The American Journal of Human Genetics, Volume 110

Supplemental information

SDPRX: A statistical method for cross-

population prediction of complex traits

Geyu Zhou, Tianqi Chen, and Hongyu Zhao

Supplementary Figures

Figure S1. An example of identifiability issue caused by difference of local LD pattern of SNPs in two populations. SNP 1 and SNP 2 are in LD and have similar marginal effect sizes in population 1, while SNP2 and SNP3 are in LD and have similar marginal effect sizes in population 2. Two scenarios are likely to explain the observed GWAS summary statistics, which is not locally identifiable. In the first scenario, SNP 2 is causal and effect sizes are shared between populations. In the second scenario, SNP 1 is causal in population 1 and SNP 3 is causal in population 2. If genetic effects for most SNPs are shared between populations, then inference leading to population specific effect sizes would under-estimate the proportion of SNPs with shared effects and result in the loss of prediction accuracy.

Figure S2. Principal component analysis of UK Biobank individuals after the assignment to one of five super populations (European, East Asian, African, Admixed American, South Asian) by a random forest classifier. We retained 2091 unrelated EAS and 6829 unrelated AFR samples with a predicted probability greater than 0.9 to form the validation and test datasets.

Figure S3. Prediction performance of different methods on simulated data. The proportion of SNPs with population 1 specific, population 2 specific and correlated effect sizes was equally set to be 0.05% (Scenario 1), 0.5% (Scenario 2) and 5% (Scenario 3). For Scenario 4, the proportion

of SNPs with population 1 specific, population 2 specific effect sizes were set to 5% and the proportion of SNPs with shared effect sizes was set to 90%. The cross-population genetic correlation was set to be 0.6 and the heritability was 0.3. Simulation in each scenario was repeated for 10 times. For each boxplot, the central mark is the median and the lower and upper edges represent the 25th and 75th percentiles.

Figure S4. Prediction performance of different methods on simulated data. The proportion of SNPs with population 1 specific, population 2 specific and correlated effect sizes was equally set to be 0.05% (Scenario 1), 0.5% (Scenario 2) and 5% (Scenario 3). For Scenario 4, the proportion of SNPs with population 1 specific, population 2 specific effect sizes were set to 5% and the

proportion of SNPs with shared effect sizes was set to 90%. The cross-population genetic correlation was set to be 0.4 and the heritability was 0.3. Simulation in each scenario was repeated for 10 times. For each boxplot, the central mark is the median and the lower and upper edges represent the 25th and 75th percentiles.

Figure S5. Prediction performance of different methods on simulated data for admixed individuals. The proportion of SNPs with population 1 specific, population 2 specific and correlated effect sizes was equally set to be 5% (Scenario 3). The cross-population genetic correlation was set to be 0.8 and the heritability was 0.4. The sample size was 40K for both EUR and AMR individuals. Simulation in each scenario was repeated for 10 times. For each boxplot, the central mark is the median and the lower and upper edges represent the 25th and 75th percentiles.

Figure S6. Prediction performance of different methods for 15 quantitative traits and 2 binary traits in EAS samples from UK Biobank with the linear combination of effect sizes. Selected participants with corresponding phenotypes were randomly split to form the validation (1/3) and test datasets (2/3). The mean and standard deviation of R² (quantitative trait) and AUC (binary trait) across 20 random splits are showed on the bar plots.

Figure S7. Prediction performance of different methods for 6 quantitative traits and 1 binary trait in AFR samples from UK Biobank with the linear combination of effect sizes. Selected participants with corresponding phenotypes were randomly split to form the validation (1/3) and test dataset (2/3). The mean and standard deviation of R² (quantitative trait) and AUC (binary trait) across 20 random splits are showed on the bar plots.

Figure S8. Prediction performance of different methods for 2 quantitative traits in AMR samples from UK Biobank. Selected participants with corresponding phenotypes were randomly split to form the validation (1/3) and test dataset (2/3). The mean and standard deviation of R^2 (quantitative trait) across 20 random splits are showed on the bar plots.

Supplementary Tables

		EAS			AFR		
		10K	20K	40K	10K	20K	40K
	SDPRX	0.290	0.292	0.294	0.292	0.294	0.294
	PRS-CSx	0.268	0.274	0.274	0.263	0.268	0.261
Scope 1	LDpred2	0.290	0.293	0.296	0.292	0.292	0.294
Scene I	XPASS	0.224	0.231	0.233	0.225	0.231	0.231
	DBSLMM	0.250	0.256	0.250	0.246	0.244	0.240
	Lassosum	0.270	0.276	0.256	0.269	0.270	0.231
	SDPRX	0.230	0.259	0.271	0.229	0.258	0.274
	PRS-CSx	0.219	0.240	0.255	0.210	0.236	0.253
Scope 2	LDpred2	0.222	0.257	0.269	0.219	0.252	0.273
Scene z	XPASS	0.156	0.199	0.221	0.140	0.182	0.213
	DBSLMM	0.189	0.220	0.232	0.181	0.208	0.226
	Lassosum	0.204	0.238	0.253	0.201	0.239	0.262
	SDPRX	0.145	0.184	0.214	0.131	0.169	0.208
	PRS-CSx	0.153	0.183	0.209	0.136	0.166	0.196
Scope 2	LDpred2	0.127	0.171	0.207	0.108	0.154	0.200
Scelle S	XPASS	0.135	0.164	0.193	0.111	0.140	0.173
	DBSLMM	0.111	0.164	0.199	0.090	0.137	0.183
	Lassosum	0.120	0.161	0.197	0.097	0.144	0.191
	SDPRX	0.142	0.174	0.197	0.103	0.135	0.168
	PRS-CSx	0.134	0.167	0.200	0.103	0.135	0.169
Scene 4	LDpred2	0.122	0.163	0.195	0.092	0.131	0.167
	XPASS	0.131	0.169	0.196	0.107	0.141	0.171
	DBSLMM	0.117	0.149	0.190	0.903	0.128	0.161
	Lassosum	0.122	0.159	0.187	0.089	0.126	0.159

Table S1. The median of square of Pearson correlation across 10 replications when the cross-

population genetic correlation was 0.8.

		EAS			AFR		
		10K	20K	40K	10K	20K	40K
	SDPRX	0.297	0.299	0.301	0.294	0.297	0.298
	PRS-CSx	0.274	0.278	0.276	0.265	0.269	0.262
Coopo 1	LDpred2	0.297	0.299	0.302	0.297	0.300	0.302
Scene I	XPASS	0.222	0.236	0.226	0.226	0.228	0.223
	DBSLMM	0.252	0.256	0.255	0.251	0.239	0.240
	Lassosum	0.279	0.278	0.259	0.274	0.274	0.241
	SDPRX	0.233	0.259	0.274	0.230	0.260	0.277
	PRS-CSx	0.217	0.242	0.259	0.208	0.237	0.255
Scope 2	LDpred2	0.225	0.254	0.276	0.217	0.258	0.278
Scene z	XPASS	0.158	0.196	0.221	0.146	0.191	0.215
	DBSLMM	0.193	0.219	0.234	0.187	0.215	0.232
	Lassosum	0.212	0.237	0.259	0.201	0.237	0.261
	SDPRX	0.146	0.185	0.213	0.123	0.158	0.198
	PRS-CSx	0.145	0.180	0.210	0.119	0.156	0.185
Scope 2	LDpred2	0.134	0.178	0.211	0.106	0.150	0.195
Scene 3	XPASS	0.130	0.163	0.194	0.096	0.127	0.169
	DBSLMM	0.117	0.160	0.197	0.093	0.132	0.181
	Lassosum	0.125	0.167	0.199	0.099	0.142	0.184
	SDPRX	0.127	0.163	0.198	0.096	0.131	0.167
	PRS-CSx	0.124	0.159	0.194	0.101	0.134	0.170
Scene 4	LDpred2	0.119	0.159	0.195	0.098	0.130	0.168
	XPASS	0.131	0.164	0.192	0.105	0.138	0.172
	DBSLMM	0.114	0.151	0.189	0.094	0.128	0.162
	Lassosum	0.119	0.156	0.185	0.098	0.129	0.159

Table S2. The median of square of Pearson correlation across 10 replications when the cross-

population genetic correlation was 0.6.

		EAS			AFR		
		10K	20K	40K	10K	20K	40K
	SDPRX	0.294	0.301	0.299	0.287	0.291	0.294
	PRS-CSx	0.275	0.279	0.274	0.260	0.265	0.257
Scope 1	LDpred2	0.292	0.298	0.300	0.286	0.290	0.294
Scelle I	XPASS	0.216	0.221	0.228	0.215	0.222	0.224
	DBSLMM	0.245	0.254	0.248	0.245	0.244	0.243
	Lassosum	0.270	0.270	0.244	0.268	0.269	0.238
	SDPRX	0.230	0.257	0.271	0.231	0.256	0.274
	PRS-CSx	0.213	0.244	0.260	0.208	0.236	0.256
Scono 2	LDpred2	0.222	0.260	0.273	0.212	0.250	0.271
Scene z	XPASS	0.154	0.199	0.222	0.140	0.184	0.205
	DBSLMM	0.191	0.220	0.233	0.181	0.211	0.224
	Lassosum	0.207	0.238	0.260	0.194	0.233	0.257
	SDPRX	0.135	0.181	0.212	0.116	0.159	0.203
	PRS-CSx	0.132	0.170	0.205	0.115	0.154	0.195
Scope 2	LDpred2	0.123	0.169	0.211	0.109	0.154	0.197
Scene 3	XPASS	0.122	0.155	0.190	0.095	0.135	0.176
	DBSLMM	0.113	0.157	0.197	0.093	0.142	0.185
	Lassosum	0.119	0.159	0.201	0.100	0.145	0.189
	SDPRX	0.115	0.154	0.184	0.087	0.127	0.165
	PRS-CSx	0.118	0.154	0.184	0.085	0.123	0.158
Scene 4	LDpred2	0.117	0.155	0.188	0.088	0.126	0.164
	XPASS	0.119	0.155	0.185	0.085	0.128	0.160
	DBSLMM	0.115	0.149	0.183	0.085	0.193	0.153
	Lassosum	0.113	0.150	0.176	0.087	0.123	0.153

Table S3. The median of square of Pearson correlation across 10 replications when the cross-

population genetic correlation was 0.4.

Traits	SDPRX	PRS-CSx	LDpred2	XPASS	DBSLMM	Lassosum
Height	0.213	0.173	0.174	0.171	0.152	0.144
BMI	0.085	0.060	0.071	0.062	0.066	0.071
HDL	0.159	0.117	0.102	0.131	0.106	0.069
LDL	0.066	0.048	0.040	0.061	0.033	0.033
Total	0.043	0.039	0.040	0.044	0.035	0.030
cholesterol						
Log	0.123	0.080	0.080	0.085	0.066	0.051
triglycerides						
Eosinophils	0.031	0.027	0.013	0.014	0.028	0.014
Lymphocytes	0.096	0.063	0.039	0.037	0.053	0.025
Monocytes	0.057	0.056	0.039	0.025	0.032	0.035
Neutrophils	0.049	0.044	0.018	0.028	0.041	0.015
Red blood cell	0.061	0.050	0.031	0.036	0.051	0.033
White blood	0.062	0.052	0.029	0.035	0.050	0.025
cell						
Platelet	0.117	0.103	0.075	0.072	0.097	0.071
Coronary	0.626	0.56	0.600	0.589	0.562	0.613
Artery disease						
Type 2	0.606	0.604	0.573	0.585	0.560	0.536
diabetes						

Table S4. The mean of variance of phenotypes explained by PRS for 13 quantitative traits and

AUC for 2 binary traits in EAS across 20 random splits without the linear combination of effect

sizes.

Traits	SDPRX	PRS-CSx	LDpred2	XPASS	DBSLMM	Lassosum
Height	0.218	0.210	0.195	0.189	0.177	0.173
BMI	0.085	0.059	0.086	0.062	0.080	0.059
HDL	0.159	0.126	0.108	0.149	0.144	0.093
LDL	0.061	0.052	0.026	0.058	0.035	0.041
Total cholesterol	0.051	0.044	0.033	0.036	0.044	0.051
Log triglycerides	0.115	0.096	0.102	0.093	0.094	0.077
Eosinophils	0.030	0.029	0.024	0.028	0.030	0.027
Lymphocytes	0.094	0.085	0.079	0.064	0.073	0.052
Monocytes	0.068	0.062	0.041	0.045	0.050	0.037
Neutrophils	0.051	0.049	0.048	0.046	0.044	0.032
Red blood cell	0.061	0.054	0.054	0.052	0.057	0.039
White blood cell	0.062	0.064	0.062	0.056	0.062	0.044
Platelet	0.117	0.121	0.099	0.110	0.116	0.077
Coronary Artery	0.629	0.590	0.575	0.561	0.570	0.555
disease						
Type 2 diabetes	0.600	0.587	0.566	0.604	0.554	0.555

Table S5. The mean of variance of phenotypes explained by PRS for 13 quantitative traits and

AUC for 2 binary traits in EAS across 20 random splits with the linear combination of effect

sizes.

Traits	SDPRX	PRS-CSx	LDpred2	XPASS	DBSLMM	Lassosum
Height	0.083	0.061	0.051	0.054	0.041	0.038
BMI	0.041	0.025	0.023	0.028	0.021	0.019
HDL	0.095	0.082	0.090	0.083	0.082	0.088
LDL	0.128	0.120	0122	0.079	0.125	0.128
Total	0.124	0.102	0.123	0.074	0.108	0.119
cholesterol						
Log	0.051	0.036	0.038	0.032	0.038	0.025
triglycerides						
Type 2	0.560	0.551	0.544	0.548	0.539	0.536
diabetes						

Table S6. The mean of variance of phenotypes explained by PRS for six quantitative traits and

AUC for one binary trait in AFR across 20 random splits without the linear combination of effect sizes.

Traits	SDPRX	PRS-CSx	LDpred2	XPASS	DBSLMM	Lassosum
Height	0.085	0.079	0.065	0.064	0.064	0.063
BMI	0.041	0.038	0.037	0.030	0.035	0.024
HDL	0.095	0.082	0.056	0.086	0.094	0.077
LDL	0.125	0.117	0.095	0.079	0.125	0.132
Total	0.117	0.101	0.090	0.074	0.109	0.098
cholesterol						
Log	0.050	0.031	0.028	0.031	0.024	0.020
triglycerides						
Type 2	0.565	0.561	0.558	0.550	0.546	0.545
diabetes						

Table S7. The mean of variance of phenotypes explained by PRS for six quantitative traits and

AUC for one binary trait in AFR across 20 random splits with the linear combination of effect

sizes.

Traits	SDPRX	PRS-CSx	LDpred2	XPASS	DBSLMM	Lassosum
Height	9.8 (4.4)	6.2 (1.0)	1.1 (26.1)	0.3 (18.0)	0.8 (1.0)	0.1 (2.4)
BMI	8 (4.7)	5.5 (1.0)	1.1 (25.8)	0.3 (22.0)	1.0 (1.0)	0.1 (2.4)
HDL	8.5 (4.7)	5.2 (1.0)	0.9 (23.6)	0.3 (18.3)	0.9 (1.0)	0.1 (2.0)
LDL	8.5 (4.7)	5.3 (1.0)	1.1 (23.5)	0.2 (19.3)	0.9 (1.0)	0.1 (2.3)
TC	5.1 (4.0)	4.3 (1.0)	1.1 (23.6)	0.3 (14.8)	0.9 (1.0)	0.09 (1.6)
TG	8.5 (4.7)	4.3 (1.0)	1.2 (23.6)	0.3 (19.3)	0.6 (0.8)	0.1 (2.3)
EOS	8.4 (4.9)	5.4 (1.0)	1.0 (23.3)	0.3 (19.2)	0.9 (1.0)	0.1 (2.3)
LYM	8.5 (4.9)	5.5 (1.0)	1.3 (23.3)	0.3 (19.2)	0.9 (1.0)	0.1 (2.0)
MON	8.5 (4.9)	4.7 (1.0)	1.3 (23.3)	0.3 (19.2)	1.5 (1.0)	0.1 (2.0)
NEU	8.5 (4.9)	4.3 (1.0)	1.3 (23.3)	0.3 (19.2)	0.9 (1.0)	0.1 (2.0)
RBC	8.6 (4.9)	4.7 (1.0)	1.1 (23.3)	0.3 (19.2)	0.9 (1.0)	0.1 (2.3)
WBC	8.7 (4.8)	5.2 (1.0)	1.1 (23.3)	0.3 (19.2)	0.8 (1.0)	0.1 (2.3)
PLT	8.5 (4.9)	4.3 (1.0)	1.0 (23.3)	0.3 (19.2)	0.8 (1.0)	0.1 (2.0)
T2D	4.5 (4.2)	5.5 (1.0)	1.0 (14.9)	0.3 (15.9)	0.8 (0.9)	0.1 (1.7)
CAD	6.9 (4.5)	4.7 (0.9)	1.1 (22.3)	0.3 (17.4)	0.9 (0.9)	0.1 (2.5)

Table S8. Computational time and memory usage of different methods for 15 traits. The computational time is in hours. Memory usage of each method, as listed in the parenthesis, is measured in the unit of Gigabytes (Gb).

Supplemental Methods

MCMC Algorithm

Here we describe our MCMC algorithm based on Gibbs sampling to obtain the posterior samples. For each SNP j, we introduce a vector $z_j = (m, k), m \in \{0, 1, 2, 3\}, k \in \{1, 2, ..., 1000\}$ indicating whether effect sizes are population specific and which variance component it is assigned to. For example, z_j equals (1,4) if the effect sizes of SNP j are population 1 specific and it is assigned to the fourth variance component.

Compute A_1, B_1, A_2, B_2 : $A_1 = (R_1 + N_1 aI)^{-1}R_1, B_1 = R_1A_1$. $A_2 = (R_2 + N_2 aI)^{-1}R_2, B_2 = R_2A_2$.

Sampling z_j : For each LD block, we first integrate out β_1 and β_2 to derive the conditional probability of SNP j whose effect sizes are correlated in two populations and assigned to the kth variance component:

$$P(z_{j} = (3,k)|.)$$

$$\propto \int \int p(\widehat{\beta}_{1}|\beta_{1j},\eta) p(\widehat{\beta}_{2}|\beta_{2j},\eta) p(\beta_{1j},\beta_{2j}|z_{j} = (3,k),\sigma_{3k}^{2}) d\beta_{1j}d\beta_{2j}$$

$$\times P(z_{j} = (3,k))$$

$$\propto \int \int \exp\left\{-\frac{1}{2} (\hat{\boldsymbol{\beta}}_{1} - \eta \boldsymbol{R}_{1} \boldsymbol{\beta}_{1})^{T} (\boldsymbol{R}_{1} / N_{1} + a\boldsymbol{I})^{-1} (\hat{\boldsymbol{\beta}}_{1} - \eta \boldsymbol{R}_{1} \boldsymbol{\beta}_{1})\right\} \exp\left\{-\frac{1}{2} (\hat{\boldsymbol{\beta}}_{2} - \eta \boldsymbol{R}_{2} \boldsymbol{\beta}_{2})^{T} (\boldsymbol{R}_{2} / N_{2} + a\boldsymbol{I})^{-1} (\hat{\boldsymbol{\beta}}_{2} - \eta \boldsymbol{R}_{2} \boldsymbol{\beta}_{2})^{T} (\boldsymbol{R}_{2} / N_{2} + a\boldsymbol{I})^{-1} (\hat{\boldsymbol{\beta}}_{2} - \eta \boldsymbol{R}_{2} \boldsymbol{\beta}_{2})\right\} \frac{1}{2\pi\sigma_{3k}^{2} \sqrt{1 - \rho^{2}}} \exp\left\{-\frac{1}{2(1 - \rho^{2})} \left[\frac{\beta_{1j}^{2} + \beta_{2j}^{2} - 2\rho\beta_{1j}\beta_{2j}}{\sigma_{3k}^{2}}\right]\right\} d\beta_{1j} d\beta_{2j}$$

 $\times \, \pi_{3k} p_3$

$$\propto \int \int \exp\left\{-\frac{N_1}{2}\eta^2 \boldsymbol{\beta}_1^T \boldsymbol{B}_1 \boldsymbol{\beta}_1 + N_1 \eta \widehat{\boldsymbol{\beta}}_1^T \boldsymbol{A}_1 \boldsymbol{\beta}_1\right\} \exp\left\{-\frac{N_2}{2}\eta^2 \boldsymbol{\beta}_2^T \boldsymbol{B}_2 \boldsymbol{\beta}_2 + N_2 \eta \widehat{\boldsymbol{\beta}}_2^T \boldsymbol{A}_2 \boldsymbol{\beta}_{12}\right\} \frac{1}{2\pi\sigma_{3k}^2 \sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\frac{\beta_{1j}^2 + \beta_{2j}^2 - 2\rho\beta_{1j}\beta_{2j}}{\sigma_{3k}^2}\right]\right\} d\beta_{1j} d\beta_{2j}$$

 $\times \pi_{3k} p_3$

 $\times \, \pi_{3k} p_3$

$$\propto \int \int \exp\left\{-\frac{N_1}{2}\eta^2 B_{1,jj}\beta_{1j}^2 - N_1\eta^2 \sum_{i\neq j} B_{1,ij}\beta_{1i}\beta_{1j} + N_1\eta \sum_i A_{1,ij}\hat{\beta}_{1i}\beta_{1j}\right\} \exp\left\{-\frac{N_2}{2}\eta^2 B_{2,jj}\beta_{2j}^2 - N_2\eta^2 \sum_{i\neq j} B_{2,ij}\beta_{2i}\beta_{2j} + N_2\eta \sum_i A_{2,ij}\hat{\beta}_{2i}\beta_{2j}\right\} \frac{1}{2\pi\sigma_{3k}^2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\frac{\beta_{1j}^2 + \beta_{2j}^2 - 2\rho\beta_{1j}\beta_{2j}}{\sigma_{3k}^2}\right]\right\} d\beta_{1j}d\beta_{2j}$$

$$\propto \int \int \exp\{-a_{jk1}\beta_{1j}^2 - a_{jk2}\beta_{2j}^2 + N_1b_{1j} + N_2b_{2j} + c_k\beta_{1j}\beta_{2j}\} \frac{1}{2\pi\sigma_{3k}^2\sqrt{1-\rho^2}} d\beta_{1j}d\beta_{2j}$$

 $\times \pi_{3k} p_3$

$$\propto \frac{1}{\left(4a_{jk1}a_{jk2} - c_k^2\right)^{\frac{1}{2}}\sigma_{3k}^2} \exp\left\{a_{jk1}\mu_{jk1}^2 + a_{jk2}\mu_{jk2}^2 - c_k\mu_{jk1}\mu_{jk2}\right\} \times \frac{\pi_{3k}p_3}{\sqrt{1 - \rho^2}}$$

(1)

where

$$b_{1j} = \eta \sum_{i} A_{1,ij} \hat{\beta}_{1i} - \eta^2 \sum_{i \neq j} B_{1,ij} \beta_{1i}$$

$$b_{2j} = \eta \sum_{i} A_{2,ij} \hat{\beta}_{2i} - \eta^2 \sum_{i \neq j} B_{2,ij} \beta_{2i}$$

$$a_{jk1} = \frac{N_1}{2} \eta^2 B_{1,jj} + \frac{1}{2\sigma_{3k}^2 (1 - \rho^2)}$$

$$a_{jk2} = \frac{N_2}{2} \eta^2 B_{2,jj} + \frac{1}{2\sigma_{3k}^2 (1 - \rho^2)}$$

$$\mu_{jk1} = \frac{2a_{jk2}N_1b_{1j} + c_k N_2b_{2j}}{4a_{jk1}a_{jk2} - c_k^2}$$

$$\mu_{jk2} = \frac{2a_{jk1}N_2b_{2j} + c_k N_1b_{1j}}{4a_{jk1}a_{jk2} - c_k^2}$$

$$c_k = \frac{\rho}{(1 - \rho^2)\sigma_{3k}^2}$$

We next derive the conditional probability of SNP j whose effect sizes are population specific or null. It can be viewed as the special case to evaluate the last integrand by setting $\rho =$ $0, \beta_{2j} = 0$ (population 1 specific), $\rho = 0, \beta_{1j} = 0$ (population 2 specific), and $\beta_{1j} = \beta_{2j} =$ 0 (both null).

$$P(z_j = (1,k)|.) \propto \frac{1}{\sqrt{N_1 \eta^2 B_{1,jj} \sigma_{1k}^2 + 1}} \exp\left\{\frac{N_1^2 b_{1j}^2}{2(N_1 \eta^2 B_{1,jj} + \sigma_{1k}^{-2})}\right\} \times \pi_{1k} p_1$$

$$P(z_{j} = (2,k)|.) \propto \frac{1}{\sqrt{N_{2}\eta^{2}B_{2,jj}\sigma_{2k}^{2} + 1}} \exp\left\{\frac{N_{2}^{2}b_{2j}^{2}}{2(N_{2}\eta^{2}B_{2,jj} + \sigma_{2k}^{-2})}\right\} \times \pi_{2k}p_{2}$$
$$P(z_{j} = (0,0)|.) \propto p_{0}$$

We use log-exp-sum trick to avoid numerical overflow. Note that because SNPs in different LD blocks are approximately independent, we can sample their assignments in parallel. For population 1 specific SNPs, we only need to evaluate $P(z_j = (1, k)|.)$ and $P(z_j = (0, 0)|.)$.

Sampling β_1 , β_2 : For SNPs that are non-causal in any populations, we simply set the corresponding entries of β_1 and β_2 as zero. We then jointly sample the effect sizes of causal SNPs in one independent LD block. We introduce two indexes γ_1 and γ_2 such that β_{1,γ_1} and β_{2,γ_2} are non-zero. We combine β_{1,γ_1} and β_{2,γ_2} into one vector β_{γ} , which follows a bivariate normal distribution with mean 0 and variance-covariance matrix Σ_0 . The jth diagonal entry of Σ_0 is $\sigma_{z_j}^2$. If effect sizes of one SNP are non-zero with correlation in two populations, then $\Sigma_{0,ij} = \Sigma_{0,ji} = \rho \sigma_{z_j}^2$. Other entries of Σ_0 are zero. Note that the special structure of Σ_0 allows an analytical solution of Σ_0^{-1} . We next derive the conditional likelihood as:

$$p(\boldsymbol{\beta}_{1,\gamma_{1}},\boldsymbol{\beta}_{2,\gamma_{2}}|.)$$

$$\propto \exp\left\{-\frac{N_{1}}{2}\eta^{2}\boldsymbol{\beta}_{1}^{T}\boldsymbol{B}_{1}\boldsymbol{\beta}_{1}$$

$$+\eta\boldsymbol{\widehat{\beta}}_{1}^{T}\boldsymbol{A}_{1}\boldsymbol{\beta}_{1}\right\}\exp\left\{-\frac{N_{2}}{2}\eta^{2}\boldsymbol{\beta}_{2}^{T}\boldsymbol{B}_{2}\boldsymbol{\beta}_{2}+\eta\boldsymbol{\widehat{\beta}}_{2}^{T}\boldsymbol{A}_{2}\boldsymbol{\beta}_{2}\right\}\exp\left\{-\frac{1}{2}\left(\boldsymbol{\beta}_{1,\gamma_{1}}\,\boldsymbol{\beta}_{2,\gamma_{2}}\right)^{T}\boldsymbol{\Sigma}_{0}^{-1}\left(\boldsymbol{\beta}_{1,\gamma_{1}}\,\boldsymbol{\beta}_{2,\gamma_{2}}\right)\right\}$$

$$\propto \exp\left\{-\frac{1}{2}\eta^{2}\left(\boldsymbol{\beta}_{1,\gamma_{1}}\,\boldsymbol{\beta}_{2,\gamma_{2}}\right)^{T}\binom{N_{1}\boldsymbol{B}_{1,\gamma_{1}}}{0}\binom{N_{2}\boldsymbol{B}_{2,\gamma_{2}}}{N_{2}\boldsymbol{B}_{2,\gamma_{2}}}\right)\left(\boldsymbol{\beta}_{1,\gamma_{1}}\,\boldsymbol{\beta}_{2,\gamma_{2}}\right)\right\}$$

$$+\eta\left(N_{1}\boldsymbol{\widehat{\beta}}_{1}^{T}\boldsymbol{A}_{1,\gamma_{1}}\quad N_{2}\boldsymbol{\widehat{\beta}}_{2}^{T}\boldsymbol{A}_{2,\gamma_{2}}\right)\right\}\exp\left\{-\frac{1}{2}\left(\boldsymbol{\beta}_{1,\gamma_{1}}\,\boldsymbol{\beta}_{2,\gamma_{2}}\right)^{T}\boldsymbol{\Sigma}_{0}^{-1}\left(\boldsymbol{\beta}_{1,\gamma_{1}}\,\boldsymbol{\beta}_{2,\gamma_{2}}\right)\right\}$$

$$\propto \exp\left\{-\frac{1}{2}\eta^{2}\boldsymbol{\beta}_{\gamma}^{T}\boldsymbol{B}_{\gamma}\boldsymbol{\beta}_{\gamma}+\eta\boldsymbol{\widehat{\beta}}^{T}\boldsymbol{A}_{\gamma}\boldsymbol{\beta}_{\gamma}\right\}\exp\left\{-\frac{1}{2}\boldsymbol{\beta}_{\gamma}^{T}\boldsymbol{\Sigma}_{0}^{-1}\boldsymbol{\beta}_{\gamma}\right\}$$

$$= MVN(\eta \Sigma A_{\gamma}^{T} \widehat{\boldsymbol{\beta}}_{\gamma}, \Sigma)$$

(2)

where
$$\boldsymbol{\Sigma} = \left(\eta^2 \boldsymbol{B}_{\gamma} + \boldsymbol{\Sigma}_0^{-1} \right)^{-1}$$
, $\boldsymbol{A}_{\gamma} = \left(N_1 \widehat{\boldsymbol{\beta}}_1^T \boldsymbol{A}_{1,\gamma_1} \quad N_2 \widehat{\boldsymbol{\beta}}_2^T \boldsymbol{A}_{2,\gamma_2} \right)$, $\boldsymbol{B}_{\gamma} = \begin{pmatrix} N_1 \boldsymbol{B}_{1,\gamma_1} & 0\\ 0 & N_2 \boldsymbol{B}_{2,\gamma_2} \end{pmatrix}$. $\boldsymbol{A}_{1,\gamma_1}$

is the submatrix by selecting columns from matrices A_1 based on the index γ_1 . B_{1,γ_1} is the submatrix by selecting rows and columns from matrices B_1 based on the index γ_1 .

Sampling η : The full conditional likelihood is

$$p(\eta|.) \propto \exp\left\{-\frac{1}{2}N_{1}\eta^{2}\sum_{\beta_{1}^{T}B_{1}\beta_{1}}\right. + N_{1}\eta\sum_{\beta_{1}^{T}A_{1}\beta_{1}}\left.\right\} \exp\left\{-\frac{1}{2}N_{2}\eta^{2}\sum_{\beta_{2}^{T}B_{2}\beta_{2}}+N_{2}\eta\sum_{\beta_{2}^{T}A_{2}\beta_{2}}\right.\right\} \exp\left\{-\frac{\eta^{2}}{2\times10^{-6}}\right\} = N\left(\frac{N_{1}(\sum_{\beta_{1}^{T}B_{1}\beta_{1}})+N_{2}(\sum_{\beta_{2}^{T}B_{2}\beta_{2}})}{N_{1}(\sum_{\beta_{1}^{T}B_{1}\beta_{1}})+N_{2}(\sum_{\beta_{2}^{T}B_{2}\beta_{2}})+10^{-6}}, \frac{1}{N_{1}(\sum_{\beta_{1}^{T}B_{1}\beta_{1}})+N_{2}(\sum_{\beta_{2}^{T}B_{2}\beta_{2}})+10^{-6}}\right)$$

Sampling $\sigma_{1k}^2, \sigma_{2k}^2, \sigma_{3k}^2$: The full conditional likelihood is

$$p(\sigma_{1k}^2|.) \propto \prod_{j:z_j=(1,k)} \frac{1}{\sigma_{1k}} \exp\left\{-\frac{\beta_{1j}^2}{2\sigma_{1k}^2}\right\} \sigma_{1k}^{-2(.5-1)} \exp\left\{-\frac{.5}{\sigma_{1k}^2}\right\}$$
$$= IG\left(\frac{M_{1k}}{2} + .5, \frac{\sum_{j:z_j=(1,k)} \beta_{1j}^2}{2} + .5\right)$$

$$p(\sigma_{2k}^{2}|.) \propto \prod_{j:z_{j}=(2,k)} \frac{1}{\sigma_{2k}} \exp\left\{-\frac{\beta_{2j}^{2}}{2\sigma_{2k}^{2}}\right\} \sigma_{2k}^{-2(.5-1)} \exp\left\{-\frac{.5}{\sigma_{2k}^{2}}\right\}$$
$$= IG\left(\frac{M_{2k}}{2} + .5, \frac{\sum_{j:z_{j}=(2,k)} \beta_{2j}^{2}}{2} + .5\right)$$
$$p(\sigma_{3k}^{2}|.) \propto \prod_{j:z_{j}=(3,k)} \frac{1}{\sigma_{3k}} \exp\left\{-\frac{\beta_{1j}^{2} + \beta_{2j}^{2} - 2\rho\beta_{1j}\beta_{2j}}{2(1-\rho^{2})\sigma_{3k}^{2}}\right\} \sigma_{3k}^{-2(.5-1)} \exp\left\{-\frac{.5}{\sigma_{3k}^{2}}\right\}$$
$$= IG\left(\frac{M_{3k}}{2} + .5, \frac{\sum_{j:z_{j}=(3,k)} \beta_{1j}^{2} + \beta_{2j}^{2} - 2\rho\beta_{1j}\beta_{2j}}{2(1-\rho^{2})} + .5\right)$$

where $M_{1k} = \sum_{j} I(z_j = (1, k)), M_{2k} = \sum_{j} I(z_j = (2, k)), M_{3k} = \sum_{j} I(z_j = (3, k))$ and I is the indicator function.

Sampling V_{mk} , $m \in \{1,2,3\}$, $k \in \{1,2, \dots, 1000\}$: The full conditional likelihood is

$$p(V_{mk}|.) \propto V_k^{M_{mk}} (1 - V_k)^{M_{m(k+1)} + \dots + M_{1000} + \alpha_M - 1}$$
$$= Beta(1 + M_{mk}, \alpha + \sum_{l=k+1}^{1000} M_{ml})$$

for j=1,2,3 and k = 1, ..., 999. V_{m1000} equals 1 according to the definition of the truncated stickbreaking process.

Computing $\pi_{mk}, m \in \{1,2,3\}$: The prior probability can be computed as

$$\pi_{m1} = V_{m1}$$

$$\pi_{mk} = \prod_{l=1}^{k-1} (1 - V_{ml}) V_{mk} \ (k \ge 2)$$

Sampling p_0, p_1, p_2, p_3 : The conditional distribution is:

$$p_0, p_1, p_2, p_3 | \sim Dir(M_0 + 1, M_1 + 1, M_2 + 1, M_3 + 1)$$

where $M_0 = \sum_j I(z_j = (0,0))$, $M_1 = \sum_j I(z_j = (1,.))$, $M_2 = \sum_j I(z_j = (2,.))$, $M_{3k} = \sum_j I(z_j = (3,.))$. Note that we exclude population specific variants when computing M_0, M_1, M_2, M_3 .

Sampling $\alpha_m, m \in \{1,2,3\}$: The full conditional likelihood is

$$p(\alpha_m|.) \propto \prod_{l=1}^{1000-1} \alpha_m (1 - V_{ml})^{\alpha_m - 1} \alpha_m^{.1-1} \exp\{-.1 \times \alpha_m\}$$
$$= Gamma(0.1 + 1000 - 1, 0.1 - \sum_{k=1}^{1000-1} \log(1 - V_{mk}))$$

We record the effect sizes $\eta \beta_1$ and $\eta \beta_2$ together with the heritability $h_1^2 = \beta_1^T R_1 \beta_1$ and $h_2^2 = \beta_2^T R_2 \beta_2$ for each iteration and compute the average of all posterior samples as the final estimator. We note that h_1^2 and h_2^2 together with the maximum of effect sizes can be used to assess whether the algorithm converges.