other words, we choose kz and qz such that our prior

is broad over a physically motivated region (3.4). Note that klX , qlX ,

klg , qlg , klr , qlr , klz , and qlz are hyperparameters whose exact values

bear little weight on the final form of the posterior as more data are ac-

quired (24)

Next, we place a prior on our initial position. That is, under our dynamics

model, Eq. 5, all positions, x2:N , are directly conditioned on the previous po-
P
	
U�

1:M; x1:N; z; lX; lg; lr


r1:N; g1:N�fNormal

	
U�

1:M; 0;K
�
Gammaðz; kz; qzÞ

�GammaðlX; klX ; qlX ÞGammaðlr; klr ; qlrÞGamma
	
lg; klg ; qlg

�
�Normal

	
x1;R0;R

2
0

� YN� 1

n ¼ 1

Normal

�
xnþ1; xn þDt

z
f ðxnÞ; 2DtkT

z

�

�
YN
n ¼ 1

Poisson
�
gn;DtDg

�
lXfgðxnÞþ lg

��
Poissonðrn;DtDrðlXfrðxnÞþ lrÞÞ:

(20)
sition, i.e., the dynamics follow a Markov chain. As such, we

must only place a prior on the position at the first time level, x1. For

computational reasons alone, we choose a normal distribution as the

prior over x1 as it matches the form of the transition probability of

Eq. 5,

P ðx1Þ ¼ Normal
	
x1;R0;R

2
0

�
: (16)

As the initial position is known to be around the characteristic FRET dis-

tance up to some uncertainty, we conveniently choose to center our distri-

bution at R0 with standard deviation R0. The latter choices are immaterial in

the presence of sufficient data.

Of greatest importance is our choice of prior on potential energy

landscape, UðxÞ. One natural prior choice is the Gaussian process

(32,34,35) allowing us to sample from all putative curves without pre-

specifying any functional form. However, a naive implementation of

the Gaussian process is computationally intractable for large data sets

as computational complexity scales cubically with the size of the data

(32,36). This is especially challenging given the lack of conjugacy be-

tween the likelihood and prior rendering direct sampling of the posterior

infeasible.

Instead, we develop a computationally efficient adaptation of the

Gaussian process, leveraging recent advances in structured-kernel-interpo-

lation Gaussian processes (SKI-GPs) (32,34). Briefly, SKI-GPs work by se-

lecting a set of M nodes, x�1:M , termed inducing points, where we wish to

exactly evaluate the potential. The value of the potential at the inducing

points is itself drawn from a zero mean multivariate Normal distribution

with some prespecified covariance matrix

P
	
U�

1:M

� ¼ Normal
	
U�

1:M; 0;K
�

(17)

where K is our kernel matrix with elements Kij ¼ kðx�i ;x�j Þ, where k is our
kernel function defined by
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kðx; yÞ ¼ h2 exp

 
� ðx � yÞ2

2l 2

!
; (18)

where h and l are hyperparameters setting the prior uncertainty and length

scale, respectively, and x and y are two arbitrary arguments. We then inter-
polate the value of the potential elsewhere (34). For example, collecting the

force evaluated along the trajectory into a vector, f 1:N , and the potential

evaluated at the inducing points into a vector, U�
1:M , we can interpolate

f 1:N ¼ K�K� 1U�
1:M; (19)

where K�, with elementsK�
nm ¼ � Vkðxn;x�mÞ, is the kernel matrix between

the force at each point in the trajectory and the potential at the inducing points.
Putting together all distributions and priors of our model, we attain a pos-

terior for SKIPPER-FRET given by
A graphical model of our full posterior, illustrating the conditional

dependence of all variables, is shown in Fig. 2.
Algorithm

Our inverse model leaves us with a high-dimensional posterior, Eq. 20,

which does not attain an analytical form and cannot be directly sampled.

Thus, we propose using an overall Gibbs sampling (24) scheme to draw

samples from our posterior.

Briefly, Gibbs sampling works by starting from an initial guess for the

parameters, then iteratively sampling each variable while holding other var-

iables fixed. This scheme, where superscripts indicate the iteration index, is

outlined below:

� Step 1: start with an initial guess for each variable: U
�ð0Þ
1:M , x

ð0Þ
1:N , z

ð0Þ, lð0ÞX ,

lð0Þg , and 0lð0Þr .

� Step 2: for many iterations i,

– sample U
�ðiþ1Þ
1:M from P

�
U�

1:M




xðiÞ1:N ;zðiÞ;lðiÞX ;lðiÞg ;lðiÞr ; r1:N ;g1:N

�
,

– sample x
ðiþ1Þ
1:N from P

�
x1:N




U�ðiþ1Þ
1:M ;zðiÞ;lðiÞX ;lðiÞg ;lðiÞr ; r1:N ;g1:N

�
,

– sample zðiþ1Þ from P
�
z




U�ðiþ1Þ
1:M ;x

ðiþ1Þ
1:N ;l

ðiÞ
X ;lðiÞg ;lðiÞr ; r1:N ;g1:N

�
,

– sample l
ðiþ1Þ
X from P

�
lX




U�ðiþ1Þ
1:M ;x

ðiþ1Þ
1:N ;zðiþ1Þ;lðiÞg ;lðiÞr ; r1:N ;g1:N

�
,

– sample lðiþ1Þ
g fromP

�
lg




U�ðiþ1Þ
1:M ;x

ðiþ1Þ
1:N ;zðiþ1Þ;lðiþ1Þ

X ;lðiÞr ;r1:N ;g1:N

�
, and

– sample lðiþ1Þ
r from P

�
lr




U�ðiþ1Þ
1:M ;x

ðiþ1Þ
1:N ;zðiþ1Þ;lðiþ1Þ

X ;lðiþ1Þ
g ; r1:N ;g1:N

�
.

The conditional probabilities appearing in step 2 above are derived in sup-

porting material section S0.6. Once sufficient samples have been generated

(after burn in is discarded (24)), we can use the sample average to provide

point estimates for each variable or plot the distribution of all samples drawn.



FIGURE 2 Graphical description of the model.

Nodes (circles) represent random variables of our

model, while arrows connecting the nodes high-

light conditional dependency. Blue nodes represent

variables we wish to learn in our inference scheme,

and the red and green nodes represent the

measured photon counts for each bin. To see this

figure in color, go online.

Learning potentials from FRET
Data acquisition

We analyze single-photon smFRET data taken from an experiment probing

the binding between the nuclear-coactivator binding domain (NCBD) of the

CBP/p300 transcription factor and the activation domain of SRC-3 (ACTR)

(37). ACTR and NCBD are both intrinsically disordered proteins (37–39).

In the experiment, ACTR is surface immobilized and labeled with a donor

dye (Cy3B). A solution including the acceptor (CF660R)-labeled NCBD is

added. To probe the binding coordinate, we collect donor and acceptor pho-

tons as the NCBD binds and unbinds to ACTR. Further details on the data

acquisition can be found in Zosel et al. (37). Our analysis reveals the bind-

ing energy landscape of the ACTR-NCBD complex.
RESULTS

In this section, we demonstrate our method on simulated and
experimental data. We first show that our method can accu-
rately infer the potential energy landscape from simulated
smFRET data. We then demonstrate our method on real
data from an experiment probing the binding energy land-
scape between the NCBD and ACTR. We compare
SKIPPER-FRET results to results obtained using a two-state
HMM that uses the same likelihood model as SKIPPER-
FRET (see supporting material section S0.10). To be clear,
in SKIPPER-FRET, we do not assume a number of potential
wells, while, in comparing our methods with HMM, we will
give an advantage to HMMs by providing it a number of
states coinciding with the number of wells. In the supporting
material, we test the robustness of our method with respect
to the number of data points as well as present a failure
mode when the underlying potential we try to learn has
closely spaced wells (1.3).

We first analyzed simulated data using a simple double-
well potential energy landscape. Values used for the simula-
tion can be found in the supporting material. Fig. 3 shows the
data and the trajectory we infer. Fig. 4 shows the SKIPPER-
FRET potential energy landscape, the ground-truth potential
energy landscape, and the state energies inferred using a
Bayesian HMM. The HMM does not infer full potential en-
ergy landscapes but rather just the energy and the pair dis-
tance of each state (with the added advantage that, both
here and elsewhere, we provide the HMM a number of states
consistent with the number of potential well minima). As
such, we cannot plot a full potential landscape for the
HMM results and instead plot point estimates, with uncer-
tainties, indicating the pair distance and energy levels of
each state. Indeed, methods that exist to approximate barrier
heights between states through such methods necessarily rely
on knowledge of other internal parameters of the system such
as the friction coefficient and the curvature of the potential at
points of inflection (38) (see supporting material) (3.2). We
note that in order to compare our method against the ground
truth in Fig. 4, we must define a common zero-point energy.
Since only potential energy differences (not absolute values)
are physical, the reference can be chosen arbitrarily. For our
first data set, we chose the point of zero potential energy to
be the top of the barrier between the wells.

As seen in Fig. 3, the SKIPPER-FRET inferred pair dis-
tance trajectories are largely consistent with ground-truth
trajectory. To be more quantitative, we note in Fig. 4 that
our inferred potential energy landscape well minima and
barrier height locations fall within 0.2 nm of the ground
truth. The inferred well energies were accurate within
0:1 kT (� 1:250:1 and � 0:950:1 kT versus � 1 and �
1 kT). We additionally learned a friction coefficient of
0:03350:002g=s, which is accurate within 12%.

Note that because we can learn the potential only up to a
constant, and since we set by hand a point of zero potential
energy (the location at which the potential is equal to zero),
uncertainty propagation deserves special attention. At the
point of zero potential, the potential is precisely defined as
zero with no associated uncertainty. As such, the uncertainty
in the potential can only grow as we move away from the
point of zero potential. In regions with an abundance of
data, the uncertainty grows more slowly, while in regions
where there are fewer data points, the uncertainty grows
more rapidly. Thus, it is the rate of change of the uncertainty
that depends on the quantity of data. Put differently, since the
potential is the integral of the force, the uncertainty in the po-
tential is the integral of uncertainty in the force. (1.2, 3.6).

We further note from Fig. 4 that while the energies in-
ferred using a Bayesian HMM match the energies learned
Biophysical Journal 122, 433–441, January 17, 2023 437



FIGURE 3 Demonstration on simulated data. Here, we demonstrate our

method on simulated data. The top shows the raw data from the experiment

including red and green photon counts binned every millisecond. The bot-

tom shows the inferred pair distance trajectory (blue) with the ground-truth

pair distance trajectory (red). To see this figure in color, go online.

FIGURE 4 Simulated potential energy landscape. We show our inferred

potential energy landscape (blue) with uncertainty (light blue) against the

ground-truth potential energy landscape used in the simulation (red). We

additionally plot markers, with uncertainty, indicating the inferred state en-

ergy and pair distance using the HMM method (green). The common point

of zero potential energy was set at the top of the barrier at 5 nm. To see this

figure in color, go online.
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using SKIPPER-FRET, the pair distances inferred using the
HMM deviate from both the ground truth and SKIPPER-
FRET well minima. This is on account of the fact that
the HMM ascribes a single specified pair distance to
what is, in reality, a continuous range of pair distances
near potential well minima. To estimate a single specified
pair distance, the HMM finds itself effectively averaging
the FRET efficiencies over those portions of the trajectory
it deems as belonging to one state. This effective pair dis-
tance averaging is further complicated when the pair dis-
tance trajectory crosses a barrier, in which case the
HMM must somehow ascribe the dynamics when sur-
mounting the barrier, which it cannot model, to one of
the states.

Next, we analyzed simulated data from a double-well po-
tential where the far rightmost well is centered beyond the
range of traditional smFRET measurements (at distance >
2R0, where less than 2% of absorbed photons are transferred
to the acceptor). Such a potential mimics the data that we
expect to see from the binding experiments we later analyze.
Fig. 5 shows results where the point of zero potential energy
is set at the bottom of the leftmost well. As seen in Fig. 5,
our method is able to infer the shape of the left well (where
most photons are collected) and still manages to deduce,
albeit with reduced accuracy, the shape of the barrier and
the far well. The ground-truth potential is enclosed within
the uncertainty regions (one standard deviation) of our esti-
mates at almost every point along the left well. Our method
further infers a barrier height of about 2.5 kT, which is
within 0.5 kT of the ground-truth barrier height (2.9 kT).
On the right side of the barrier, where the FRET efficiency
drops dramatically and we therefore have less information
to inform the shape of the potential inferred, our estimate
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deviates from the ground truth with a correspondingly
growing uncertainty.

Roughly speaking, we do not expect to be able to accu-
rately infer the potential at locations where the number of
expected photons is of order unity. We can approximate
the maximum distance we can probe, xMAX, as the largest
distance where the number of photons transferred
from the donor to the acceptor (given by the excitation rate,
lX multiplied by the probability of FRET is greater than
or approximately equal to unity). In other words,
1zlXð1þ ðxMAX=R0Þ6Þ� 1, and thus

xMAXzR0ðlX � 1Þ1=6: (21)
Our method additionally infers a friction coefficient of
0:03550:02g=s, which is accurate within 20% of the
ground truth. When comparing this with the HMM method,
we again see that the HMM method and SKIPPER-FRET
estimate similar energies but different well locations.

After successfully testing SKIPPER-FRET on simulated
data, we now move on to the analysis of experimental data.
In Fig. 6, we show the inferred trajectory by applying our
method to data from ACTR-NCBD binding-unbinding ex-
periments (37). Based on independent analysis (38,40,41),
we expect to find two states corresponding to bound and
unbound states. Furthermore, looking at the raw data in
the top panel of Fig. 6, we immediately notice that there
are alternating sections of high and low FRET efficiency
in what appears to be two states. The corresponding in-
ferred pair distance trajectory, as seen in the bottom panel
of Fig. 6, also alternates between two levels as expected.

We also show the inferred potential energy landscape in
Fig. 7. Indeed, as expected, we recover a double well. The
left well in Fig. 7 can be interpreted as the binding energy
between ACTR and the NCBD, while the right well can
be interpreted as the chemical potential energy required to
remove NCBD from a volume surrounding the ACTR.



FIGURE 5 Simulated potential energy landscape when one barrier is far

from the characteristic FRET distance. Here, we analyze data simulated us-

ing an energy landscape in which one of the wells is outside of the charac-

teristic FRET range. We compare our inferred potential energy landscape

with the potential energy landscape inferred using the Bayesian HMM as

well as the ground truth. We show our inferred potential energy landscape

(blue) with uncertainty (light blue) against the ground-truth potential en-

ergy landscape used in the simulation (red). We additionally plot markers,

with uncertainty, indicating the inferred state energy and pair distance using

the HMM method (green). The common point of zero potential energy was

set at the bottom of the leftmost well at 2.87 nm. To see this figure in color,

go online.

FIGURE 6 Demonstration on NCBD-ACTR. Here, we demonstrate our

method on data probing the energy landscape of NCBD-ACTR binding.

(Top) shows the raw data from the experiment including red and green

photon counts. (Bottom) shows the inferred pair distance trajectory

(blue). To see this figure in color, go online.

Learning potentials from FRET
As the true energy landscape for ACTR-NCBD binding is
unknown, we compare our results with the energy landscape
inferred using a two state Bayesian HMM model with the
same likelihood model as SKIPPER-FRET (see supporting
material section S0.10).As seen in Fig. 7, the energies inferred
using the HMM method fall within our uncertainty regions,
but the position of the wells inferred using SKIPPER-FRET
differ from those inferred using the HMM method. As ex-
plained earlier, this arises because, fundamentally, the HMM
attempts to reconcile its discrete-state picture with the Lange-
vin model’s continuous formulation. As the HMM method
does not provide barrier height, we cannot naturally compare
the barrier inferred using SKIPPER-FRET within the HMM
paradigm without additional information (see supporting ma-
terial). Lastly, we infer a friction coefficient of 1:545
0:05mg=s. While we lack ground truth to verify our estimate,
we can say that this value is consistent with dimensional anal-
ysis estimates from the data (see supporting material).
DISCUSSION

Inferring accurate potential energy landscapes is a critical
step toward unraveling key biophysical phenomena
including protein folding (11), binding (3,8), and the dy-
namics of molecular motors (16). Here, we have developed
a method orthogonal to the HMM paradigm to include
continuous states that also yields barrier heights. We bench-
marked our method on simulated and experimental data.

We showed that, if warranted, we can avoid making the
discrete-state assumption inherent to HMMs, while the
HMM only has access to energy barriers between states if
we supply it with preexisting knowledge of the internal pa-
rameters of the reaction coordinate or if there are at least
two data sets taken at different temperatures (see supporting
material). This is despite any single data set already encod-
ing this information.

Key to our inference algorithm is the SKI-GP, which al-
lows us to sample the potential energy landscape from a
prior over all continuous curves while avoiding the costly
cubic scaling requirements of a standard GP. Specifically,
with the SKI-GP prior, we are able to define inducing point
locations, x�1:M, separate from the trajectory, x1:N , to avoid
calculating a new covariance matrix, K, and its inverse,
K� 1, at each iteration of our Gibbs sampler, thereby saving
considerable computational time. This would not be
possible using standard GP techniques.

Moving forward, there are ways in which we may
improve SKIPPER-FRET. Firstly, our method, as it stands,
deals with smFRET data from continuously illuminated
sources. However, many smFRET experiments work using
pulsed excitation (23,42). We could modify our measure-
ment model (Eq. 6 to Eq. 7) to accommodate pulsed illumi-
nation by swapping the Poisson distribution, which assumes
exponential waiting times between excitation, for a Bino-
mial distribution, compatible with fixed window excitations.

Also, our method deals with dynamics along a single re-
action coordinate assumed to be equivalent to the FRET pair
distance. However, one can imagine situations in which the
system’s dynamics are probed along an axis partly orthog-
onal to the FRET pair distance (43,44) in a multidimen-
sional incarnation of FRET with, say, one donor and
multiple acceptor labels. For example, even in the case of
ACTR binding to the NCBD, as analyzed in this manuscript,
the ACTR may rotate with respect to the NCBD during
binding. Cases with multiple degrees of freedom are tradi-
tionally studied using multicolor smFRET (44–47) or by
Biophysical Journal 122, 433–441, January 17, 2023 439



FIGURE 7 NCBD-ACTR potential energy landscape. Here, we compare

our inferred potential energy landscapewith the relative potential energy land-

scape inferred using standard HMMmethods. We show our inferred potential

energy landscape (blue) with uncertainty (light blue). We additionally plot

markers,with uncertainty, indicating the inferred state energy andpair distance

using the HMMmethod (green). To see this figure in color, go online.

Bryan and Press�e
pairing data analysis with molecular dynamics simulations
(44,48). In principle, one could use SKIPPER-FRET to infer
potentials along degrees of freedom orthogonal to the FRET
distance by including some mapping from the desired de-
gree of freedom to the FRET pair distance in equation (8).
As the FRET pair distance is often not directly tied to the
reaction coordinate (42,49), this may be a promising direc-
tion for future work.

Along these same lines, while our focus has, so far, been on
learning one-dimensional potentials and demonstrating that
we can learn barriers and potential shapes, avoiding the costly
cubic scaling of standard GPs is also critical in deducing
higher-dimensional potentials. For instance, an HMM may,
for example, distinguish between a fully connected and linear
three-statemodel.Here, our one-dimensional reductionwould
need to be augmented to two dimensions in order for us to
deduce these types of higher-dimensional features. Deducing
features, such as potential ridges and valleys, in higher dimen-
sions is the object of future work.
DATA AND CODE AVAILABILITY

Our analysis code can be found at https://github.com/LabPresse/Potentials

FromFRET.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2022.11.2947.
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SUPPLEMENTARY INFORMATION
S0.5 Derivation of the likelihood
Here we derive the likelihood distribution for photon measurements given particle positions. One important consequence of our
Ito approximation, equation 5, is that our likelihood for single photon data will be equivalent to our likelihood for binned data.
That is to say that neither photon arrival times nor ordering of photon colors within a time window provide any additional
information about the particle position. We will start this section by deriving the likelihood for single photon measurements.
After showing that the single photon measurements contain no additional information here as compared to binned photon
measurements, we then derive the likelihood for binned photons (equations 6 and 7) that we use throughout this work.

We first write out the probability of collecting � photons with photon arrival times, Z, and photon colors, 5, within a time
window,

P
(
Z, 5 |G,_- ,_6,_A

)
=P

(
Z |G,_- ,_6,_A

)
P

(
5 |Z, G,_- ,_6,_A

)
(1)

where, for simplicity alone, in our derivation here we ignore artifacts induced by crosstalk and detector efficiency. The time
between photon arrivals will be exponentially distributed according to the excitation rate, _- , and the background rates, _6 and
_A . The probability of the photon arrival times, Z is the probability of the � inter-photon times multiplied by the probability of
no photon following the �th photon

P
(
Z |G,_- ,_6,_A

)
∝

(
1 −

∫ ΔC−)�

0
3C Exp

(
C;_- + _6 + _A

) ) �∏
9=1

Exp
(
)9 − )9−1;_- + _6 + _A

)
(2)

=4−(_-+_6+_A ) (ΔC−)� ) (_- + _6 + _A )� 4−(_-+_6+_A )
∑�
9=1 )9−)9−1) (3)

=(_- + _6 + _A )� 4−(_-+_6+_A )ΔC (4)

where in our derivation we used )0 = 0. The probability over the photon colors is the product of the probabilities over each
individual photon given by the rates and the FRET efficiency

P
(
5 |Z, G,_- ,_6,_A

)
∝

�∏
9=1

(_- 56 (G) + _6) [q 9=green] (_- 5A (G) + _A ) [q 9=red]

_- + _6 + _A
(5)

=
(_- 56 (G) + _6)� (_- 5A (G) + _A )'

(_- + _6 + _A )�
(6)

where 56 (G) = 1 − FRET(G), 5A (G) = FRET(G), [G = H] is the Iverson bracket (which is equal to 1 if G = H and 0 otherwise),
and ' and � are the total number of observed red and green photons. Putting this all together yields a distribution which has no
dependency on individual photon arrival times nor photon color order,

P
(
Z, 5|G,_- ,_6,_A

)
∝(_- 56 (G) + _6)� (_- 5A (G) + _A )'4−ΔC (_-+_6+_A ) . (7)

Since the likelihood depends neither on individual photon arrival times nor on photon color ordering, we lose no generality by
rewriting our likelihood solely in terms of the number of measured photons within a time bin.

We now derive the likelihood for measuring ' red photons and � green photons in a time window. The probability of
collecting � green photons and ' red photons in a time window is the probability of collecting � = � + ' photons multiplied
by the probability that ' of the photons are red

P
(
',� |_- ,_6,_A , G

)
=P

(
' |�,_- ,_6,_A , G

)
P

(
� |_- ,_6,_A

)
. (8)

The probability of collecting � photons in a time window is Poisson distributed according to the rates,

P
(
� |_- ,_6,_A

)
=Poisson

(
�;ΔC (_- + _6 + _A )

)
. (9)

The probability that ' photons are red is a binomial distribution with weight given by the relative rates of red and green photons

P
(
' |�,_- ,_6,_A , G

)
=Binomial

(
';
_- 5A (G) + _A
_- + _6 + _A

, ' + �
)

. (10)
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All together this yields

P
(
�, ' |_- ,_A ,_6, G

)
=Binomial

(
';
_- 5A (G) + _A
_- + _6 + _A

)
Poisson

(
�;ΔC (_- + _6 + _A )

)
(11)

=

(
� + '
'

) (
_- 5A (G) + _A
_- + _6 + _A

)' (
1 −

_- 56 (G) + _6
_- + _6 + _A

)� (ΔC (_- + _A + _6))'+�
(' + �)! 4−ΔC (_-+_A+_6) (12)

=
(ΔC (_- 5A (G) + _A ))'

'!
4−ΔC (_- 5A (G)+_A )

(ΔC (_- 56 (G) + _6))�

�!
4−ΔC (_- 56 (G)+_6) (13)

=Poisson (';ΔC (_- 5A (G) + _A )) Poisson
(
�;ΔC (_- 56 (G) + _6)

)
. (14)

This is the likelihood (equations 6 and 7) that we use throughout this work.

S0.6 Conditional probabilities
Here we derive the conditional probabilities used in the Gibbs sampling algorithm of section 0.3. Note that, for clarity, we drop
multiplicative terms not directly related to the variable on which we condition in each of the following equations. We do so
because these terms are treated as constants during each step of the conditional sampling in the Gibbs sampler.

S0.6.1 Positions
The distribution over positions is the product of the likelihood (equations 6 and 7), the discretized Langevin equation (equation 5),
and the prior on the initial position (equation 16)

P
(
x1:# |[∗1:" , Z ,_- ,_6,_A , g1:# , r1:#

)
∝P (g1:# |x1:# ) P (r1:# |x1:# ) P

(
x |[∗1:" , Z ,_-

)
(15)

=Normal
(
G1; '0, '02

)
×

(
#∏
==2

Normal
(
G=; G=−1 +

ΔC

Z
5 (G=−1),

2ΔC:)
Z

))
×

(
#∏
==1

Poisson
(
6=;_- (1 − FRET(G=)) + _6)

))
×

(
#∏
==1

Poisson (A=;_- (FRET(G=) + _A ))
)

. (16)

To sample from this distribution we may sample each G= individually using a Metropolis Hastings (24) step. Separating
equation 16 into conditional distributions at each position yields three equations: a conditional posterior on G1

P
(
G1 |x2:# ,[∗1:" , Z ,_- ,_6,_A , g1:# , r1:#

)
∝Normal

(
G1; '0, '02

)
× Normal

(
G2; G1 +

ΔC

Z
5 (G1),

2ΔC:)
Z

)
× Poisson

(
61;_- (1 − FRET(G1)) + _6)

)
× Poisson (A1;_- (FRET(G1) + _A )) , (17)

an equation for each G= from time levels 2 to # − 1

P
(
G= |x1:=−1,=+1:# ,[∗1:" , Z ,_- ,_6,_A , g1:# , r1:#

)
∝Normal

(
G=; G=−1 +

ΔC

Z
5 (G=−1),

2ΔC:)
Z

)
× Normal

(
G=+1; G= +

ΔC

Z
5 (G=),

2ΔC:)
Z

)
× Poisson

(
6=;_- (1 − FRET(G=)) + _6)

)
× Poisson (A=;_- (FRET(G=) + _A )) , (18)
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and an equation for the last position, G# ,

P
(
G# |x1:#−1,[∗1:" , Z ,_- , g1:# , r1:#

)
∝Normal

(
G# ; G#−1 +

ΔC

Z
5 (G#−1),

2ΔC:)
Z

)
× Poisson

(
6# ;_- (1 − FRET(G# )) + _6)

)
× Poisson (A# ;_- (FRET(G# ) + _A )) . (19)

S0.7 Potential
The conditional distribution for the potential is the product of the discretized Langevin equation (equation 5) and the prior on
the potential (equation 17)

P
(
[∗1:" |x1:# , Z ,_- ,_6,_A , g1:# , r1:#

)
∝Normal

(
[∗1:" ; 0, Q

) #∏
==2

Normal
(
G=; G=−1 +

ΔC

Z
5 (G=−1),

2ΔC:)
Z

)
(20)

which can be simplified to (34, 35)

P
(
[∗1:" |x1:# , Z ,_- ,_6,_A , g1:# , r1:#

)
=Normal

(
[∗1:" ; -̃, Q̃

)
(21)

Q̃ =

(
Q−1 + ΔC

2Z :)
Q−1Q∗) Q∗Q−1

)−1
(22)

-̃ =
ΔC

2:)
Q̃Q−1Q∗) v1:#−1 (23)

where Q is the kernel matrix (covariance matrix) between all [∗1:" , Q∗ is the covariance between the potential at x∗1:"
and the force at x1:# with elements  ∗=< = −∇: (G=, G∗<), and v1:#−1 are the velocities at each time level with elements
E= = (G=+1 − G=)/ΔC. As the final distribution for[∗1:" is Gaussian, we may directly sample[∗1:" from the posterior without
invoking Metropolis Hastings (34).

S0.8 Photon rates
The conditional distribution on the excitation rate is the product of the likelihood (equations 7 and 6) and the prior on excitation
rate (equation 12)

P
(
_- |[∗1:" , x1:# ,_6,_A , Z , g1:# , r1:#

)
∝Gamma

(
_- ; ^_- , \_-

)
×

(
#∏
==1

Poisson
(
6# ;ΔC�6 (_- 56 (G# ) + _6)

))
×

(
#∏
==1

Poisson (A# ;ΔC�A (_- 5A (G=) + _A ))
)

. (24)

The distribution for the background rates is constructed in an identical manner except for the prior for which we replace
the first term on the right hand side of 24 with equation 13 for _A and 14 for _6. To sample from either distribution we use
Metropolis Hastings by proposing a sample at each iteration of the Gibbs sampler and accepting or rejecting based on the
relative probabilities of the proposed variable and the old sample (24).

S0.9 Friction coefficient
The conditional distribution over the friction coefficient is the product of the discretized Langevin equation (equation 5) and the
prior on friction (equation 15)

P
(
Z |[∗1:" , x1:# ,_- , g1:# , r1:#

)
∝Gamma

(
Z ; ^Z , \Z

) #∏
==2

Normal
(
G=; G=−1 +

ΔC

Z
5 (G=−1),

2ΔC:)
Z

)
. (25)

To sample from this distribution we use a Metropolis Hastings step by proposing a sample at each iteration of the Gibbs sampler
and accepting or rejecting based on the relative probabilities of the proposed variable and the old sample (24).
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S0.10 Bayesian Hidden Markov model
We compare the energy landscape learned using our method to an energy landscape learned using a Bayesian Hidden Markov
Model (HMM) (24, 50). Here we will briefly describe the structure of our HMM algorithm, then explain how we can use our
Bayesian HMM analysis results to infer potential energy landscapes.

Briefly, HMMs work by assuming that the system under consideration has a discrete number of states, : = 1, 2, ..., 
governed by a transition matrix, q = [@8 9 ] × . At each time level =, the system’s state, B=, is conditioned on the state of the
system at the previous time level, B=−1, given the transition matrix, q,

P (B= |B=−1, q) =Categorical
(
B=; qB=−1

)
(26)

where qB=−1 coincides with the row of q corresponding to B=−1. Put differently, the probability that B= = 9 given that B=−1 = 8 is
equal to @8 9 .

Each state, : , has its own pair distance, A: . At each time level, the measured number of photons is conditioned on the pair
distance of the system’s state at that time level

P (6=) =Poisson
(
6=;ΔC�6 (_- 56 (AB= ) + _6)

)
(27)

P (A=) =Poisson
(
A=;ΔC�A (_- 5A (AB= ) + _A )

)
(28)

where 5A (G) and 56 (G) are the FRET rates, including crosstalk terms, defined by 9. Notice that this likelihood is equivalent to
the SKIPPER-FRET likelihood, equations 6 and 7.

Working within the Bayesian paradigm, we place priors on all unknowns,

P (B1) =Categorical
(
B1;"@

)
(29)

P (A: ) =Gamma (A: ; ^A , \A ) (30)
P (_- ) =Gamma

(
_- ; ^_- , \_-

)
(31)

P
(
_6

)
=Gamma

(
_6; ^_6 , \_6

)
(32)

P (_A ) =Gamma
(
_A ; ^_A , \_A

)
(33)

P (q: ) =Dirichlet
(
q: ;"@

)
(34)

where Dirichlet
(
"@

)
is the Dirichlet distribution (24), conjugate to the Dirichlet dynamics model (equation 26) (24, 50). We

choose our hyperparameters to be "@ = [1/ , 1/ , ..., 1/ ], ^A = 2, and \A = '0.
Equations (26) to (34) form a high dimensional posterior. We sample from our posterior using Gibbs sampling (24) and the

forward filter-backward sampling algorithm (24). Once enough samples have been generated, we may choose to use the sample
average to provide a point estimate for each variable.

In order to compare the HMM method to SKIPPER-FRET in the Results section, we used our HMM results to estimate the
energy of each state. The energy of each state is calculated using the transition probability matrix, q. We can find the energies
from q by first calculating the equilibrium state probabilities, V, defined as

V =qV (35)

then equating V to the Boltzmann distribution

V =
1
/


4−

�1
:)

4−
�2
:)

. . .

4−
� 
:)


. (36)

Together, equation 35 and 36 allow us to calculate the energy of each state in the HMM model.

S0.10.1 Barrier heights within HMM paradigm
Here we highlight how one would, if required, compute barrier heights within an HMM paradigm under two regimes: 1) features
of the barrier are known; or 2) data are collected at different temperatures in addition to features of the barrier being known.

Here we focus on the first as it is of greater interest to experiments on biomolecules operating under one set of physiological
temperatures.

Manuscript submitted to Biophysical Journal 19



Bryan IV and Pressé

Figure S1: Robustness test with respect to number of data points. Each panel plots the potential inferred using SKIPPER-
FRET (blue) against the ground truth potential energy landscape (red) for a given number of measurements, # , listed at the
top.

In order to demonstrate that one could calculate barrier heights between states in the HMM model, we would first need to
assume that the transition probability matrix, q, is the solution to a master equation for a rate matrix, ,,

q = exp(ΔC,). (37)

Solving for , we get

, =logm(q)/ΔC (38)

where logm is the matrix logarithm. Assuming that the wells representing each state can be approximated as harmonic oscillators,
we can relate , to barrier heights using Kramer’s rate equation (2, 22, 31)

_8 9 =

{
�
√
2828 9

2c:) 4−
�8 9−�8
:) 8 ≠ 9

−∑
;≠8 _8; 8 = 9

(39)

where 28 is the curvature of the well defining state 8, 28 9 is the curvature of the barrier between states 8 and 9 , �8 9 is the energy
of the barrier between states 8 and 9 , and � is a diffusion parameter dictating the rate of transitions in the absence of a barrier.
Solving for the barrier heights we get

�8 9 = �8 − :) log(2c_8 9 :)) − :) log(�√2828 9 ). (40)

We note that using equation (40), we can only learn the energy of the barrier, �8 9 , if we know �, 28 , and 28 9 . However, �, 28 ,
and 28 9 are internal parameters of the system which are not otherwise easy to deduce (31). In practice, bounds for barrier height
are obtained by using additional approximations and an order of magnitude guess for unknown quantities (2, 31).

Thus we see that the inability to infer accurate potential energy barriers from a single data set without knowledge of hidden
internal parameters is a limitation of HMMs applied to smFRET data. By contrast, SKIPPER-FRET can learn barrier heights
and friction coefficients from a single data set.

S1 ROBUSTNESS WITH RESPECT TO AMOUNT OF DATA
Here we test SKIPPER-FRET’s robustness with respect to the length of the data set. That is, we test how well the inferred
potential energy landscape matches the ground truth given different number of time levels, # , available in the data. For our
robustness test, we use the same simulated data as the first double well experiment (figures 3 and 4), but truncated at different
values of # .

Figure S1 shows the results. As expected, when there are too few time levels for the pair distance to sample both wells, as is
the case for # = 1000 and # = 2500 in figure S1, SKIPPER-FRET cannot infer an accurate potential energy landscape due
to missing data on the other well. When there is a sufficient number of time levels for the pair distance trajectory to sample
both wells, as is the case for # ≥ 5000 in figure S1, then the form of the SKIPPER-FRET potential matches the ground truth
potential energy landscape more closely. Generally, figure S1 shows that the accuracy of SKIPPER-FRET increases with the
number of time levels, and the uncertainty decreases with the number of data points. Note that SKIPPER-FRET’s computation
time increases linearly with the number of time levels.

Thus it is important to make sure that sufficient number of data supplied before applying SKIPPER-FRET. An ideal data set
will have enough time for the pair distance to explore all space. For the purposes of this manuscript, we set # = 10000 for all
data sets analyzed because this value gave us appropriate balance between accuracy and computation speed.

As it pertains to analysis of real experiments, of course, we can only ascertain the form of the potential for regions visited.
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Figure S2: Simulated potential energy landscape with a sharp dip. We show our inferred potential energy landscape (blue)
with uncertainty (light blue) against the ground truth potential energy landscape used in the simulation (red). We additionally
plot markers, with uncertainty, indicating the inferred state energy and pair distance using HMMs (green). The common point
of zero potential energy was set at the bottom of the leftmost barrier.

S2 ROBUSTNESS TEST ON POTENTIAL WITH SHARP DIP
Here we demonstrate a failure mode of our method when the potential varies on length scales faster than our length scale
hyperparameter, ℓ. In figure S2 we generate simulated data using a potential energy landscape with two large wells and one thin
well between them. As seen in figure S2, our method is able to infer the two large wells accurately, but otherwise misses the
small middle well. This is because the length scale hyperparameter, set in equation (18), sets the level of detail the SKI-GP
method can infer. In particular, in figure S2, we use a length scale of ℓ = 2nm. However, the width of the well is on the order of
1nm. On the other hand, in figure S3 we see that by setting the length scale hyperparamater to .5nm we pick up the middle
well (35). In practice, setting a smaller length scale may result in having noise dictate the shape of the potential wells, such as
the well depth underestimation that appears in S3. Thus, our potential should be understood as fundamentally coarse-grained on
a length scale set by the length hyperparameter.

S3 EVALUATING THE FRICTION COEFFICIENT
As we do not have a means to estimate the ground truth for the friction coefficient for real data, we need to compare our method
against an order of magnitude estimate set by typical scales of the problem. We obtain a rough estimate using dimensional
analysis. The units of Z are mass over time or, equivalently,

Z ≈Energy × Time
Length2 . (41)

Treating energy scales as :) (with : as Boltzmann’s constant and ) the temperature, ≈ 4pN nm); length scales as the distance
between wells ≈ 10nm; and time scales as the switching times between wells ≈ .1s (see figure 6), we have

Z ≈ (4pN nm) × (.1s)
(10nm)2

(42)

=4mg/s (43)

consistent with our our estimate of 1.54mg/s.
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Figure S3: Sharp dip potential analyzed with small length scale. We show our inferred potential energy landscape (blue)
with uncertainty (light blue) against the ground truth potential energy landscape used in the simulation (red). We additionally
plot markers, with uncertainty, indicating the inferred state energy and pair distance using HMMs (green). The common point
of zero potential energy was set at the bottom of the leftmost barrier.

S3.1 Parameters Used in the Simulations
We used the following parameters in our simulations.

ΔC 1ms
:) 4.114 pNnm
Z .03 g/s
_- 3 kHz
_A 0
_6 0
'0 5 nm
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