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population prediction of complex traits
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Summary
Polygenic risk score (PRS) has demonstrated its great utility in biomedical research through identifying high-risk individuals for different

diseases from their genotypes. However, the broader application of PRS to the general population is hindered by the limited transfer-

ability of PRS developed in Europeans to non-European populations. To improve PRS prediction accuracy in non-European populations,

we develop a statistical method called SDPRX that can effectively integrate genome wide association study summary statistics from

different populations. SDPRX automatically adjusts for linkage disequilibrium differences between populations and characterizes the

joint distribution of the effect sizes of a variant in two populations to be both null, population specific, or shared with correlation.

Through simulations and applications to real traits, we show that SDPRX improves the prediction performance over existing methods

in non-European populations.
Introduction

The polygenic risk score (PRS) of a complex trait for a given

individual is constructed by combining the estimated ef-

fect sizes of genetic markers across the genome for this in-

dividual. PRS has received great interest recently because of

its ability to identify individuals with high disease risk for

more effective population screening, diagnosis, and moni-

toring.1 However, PRSs for most diseases to date have been

primarily developed for Europeans, as most well-powered

genome-wide association studies (GWASs) have been per-

formed in cohorts of European ancestry. There can be sub-

stantial reduction in prediction accuracy when the PRSs

derived from European samples are directly applied to

non-European populations, leading to possible health

disparities.2,3

The limited generalizability of PRS across different pop-

ulations may be attributed but not limited to a number

of factors. First, there is a lack of well-powered GWASs for

training PRS models in the non-European populations.

Second, the pattern of linkage disequilibrium (LD) and

the tagging of causal variants can be different across popu-

lations. Third, the allele frequencies of variants vary be-

tween populations, and some variants can even be popula-

tion specific. As a general rule, the effect sizes of rarer

variants are harder to estimate and GWASs with larger sam-

ple size are required in order to provide accurate estimates.

Fourth, the effect sizes of one variant can be null (i.e., no

effect), population specific (non-zero in one population),

or correlated in two populations.4,5 Therefore, the effect

sizes estimated from European GWASs may or may not

be directly transferable to other populations.

Great efforts have been made in recent years to improve

the genetic diversity of GWASs.6,7 Increased availability of
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GWAS summary statistics and biobank data from non-Eu-

ropean ancestries creates an opportunity for developing

novel methods to improve the accuracy of PRS in different

populations. One general approach is to first estimate ef-

fect sizes in each population separately and then derive a

linear combination of the estimated effect sizes from a vali-

dation dataset of the target population.8 Other approaches

include jointly modeling GWAS summary statistics from

multiple populations under the assumption that the causal

variants are largely shared across populations.9–12

Here, we propose SDPRX, an extension of SDPR,13 which

integrates GWAS summary statistics and LD matrices

from two populations with effect sizes under a hierarchical

Bayesianmodel. SDPRX characterizes the joint distribution

of the effect sizes of a SNP (single-nucleotide polymor-

phism) in two populations to be both null, population

specific, or shared with correlation. We compared the per-

formance of SDPRX with existing methods through exten-

sive simulations and applications to 15 traits in the East

Asian (EAS) and seven traits in the African (AFR) individuals

from theUKBiobank.14We show that SDPRXmay substan-

tially improve the prediction accuracy in non-European

populations over the existing methods.
Material and methods

Overview of SDPRX
As a hierarchical Bayesian model, SDPRX has two parts—likeli-

hood and prior (Figure 1). The likelihood connects the pair of mar-

ginal effect sizes in GWAS summary statistics from the two popu-

lations with true effect sizes through a multivariate normal

distribution accounting for LD:

bb1 j h; b1 � NðR1 hb1;R1=N1 þ aIÞbb2 j h; b2 � NðR2 hb2;R2=N2 þ aIÞ ; (Equation 1)
Haven, CT, USA; 2Department of Biostatistics, Yale School of Public Health,

erican Journal of Human Genetics 110, 13–22, January 5, 2023 13

mailto:hongyu.zhao@yale.edu
https://doi.org/10.1016/j.ajhg.2022.11.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2022.11.007&domain=pdf


Figure 1. Illustration of the modeling framework of SDPRX
SDPRX integrates GWAS summary statistics and LD matrices from two populations through the likelihood function. The prior charac-
terizes the joint distribution of the effect sizes of a SNP in two populations to be both null, population specific, or shared with correla-
tion. After fitting the model through MCMC, it outputs the adjusted effect sizes for calculation of PRS.
where bb1 and bb2 are themarginal effect sizes,R1 andR2 are the LD

matrices, and N1 and N2 are GWAS sample sizes for populations 1

and 2, respectively. Compared with the commonly used assump-

tion bbjb � NðRb;R =NÞ, the function above has two variations.13

First, it shrinks the off-diagonal covariance by a constant identity

matrix aI to avoid the over-estimation of effect sizes b1 and b2 for

SNPs in high LD as a result of the mismatch between GWAS sum-

mary statistics and reference panel. Second, it introduces a redun-

dant parameter h so that the choice of hyperparameters of the

prior on the variance components does not constrain the posterior

inference.15We setN1a ¼ N2a ¼ 1 and let h � Nð0;106Þ based on

our SDPR paper as a small shrinkage would allow the algorithm to

converge.13.

For each SNP j, we then specify the following joint distribution

as the prior on the effect sizes (bj1, bj2) in two populations 
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This prior characterizes the genetic architecture of one trait in

two populations by a mixture of four mutually exclusive compo-

nents. The first term describes the effect sizes of one SNP as zero

(Dirichlet delta distribution) in both populations. The second,

third, and fourth terms represent the effect sizes of one SNP as

non-zero in population 1 only, non-zero in population 2 only,

or non-zero and correlated in both populations. We note that if

a SNP is only present in one population, it will be assigned to

the first term (null) or one of the second and third terms (popula-

tion specific).

We further assigned a Dirichlet distribution prior on the proba-

bility of each SNP to be null (p0), population 1 specific (p1), popu-

lation 2 specific (p2), and shared with correlation (p3).

�
p0; p1; p2; p3

� � Dirð1Þ (Equation 3)

In simulation and real data analysis, we often found that SDPRX

over-estimated the proportion of SNPs with population-specific ef-

fects andunder-estimated theproportionofSNPswithsharedeffects,

whichwasdue to the identifiability issues causedby SNPs inhighLD

(Figure S1). To fix this issue, we introduce an option for SDPRX

assuming no population-specific effects for shared variants (p0 ¼
0:25; p1 ¼ p2 ¼ 0;p3 ¼ 0:25).We foundthat thisoption improved

the prediction accuracy for most traits in real data analysis, suggest-

ing that the genetic effects formost complex traits are indeed shared
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across ancestries. We recommend the user to run both options and

select the better result based on the validation dataset.

SDPRX adopts the idea of Bayesian nonparametric prior from

SDPR, which is adaptive to different parametric assumptions. Spe-

cifically, for the second (population 1 specific), third (population 2

specific), and fourth terms (shared with correlation), we used the

truncated stick-breaking process to represent the variance compo-

nents and probability of assignments.16 The truncation needs to

be applied so that the maximum number of components of the

mixture model is finite. We found that setting the maximum com-

ponents to 1,000 was sufficient for our simulation and real data

application because the number of non-trivial components, to

which SNPs were assigned, was way fewer than 1,000. For

example, for the second term (population 1 specific), we had:

V1k � Betað1; a1Þ; k ¼ 1;.;1000

p11 ¼ V11

p1k ¼
Yk�1

m¼1

ð1 � V1mÞV1k; k ¼ 2;.1000

s2
1k � IGð:5; :5Þ

a1 � Gammað0:1; 0:1Þ : (Equation 4)

The cross-population genetic correlation r can be obtained from

software like Popcorn.17We set rho to the estimated value in simu-

lation and real data analysis. To reduce the computational burden,

SDPRX partitioned the LD matrix (element-wise maximum of LD

matrices from two populations) into approximately independent

LD blocks.13,18 We developed a Markov chain Monte Carlo

(MCMC) algorithm based on the Gibbs sampler to fit the model

(supplemental methods). In practice, we used 1,000 MCMC itera-

tions and the first 200 iterations as the burn-in. We outputted the

mean posterior effect sizes hb1 and hb2 as the weights to derive PRS

for two populations. When an independent validation dataset is

available, one can also perform a convex combination of the

output weights (a increased from 0 to 1 by a step of 0.05) and select

the best a to further optimize the performance:

btarget ¼ ab1 þ ð1 � aÞb2 : (Equation 5)

Existing methods
Wecompared theperformanceof SDPRXwithfiveothermethods: (1)

PRS-CSx as implemented in the PRS-CSx software; (2) LDpred2 as im-

plemented in the bigsnpr package; (3) XPASS as implemented in the

XPASS package; (4) DBSLMM as implemented in the DBSLMMpack-

age; and (5) Lassosum as implemented in the Lassosum package. For

PRS-CSx, the global shrinkage parameter was specified as {1e�6,

1e�4, 1e�2, 1, auto}. For LDpred2, we ran LDpred2-inf, LDpred2-

auto, and LDpred2-grid and reported the best performance of three

options. The grid of hyperparameters was set as non-sparse, p in a

sequence of 21 values from 10�5 to 1 on a log-scale, and h2 within

{0.7, 1, 1.4} of h2
LDSC. For XPASS, population-specific effects were

included in both populations (p < 10�10, clump_r2 ¼ 0.1,

clump_kb ¼ 1,000). For DBSLMM, p value threshold was iterated

within {10�5, 10�6, 10�7, 10�8}, r2 was iterated within {0.05, 0.1,

0.15, 0.2, 0.25}, and h2 was set as h2
LDSC. For Lassosum, lambda was

set in a sequence of 20 values from 0.001 to 0.1 on a log-scale and s
The Am
within {0.2,0.5,0.9,1}. In realdataanalysis,wealsoperformedalinear

regressionof phenotype on the PRSof twopopulations on the valida-

tion dataset to learn the weights for combination of effect sizes.

Simulations
To simulate individual-level genotypes from the 1000 Genomes

Phase 3 haplotype, we first randomly selected 3,000 SNPs from the

first 30,000 common SNPs (minor allele frequency [MAF] > 0.05 in

East Asians (EAS), Europeans (EUR), and Africans (AFR)) on chromo-

somes 1 to 10. The curated haplotypes reduced the computational

burden of Hapgen2 while still providing a good representation of

the real population structure. The simulated genotypes all passed

thequality control (MAF>0.05, genotypemissing rate<0.1,pvalue

of Hardy-Weinberg Equilibrium test (pHWE) > 10�6).

We generated the simulated effect sizes of SNPs for two popula-

tions (EURþ EAS or EURþ AFR) according to the followingmodel:
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where h2 ¼ 0:3 andM ¼ 30;000. Wemainly considered four sce-

narios by increasing the proportions of population-specific and

shared causal variates: (1) p1 ¼ p2 ¼ p3 ¼ 0:0005, (2) p1 ¼
p2 ¼ p3 ¼ 0:005, (3) p1 ¼ p2 ¼ p3 ¼ 0:05, and (4) p1 ¼
p2 ¼ 0:05; p3 ¼ 0:9. We also varied the cross-population genetic

correlation r in {0.4, 0.6, 0.8}. Additionally, we considered one

simulation setting based on scenario 3 to evaluate the perfor-

mance of each method on admixed individuals. We then gener-

ated phenotypes from simulated effect sizes by using GCTA-sim,

and we performed marginal linear regression analysis on the

training data to obtain summary statistics by using PLINK2.19,20

UK Biobank analysis
We downloadedGWAS summary statistics fromGIANT, DIAGRAM,

GLGC, BBJ, and PAGE consortia.6,7,21–26 We followed the guideline

of LDHub to perform quality control on the GWAS summary statis-

tics for each population.27 We removed strand-ambiguous (A/T and

G/C) SNPs, insertions and deletions (INDELs), and SNPs with an

effective sample size less than 0.67 times the 90th percentile of sam-

ple size. We did not restrict to SNPs present in two GWAS summary

statistics so that population-specific SNPswould be retained. Table 1

shows thenumber of SNPspresent in the summary statistics for each

trait after intersecting with reference panel and test dataset. The

numberof SNPsmaynot be optimal to achieve thebest performance

for each trait, but it did allow a fair comparisonof differentmethods.

We used the 1000 Genomes EUR, EAS, and AFR samples as the LD

reference panel for EUR, EAS, and AFR (admixed populations for

PAGE study) summary statistics, respectively. For UK Biobank, we

first performed principal-component analysis (PCA) together with

1000 Genomes samples. We then trained a random forest classifier

to assign UK Biobank samples to one of five super populations

(EUR, EAS, AFR, South Asians [SAS], Admixed Americans [AMR])

on the basis of the top ten PCs (Figure S2). We retained 2,091
erican Journal of Human Genetics 110, 13–22, January 5, 2023 15



Table 1. Summary of sample size and SNPs in GWAS summary statistics and UK Biobank datasets

GWAS sample size
(EUR/EAS/AFR)

1KG HM3 and GWAS
and UKB SNPs (EAS)

1KG HM3 and GWAS
and UKB SNPs (AFR)

UKB EAS
sample size
(EAS)

UKB AFR
sample size
(AFR)

Height 252,23021/159,09526/49,7816 775,077 753,371 2,081 6,727

BMI 233,76622/158,28425/49,3356 755,775 832,542 2,078 6,715

HDL 885,5407/116,4047/90,8047 711,038 832,494 398 1,610

LDL 840,0067/79,6937/87,5597 772,482 832,494 440 1,710

Total cholesterol 929,7327/144,5797/92,5547 445,763 832,494 440 1,714

Triglycerides 860,5477/81,0717/89,4677 772,505 832,494 440 1,714

Eosinophils 563,08528/62,07629/N/A 757,167 N/A 2,026 N/A

Lymphocytes 563,08528/62,07629/N/A 757,167 N/A 2,026 N/A

Monocytes 563,08528/62,07629/N/A 757,167 N/A 2,026 N/A

Neutrophils 563,08528/62,07629/N/A 757,167 N/A 2,026 N/A

Red blood cells 563,08528/108,79429/N/A 757,167 N/A 2,028 N/A

White blood cells 563,08528/107,96429/N/A 757,167 N/A 2,028 N/A

Platelets 563,08528/108,20829/N/A 757,167 N/A 2,028 N/A

Coronary artery disease 61,29430/101,09131/N/A 761,770 N/A 1,116 N/A

Type 2 diabetes 156,10923/191,76424/14,4806 570,266 722,296 1,263 4,809

The union of SNPs in GWAS summary statistics of two populations passing the quality control were intersected with the 1000 Genomes Hapmap3 reference panel
and UK Biobank to form the final SNP list.
unrelated EAS and 6,829 unrelated AFR samples with a predicted

probability greater than 0.9 to form the validation and test datasets.

We also selected 410 self-reported Black admixed individuals from

UK Biobank, as we found that the random forest classifier was not

able to accurately identify admixed individuals. We obtained a total

of around 800K Hapmap3 (HM3) SNPs after intersecting with the

SNPs of summary statistics and reference panel.

Phenotypes were selected on the basis of the relevant data fields

(50 for height, 21001 for BMI, 30780 for low-density lipoprotein

[LDL], 20760 for high-density lipoprotein [HDL], 20690 for total

cholesterol [TC], 30870 for triglycerides [TG], 30150 for count of

eosinophil [EOS], 30120 for lymphocyte [LYM], 30130 for mono-

cyte [MON], 30140 for neutrophil [NEU], 30010 for red blood cell

[RBC], 30000 for white blood cell [WBC], 30080 for platelet [PLT],

and self-report questionnaire and in-hospital record for coronary

artery disease [CAD] and type 2 diabetes). For 13 quantitative traits,

we reported the prediction R2 of PRS (variance explained by PRS)

defined as R2 ¼ 1 � SS1
SS0, where SS0 is the sum of squares of the re-

siduals of the restricted linear regressionmodel with covariates (an

intercept, age, sex, top ten PCs of the genotype data) and SS1 is the

sum of squares of the residuals of the full linear regression model

(covariates above and PRS). For two binary traits, we reported the

area under the curve (AUC) of PRS only for better comparison of

different methods. The percentage of the improvement of method

A over method B was defined as (metricA – metricB)/metricB.
Results

Simulations

We first evaluated the prediction performance of

each method via simulations across different genetic

architectures and training sample sizes. We focused
16 The American Journal of Human Genetics 110, 13–22, January 5, 2
on six methods—SDPRX, PRS-CSx,10 LDpred2,32 XPASS,9

DBSLMM,33 and Lassosum.34 LDpred2, DBSLMM, and Las-

sosum are single population methods that take non-EUR

GWAS summary statistics as input, while SDPRX, PRS-

CSx, and XPASS are multi-discovery methods that jointly

integrate GWAS summary statistics from multiple popula-

tions. We used Hapgen2 to simulate individual-level geno-

types of European (EUR), East Asian (EAS), and African

(AFR) populations by using the 1000 Genomes Phase 3 as

the reference haplotypes.35,36 We also used admix-simu to

simulate admixed individuals by a model of one pulse of

admixture nine generations ago with 80% contribution

fromAFR and 20% from EUR.37 Due to computational con-

straints, we only included 30,000 SNPs in total by selecting

3,000 SNPs fromeachof chromosomes 1 to 10. The training

cohort consisted of 40K EUR individuals and varying sam-

ple sizes (10, 20, 40K) of EAS and AFR individuals. The

reduced sample size of non-EUR populations aligns with

the fact that the sample size of most non-EUR GWASs is

smaller than EUR GWASs. The validation and test datasets

consisted of 5K individuals of each population. The genetic

architecture was simulated for two populations (EURþ EAS

or EURþAFR) as follows. Effect sizes of one SNP in two pop-

ulations can be both zero, population specific (non-zero in

population 1 or population 2), or correlated with the cross-

population genetic correlation.We fixed the total heritabil-

ity to be 0.3 and assumed that 80% of the total heritability

was explained by SNPs with correlated effect sizes between

the two populations (material and methods). The propor-

tion of SNPs with population 1-specific, population

2-specific, and correlated effect sizes was equally set to be
023



0.05% (scenario 1), 0.5% (scenario 2), and 5% (scenario 3).

For scenario 4, the proportion of SNPs with population

1-specific and population 2-specific effect sizes were set to

5% and the proportion of SNPs with shared effect sizes

was set to 90%. The cross-population genetic correlation

was set to be 0.8 (Figure 2), 0.6 (Figure S3), and 0.4

(Figure S4). Each simulation setting was repeated 10 times.

Further details of simulation can be found in the material

and methods section.

We generated summary statistics via regression analysis

of the training cohort as the input to SDPRX, PRS-CSx,10

LDpred2,32 XPASS,9 DBSLMM,33 and Lassosum.34 We

used the validation dataset to estimate LD matrix for

each method and tune parameters for LDpred2, PRS-CSx,

DBSLMM, and Lassosum. The prediction performance

was assessed by the square of Pearson correlation of PRS

and simulated phenotype in the independent test dataset.

We mainly focused on the results in EAS and AFR because

our main purpose is to jointly utilize EUR GWAS data to

improve the performance of PRS in non-EUR populations.

Overall, all methods performed better as the proportion

of causal SNPs decreased (Figure 2 and Table S1). Under a

highly sparse genetic architecture (scenario 1), the increase

of sample size providedminimal benefits because the effect

size per causal SNP was large enough for accurate estima-

tion. In contrast, the improvement with an increasing

sample size became apparent when the genetic architec-

ture was polygenic (scenarios 3 and 4). Among all

methods, XPASS did not perform well in the sparse setting

as the simulated data violated its assumption that all SNPs

are causal. LDpred2 had descent accuracy when the genetic

architecture was sparse or the sample size was large.

However, there was clear advantage of cross-population

methods (SDPRX and PRS-CSx) over LDpred2 when the

genetic architecture was polygenic (scenarios 3 and 4)

and the sample size was small (10 and 20K). Results were

similar for lower genetic correlations (Figures S3 and S4;

Tables S2 and S3) and admixed population (Figure S5).

These results suggest that jointly modeling EUR and non-

EUR GWASs can improve the prediction accuracy in non-

EUR populations if non-EUR GWAS alone was not well

powered. We can see that SDPRX outperformed the other

methods in most cases.

Prediction performance for UK Biobank traits

We next compared the performance of SDPRX with other

methods in predicting 13 quantitative traits (height,

bodymass index, high-density lipoproteins, low-density li-

poproteins, total cholesterol, triglycerides, count of eosin-

ophil, lymphocyte, monocyte, neutrophil, red blood cell,

white blood cell and platelet) and two binary traits (type

2 diabetes and coronary artery disease) for EAS individuals

in UK Biobank. For AFR individuals, the performance was

compared with six quantitative traits and one binary trait

because of the limited number of publicly available sum-

mary statistics. For AMR individuals, the comparison was

limited to height and BMI, as fewer than 100 individuals
The Am
had records for other traits in UK Biobank. We obtained

public GWAS summary statistics and performed quality

control to standardize the input (details in material and

methods; Table 1). Individuals in the GWAS do not overlap

with individuals in UK Biobank. EUR, EAS, and AFR sam-

ples from the 1000 Genomes Project were used to

construct the reference LD matrix for each method. We

selected unrelated EAS and AFR individuals in UK Biobank

on the basis of a random forest classifier (Figure S2). AMR

individuals were selected on the basis of self-reported ques-

tionnaire. For each population, we randomly assigned 1/3

of participants to the validation dataset for parameter tun-

ing and learning the linear combination of effect sizes.

The remaining participants formed the test dataset for

evaluation of the prediction performance. The random

assignment was repeated for 20 times. We reported the pre-

diction R2 of PRS (variance explained by PRS) for 13 quan-

titative traits and the AUC of PRS for two binary traits.

We first investigated the prediction accuracy of each

method in EAS (Figure 3 and Table S4) without learning

the linear combination of effect sizes. Consistent with sim-

ulations, SDPRX achieved the highest prediction accuracy

in all traits. The average improvement of SDPRX was 67%

over LDpred2, 40% over DBSLMM, and 86% over Lasso-

sum, suggesting that jointly modeling EUR and EAS

GWAS summary statistics indeed provided benefits

compared with using EAS GWAS summary statistics alone.

SDPRX was also on average 23% and 56% better than PRS-

CSX and XPASS. We then linearly combined EUR and EAS

effect sizes for eachmethod by weights learned on the vali-

dation dataset. SDPRX remained the best method for ten

traits with an average 11%, 28%, 19%, 17%, and 43%

improvement over PRS-CSX, LDpred2, XPASS, DBSLMM,

and Lassosum (Figure S6 and Table S5), respectively.

Results for AFR were similar to results for EAS (Figure 4

and Table S6). SDPRX performed best in most traits regard-

less of learning the linear combination of effect sizes. The

average improvement of SDPRX over PRS-CSx, LDpred2,

XPASS, DBSLMM, and Lassosum was 27%, 12%, 44%,

38%, and 51% before the linear combination and 17%,

36%, 37%, 24%, and 42% after the linear combination

(Figure S7 and Table S7). We also evaluated the perfor-

mance of each method for height and BMI for the limited

number of AMR individuals in UK Biobank and found

that SDPRX outperformed the other methods as well

(Figure S8).
Discussion

SDPRX takes GWAS summary statistics from two popula-

tions as input and thus is able to leverage shared informa-

tion from two populations to better estimate the effect

sizes of SNPs compared with single population methods

such as LDpred2. The prior assumption made by SDPRX

is more general than XPASS and PRS-CSx. Unlike SDPRX,

XPASS assumes that the genetic architecture is polygenic
erican Journal of Human Genetics 110, 13–22, January 5, 2023 17



Figure 2. Prediction performance of different methods on simulated data
The proportion of SNPs with population 1-specific, population 2-specific, and correlated effect sizes was equally set to be 0.05% (scenario
1), 0.5% (scenario 2), and 5% (scenario 3). For scenario 4, the proportion of SNPs with population 1-specific and population 2-specific
effect sizes were set to 5% and the proportion of SNPs with shared effect sizes was set to 90%. The cross-population genetic correlation
was set to be 0.8 and the heritability was 0.3. Simulation in each scenario was repeated for 10 times. For each boxplot, the central mark is
the median and the lower and upper edges represent the 25th and 75th percentiles.

18 The American Journal of Human Genetics 110, 13–22, January 5, 2023



Figure 3. Prediction performance of different methods for 13 quantitative traits and two binary traits in EAS samples from UK Bio-
bank without the linear combination of effect sizes
Selected participants with corresponding phenotypes were randomly split to form the validation (1/3) and test datasets (2/3). The mean
and standard deviation of R2 (quantitative trait) and AUC (binary trait) across 20 random splits are showed on the bar plot.
and all SNPs have non-zero effect sizes while empirically

methods assuming only part of SNPs having non-zero ef-

fect sizes often have better performance. Compared with

PRS-CSx, SDPRX directly incorporates the cross-popula-

tion genetic correlation into the model for better estima-

tion of shared effect sizes. These points, taken together,

may explain why SDPRX outperformed the other methods

in both simulation and real data analyses.

Although SDPRX improves the prediction accuracy in

non-EUR populations, it is far from overcoming the gap be-

tween performance of PRS in EUR and non-EUR popula-

tions. We think developing computational methods alone

will not be able to solve this issue, and there are two points

that may explain the gap based on the results presented in

this paper. First, the sample sizes of non-EUR GWASs are

limited. Results in EAS were overall better than results in

AFR because of the larger sample size of EAS GWASs. Sec-

ond, other factors such as genetic architecture may be

different for some traits in two populations. For example,

the performance of HDL, LDL, TC, and TG was different

in EAS and AFR in spite of similar GWAS sample sizes.

We also note that social, environmental, and familial fac-

tors were not considered in this study because we primarily

focused on comparison of methods, though they may play

an important role in the transferability of PRS.3

The computational time and memory usage of all

methods are listed in Table S8. For SDPRX and PRS-CSx,

we paralleled computation over 22 chromosomes and

used three threads per chromosome for the linear algebra
The Am
library (22 3 3 ¼ 66 threads in total). The time and mem-

ory usage are reported for the longest chromosome, which

was the rate-limiting step. LDpred2 was run in the

genome-wide mode with ten threads for parallel computa-

tion. DBSLMM and Lassosum were run with three threads

for parallel computation. No parallelization was used for

XPASS. One should keep in mind that the number of

MCMC iterations and threads for parallel computation af-

fects the computation time significantly, though we did

not explore it in this paper. Overall, the methods that do

not need to perform MCMC (XPASS, DBSLMM, and Lasso-

sum) were faster than the methods that need to perform

MCMC (SDPRX, PRS-CSx, and LDpred2). SDPRX was able

to finish the job in 10 h without consuming a large

amount of memory.

Lastly, we note three limitations of our current work that

we will address in the future. First, similar to other studies

(e.g., PRS-CSx), we restricted to HM3 SNPs for an easy com-

parison of different methods, which is not optimal, as it

might not include some informative SNPs. Second,

SDPRX is currently not designed for admixed populations,

which is challenging as the LD pattern would be heteroge-

nous and difficult to capture with a single LD matrix. To

our knowledge, how to connect the marginal effect sizes

in the GWAS summary statistics derived from admixed

populations with true effect sizes is also less clear, which

may deal with the adjustment of local ancestry and covari-

ates.38,39 Third, methods utilizing functional annotation

have shown to improve the performance in both single
erican Journal of Human Genetics 110, 13–22, January 5, 2023 19



Figure 4. Prediction performance of different methods for six quantitative traits and one binary trait in AFR samples from UK Bio-
bank without the linear combination of effect sizes
Selected participants with corresponding phenotypes were randomly split to form the validation (1/3) and test datasets (2/3). The mean
and standard deviation of R2 (quantitative trait) and AUC (binary trait) across 20 random splits are showed on the bar plot.
and cross-population settings.40,41 Incorporating func-

tional annotation may further improve the performance

of SDPRX.
Data and code availability

SDPRX is available at https://github.com/eldronzhou/SDPRX. The

code used in this paper is available at https://github.com/

eldronzhou/SDPRX_paper. The links to summary statistics can

be found in the web resources.
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Web resources

Admix-simu, https://github.com/williamslab/admix-simu

BBJ summary statistics, http://jenger.riken.jp/en/result

BCX summary statistics, ftp://ftp.sanger.ac.uk/pub/project/humgen/

summary_statistics/UKBB_blood_ cell_traits/

CARDIoGRAMplusC4D summary statistics, http://www.cardiogram

plusc4d.org/data-downloads/

DIAGRAM summary statistics, https://diagram-consortium.org/

downloads.html

GIANT summary statistics, https://portals.broadinstitute.org/colla

boration/giant/index.php/GIANT_consortium_data_files-GIANT_

Consortium_2012-2015_GWAS_Summary_Statistics

GLGC summary statistics, http://csg.sph.umich.edu/willer/public/

glgc-lipids2021/results/ancestry_specific/

LDpred2, https://github.com/privefl/bigsnpr

PAGE summary statistics, https://www.ebi.ac.uk/gwas/studies/GC

ST008053

PLINK, https://www.cog-genomics.org/plink/

Popcorn, https://github.com/brielin/Popcorn

PRS-CSx, https://github.com/getian107/PRScsx

XPASS, https://github.com/YangLabHKUST/XPASS
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Supplementary Figures 

 

Figure S1. An example of identifiability issue caused by difference of local LD pattern of SNPs in 

two populations. SNP 1 and SNP 2 are in LD and have similar marginal effect sizes in population 

1, while SNP2 and SNP3 are in LD and have similar marginal effect sizes in population 2. Two 

scenarios are likely to explain the observed GWAS summary statistics, which is not locally 

identifiable. In the first scenario, SNP 2 is causal and effect sizes are shared between 

populations. In the second scenario, SNP 1 is causal in population 1 and SNP 3 is causal in 

population 2. If genetic effects for most SNPs are shared between populations, then inference 

leading to population specific effect sizes would under-estimate the proportion of SNPs with 

shared effects and result in the loss of prediction accuracy.  



 

 

Figure S2. Principal component analysis of UK Biobank individuals after the assignment to one 

of five super populations (European, East Asian, African, Admixed American, South Asian) by a 

random forest classifier. We retained 2091 unrelated EAS and 6829 unrelated AFR samples with 

a predicted probability greater than 0.9 to form the validation and test datasets.  

 



 

Figure S3. Prediction performance of different methods on simulated data. The proportion of 

SNPs with population 1 specific, population 2 specific and correlated effect sizes was equally set 

to be 0.05% (Scenario 1), 0.5% (Scenario 2) and 5% (Scenario 3). For Scenario 4, the proportion 



of SNPs with population 1 specific, population 2 specific effect sizes were set to 5% and the 

proportion of SNPs with shared effect sizes was set to 90%. The cross-population genetic 

correlation was set to be 0.6 and the heritability was 0.3. Simulation in each scenario was 

repeated for 10 times. For each boxplot, the central mark is the median and the lower and 

upper edges represent the 25th and 75th percentiles.  

 

 

 

 

 

 



 

Figure S4. Prediction performance of different methods on simulated data. The proportion of 

SNPs with population 1 specific, population 2 specific and correlated effect sizes was equally set 

to be 0.05% (Scenario 1), 0.5% (Scenario 2) and 5% (Scenario 3). For Scenario 4, the proportion 

of SNPs with population 1 specific, population 2 specific effect sizes were set to 5% and the 



proportion of SNPs with shared effect sizes was set to 90%. The cross-population genetic 

correlation was set to be 0.4 and the heritability was 0.3. Simulation in each scenario was 

repeated for 10 times. For each boxplot, the central mark is the median and the lower and 

upper edges represent the 25th and 75th percentiles.  

 

 

 

 

 

 

 

 

 

 

 



 

Figure S5. Prediction performance of different methods on simulated data for admixed 

individuals. The proportion of SNPs with population 1 specific, population 2 specific and 

correlated effect sizes was equally set to be 5% (Scenario 3). The cross-population genetic 

correlation was set to be 0.8 and the heritability was 0.4. The sample size was 40K for both EUR 

and AMR individuals. Simulation in each scenario was repeated for 10 times. For each boxplot, 

the central mark is the median and the lower and upper edges represent the 25th and 

75th percentiles.  

 

 

 

 

 



 

Figure S6. Prediction performance of different methods for 15 quantitative traits and 2 binary 

traits in EAS samples from UK Biobank with the linear combination of effect sizes. Selected 

participants with corresponding phenotypes were randomly split to form the validation (1/3) 

and test datasets (2/3). The mean and standard deviation of R2 (quantitative trait) and AUC 

(binary trait) across 20 random splits are showed on the bar plots. 

 



 

Figure S7. Prediction performance of different methods for 6 quantitative traits and 1 binary 

trait in AFR samples from UK Biobank with the linear combination of effect sizes. Selected 

participants with corresponding phenotypes were randomly split to form the validation (1/3) 

and test dataset (2/3). The mean and standard deviation of R2 (quantitative trait) and AUC 

(binary trait) across 20 random splits are showed on the bar plots. 



 

Figure S8. Prediction performance of different methods for 2 quantitative traits in AMR samples 

from UK Biobank. Selected participants with corresponding phenotypes were randomly split to 

form the validation (1/3) and test dataset (2/3). The mean and standard deviation of R2 

(quantitative trait) across 20 random splits are showed on the bar plots. 

 

 

 

 

 

 

 



Supplementary Tables 

  EAS AFR 
  10K 20K 40K 10K 20K 40K 

Scene 1 

SDPRX 0.290 0.292 0.294 0.292 0.294 0.294 
PRS-CSx 0.268 0.274 0.274 0.263 0.268 0.261 
LDpred2 0.290 0.293 0.296 0.292 0.292 0.294 
XPASS 0.224 0.231 0.233 0.225 0.231 0.231      

DBSLMM 0.250 0.256 0.250 0.246 0.244 0.240 
Lassosum 0.270 0.276 0.256 0.269 0.270 0.231 

Scene 2 

SDPRX 0.230 0.259 0.271 0.229 0.258 0.274 
PRS-CSx 0.219 0.240 0.255 0.210 0.236 0.253 
LDpred2 0.222 0.257 0.269 0.219 0.252 0.273 
XPASS 0.156 0.199 0.221 0.140 0.182 0.213 

DBSLMM 0.189 0.220 0.232 0.181 0.208 0.226 
Lassosum 0.204 0.238 0.253 0.201 0.239 0.262 

Scene 3 

SDPRX 0.145 0.184 0.214 0.131 0.169 0.208 
PRS-CSx 0.153 0.183 0.209 0.136 0.166 0.196 
LDpred2 0.127 0.171 0.207 0.108 0.154 0.200 
XPASS 0.135 0.164 0.193 0.111 0.140 0.173 

DBSLMM 0.111 0.164 0.199 0.090 0.137 0.183 
Lassosum 0.120 0.161 0.197 0.097 0.144 0.191 

 
 
Scene 4 

SDPRX 0.142 0.174 0.197 0.103 0.135 0.168 
PRS-CSx 0.134 0.167 0.200 0.103 0.135 0.169 
LDpred2 0.122 0.163 0.195 0.092 0.131 0.167 
XPASS 0.131 0.169 0.196 0.107 0.141 0.171 

DBSLMM 0.117 0.149 0.190 0.903 0.128 0.161 
Lassosum 0.122 0.159 0.187 0.089 0.126 0.159 

Table S1. The median of square of Pearson correlation across 10 replications when the cross-

population genetic correlation was 0.8. 

 

 

 

 



  EAS AFR 
  10K 20K 40K 10K 20K 40K 

Scene 1 

SDPRX 0.297 0.299 0.301 0.294 0.297 0.298 
PRS-CSx 0.274 0.278 0.276 0.265 0.269 0.262 
LDpred2 0.297 0.299 0.302 0.297 0.300 0.302 
XPASS 0.222 0.236 0.226 0.226 0.228 0.223 

DBSLMM 0.252 0.256 0.255 0.251 0.239 0.240 
Lassosum 0.279 0.278 0.259 0.274 0.274 0.241 

Scene 2 

SDPRX 0.233 0.259 0.274 0.230 0.260 0.277 
PRS-CSx 0.217 0.242 0.259 0.208 0.237 0.255 
LDpred2 0.225 0.254 0.276 0.217 0.258 0.278 
XPASS 0.158 0.196 0.221 0.146 0.191 0.215 

DBSLMM 0.193 0.219 0.234 0.187 0.215 0.232 
Lassosum 0.212 0.237 0.259 0.201 0.237 0.261 

Scene 3 

SDPRX 0.146 0.185 0.213 0.123 0.158 0.198 
PRS-CSx 0.145 0.180 0.210 0.119 0.156 0.185 
LDpred2 0.134 0.178 0.211 0.106 0.150 0.195 
XPASS 0.130 0.163 0.194 0.096 0.127 0.169 

DBSLMM 0.117 0.160 0.197 0.093 0.132 0.181 
Lassosum 0.125 0.167 0.199 0.099 0.142 0.184 

 
 
Scene 4 

SDPRX 0.127 0.163 0.198 0.096 0.131 0.167 
PRS-CSx 0.124 0.159 0.194 0.101 0.134 0.170 
LDpred2 0.119 0.159 0.195 0.098 0.130 0.168 
XPASS 0.131 0.164 0.192 0.105 0.138 0.172 

DBSLMM 0.114 0.151 0.189 0.094 0.128 0.162 
Lassosum 0.119 0.156 0.185 0.098 0.129 0.159 

Table S2. The median of square of Pearson correlation across 10 replications when the cross-

population genetic correlation was 0.6. 

 

 

 

 

 



  EAS AFR 
  10K 20K 40K 10K 20K 40K 

Scene 1 

SDPRX 0.294 0.301 0.299 0.287 0.291 0.294 
PRS-CSx 0.275 0.279 0.274 0.260 0.265 0.257 
LDpred2 0.292 0.298 0.300 0.286 0.290 0.294 
XPASS 0.216 0.221 0.228 0.215 0.222 0.224 

DBSLMM 0.245 0.254 0.248 0.245 0.244 0.243 
Lassosum 0.270 0.270 0.244 0.268 0.269 0.238 

Scene 2 

SDPRX 0.230 0.257 0.271 0.231 0.256 0.274 
PRS-CSx 0.213 0.244 0.260 0.208 0.236 0.256 
LDpred2 0.222 0.260 0.273 0.212 0.250 0.271 
XPASS 0.154 0.199 0.222 0.140 0.184 0.205 

DBSLMM 0.191 0.220 0.233 0.181 0.211 0.224 
Lassosum 0.207 0.238 0.260 0.194 0.233 0.257 

Scene 3 

SDPRX 0.135 0.181 0.212 0.116 0.159 0.203 
PRS-CSx 0.132 0.170 0.205 0.115 0.154 0.195 
LDpred2 0.123 0.169 0.211 0.109 0.154 0.197 
XPASS 0.122 0.155 0.190 0.095 0.135 0.176 

DBSLMM 0.113 0.157 0.197 0.093 0.142 0.185 
Lassosum 0.119 0.159 0.201 0.100 0.145 0.189 

 
 

Scene 4 

SDPRX 0.115 0.154 0.184 0.087 0.127 0.165 
PRS-CSx 0.118 0.154 0.184 0.085 0.123 0.158 
LDpred2 0.117 0.155 0.188 0.088 0.126 0.164 
XPASS 0.119 0.155 0.185 0.085 0.128 0.160 

DBSLMM 0.115 0.149 0.183 0.085 0.193 0.153 
Lassosum 0.113 0.150 0.176 0.087 0.123 0.153 

Table S3. The median of square of Pearson correlation across 10 replications when the cross-

population genetic correlation was 0.4. 

 

 

 

 

 



Traits SDPRX PRS-CSx LDpred2 XPASS DBSLMM Lassosum 
Height 0.213 0.173 0.174 0.171 0.152 0.144 

BMI 0.085 0.060 0.071 0.062 0.066 0.071 
HDL 0.159 0.117 0.102 0.131 0.106 0.069 
LDL 0.066 0.048 0.040 0.061 0.033 0.033 

Total 
cholesterol 

0.043 0.039 0.040 0.044 0.035 0.030 

Log 
triglycerides 

0.123 0.080 0.080 0.085 0.066 0.051 

Eosinophils 0.031 0.027 0.013 0.014 0.028 0.014 
Lymphocytes 0.096 0.063 0.039 0.037 0.053 0.025 
Monocytes 0.057 0.056 0.039 0.025 0.032 0.035 
Neutrophils 0.049 0.044 0.018 0.028 0.041 0.015 

Red blood cell 0.061 0.050 0.031 0.036 0.051 0.033 
White blood 

cell 
0.062 0.052 0.029 0.035 0.050 0.025 

Platelet  0.117 0.103 0.075 0.072 0.097 0.071 
Coronary 

Artery disease  
0.626 0.56 0.600 0.589 0.562 0.613 

Type 2 
diabetes 

0.606 0.604 0.573 0.585 0.560 0.536 

Table S4. The mean of variance of phenotypes explained by PRS for 13 quantitative traits and 

AUC for 2 binary traits in EAS across 20 random splits without the linear combination of effect 

sizes.  

 

 

 

 

 

 



Traits SDPRX PRS-CSx LDpred2 XPASS DBSLMM Lassosum 
Height 0.218 0.210 0.195 0.189 0.177 0.173 

BMI 0.085 0.059 0.086 0.062 0.080 0.059 
HDL 0.159 0.126 0.108 0.149 0.144 0.093 
LDL 0.061 0.052 0.026 0.058 0.035 0.041 

Total cholesterol 0.051 0.044 0.033 0.036 0.044 0.051 
Log triglycerides 0.115 0.096 0.102 0.093 0.094 0.077 

Eosinophils 0.030 0.029 0.024 0.028 0.030 0.027 
Lymphocytes 0.094 0.085 0.079 0.064 0.073 0.052 
Monocytes 0.068 0.062 0.041 0.045 0.050 0.037 
Neutrophils 0.051 0.049 0.048 0.046 0.044 0.032 

Red blood cell 0.061 0.054 0.054 0.052 0.057 0.039 
White blood cell 0.062 0.064 0.062 0.056 0.062 0.044 

Platelet 0.117 0.121 0.099 0.110 0.116 0.077 
Coronary Artery 

disease  
0.629 0.590 0.575 0.561 0.570 0.555 

Type 2 diabetes 0.600 0.587 0.566 0.604 0.554 0.555 
Table S5. The mean of variance of phenotypes explained by PRS for 13 quantitative traits and 

AUC for 2 binary traits in EAS across 20 random splits with the linear combination of effect 

sizes. 

 

 

 

 

 

 

 

 



Traits SDPRX PRS-CSx LDpred2 XPASS DBSLMM Lassosum 
Height 0.083 0.061 0.051 0.054 0.041 0.038 

BMI 0.041 0.025 0.023 0.028 0.021 0.019 
HDL 0.095 0.082 0.090 0.083 0.082 0.088 
LDL 0.128 0.120 0122 0.079 0.125 0.128 

Total 
cholesterol 

0.124 0.102 0.123 0.074 0.108 0.119 

Log 
triglycerides 

0.051 0.036 0.038 0.032 0.038 0.025 

Type 2 
diabetes 

0.560 0.551 0.544 0.548 0.539 0.536 

Table S6. The mean of variance of phenotypes explained by PRS for six quantitative traits and 

AUC for one binary trait in AFR across 20 random splits without the linear combination of effect 

sizes. 

 

Traits SDPRX PRS-CSx LDpred2 XPASS DBSLMM Lassosum 
Height 0.085 0.079 0.065 0.064 0.064 0.063 

BMI 0.041 0.038 0.037 0.030 0.035 0.024 
HDL 0.095 0.082 0.056 0.086 0.094 0.077 
LDL 0.125 0.117 0.095 0.079 0.125 0.132 

Total 
cholesterol 

0.117 0.101 0.090 0.074 0.109 0.098 

Log 
triglycerides 

0.050 0.031 0.028 0.031 0.024 0.020 

Type 2 
diabetes 

0.565 0.561 0.558 0.550 0.546 0.545 

Table S7. The mean of variance of phenotypes explained by PRS for six quantitative traits and 

AUC for one binary trait in AFR across 20 random splits with the linear combination of effect 

sizes. 

 

 



Traits SDPRX PRS-CSx LDpred2 XPASS DBSLMM Lassosum 
Height 9.8 (4.4) 6.2 (1.0) 1.1 (26.1) 0.3 (18.0) 0.8 (1.0) 0.1 (2.4) 

BMI 8 (4.7) 5.5 (1.0) 1.1 (25.8) 0.3 (22.0) 1.0 (1.0) 0.1 (2.4) 
HDL 8.5 (4.7) 5.2 (1.0) 0.9 (23.6) 0.3 (18.3) 0.9 (1.0) 0.1 (2.0) 
LDL 8.5 (4.7) 5.3 (1.0) 1.1 (23.5) 0.2 (19.3) 0.9 (1.0) 0.1 (2.3) 
TC 5.1 (4.0) 4.3 (1.0) 1.1 (23.6) 0.3 (14.8) 0.9 (1.0) 0.09 (1.6) 
TG 8.5 (4.7) 4.3 (1.0) 1.2 (23.6) 0.3 (19.3) 0.6 (0.8) 0.1 (2.3) 

EOS 8.4 (4.9) 5.4 (1.0) 1.0 (23.3) 0.3 (19.2) 0.9 (1.0) 0.1 (2.3) 
LYM 8.5 (4.9) 5.5 (1.0) 1.3 (23.3) 0.3 (19.2) 0.9 (1.0) 0.1 (2.0) 
MON 8.5 (4.9) 4.7 (1.0) 1.3 (23.3) 0.3 (19.2) 1.5 (1.0) 0.1 (2.0) 
NEU 8.5 (4.9) 4.3 (1.0) 1.3 (23.3)  0.3 (19.2) 0.9 (1.0) 0.1 (2.0) 
RBC 8.6 (4.9) 4.7 (1.0) 1.1 (23.3) 0.3 (19.2) 0.9 (1.0) 0.1 (2.3) 
WBC 8.7 (4.8) 5.2 (1.0) 1.1 (23.3) 0.3 (19.2) 0.8 (1.0) 0.1 (2.3) 
PLT 8.5 (4.9) 4.3 (1.0) 1.0 (23.3) 0.3 (19.2) 0.8 (1.0) 0.1 (2.0) 
T2D 4.5 (4.2) 5.5 (1.0) 1.0 (14.9) 0.3 (15.9) 0.8 (0.9) 0.1 (1.7) 
CAD 6.9 (4.5) 4.7 (0.9) 1.1 (22.3) 0.3 (17.4) 0.9 (0.9) 0.1 (2.5) 

 

Table S8.  Computational time and memory usage of different methods for 15 traits. The 

computational time is in hours. Memory usage of each method, as listed in the parenthesis, is 

measured in the unit of Gigabytes (Gb). 

 

 

 

 

 

 

 



Supplemental Methods 

MCMC Algorithm 

Here we describe our MCMC algorithm based on Gibbs sampling to obtain the posterior 

samples. For each SNP 𝑗, we introduce a vector 𝑧# = (𝑚, 𝑘),𝑚 ∈ {0,1,2,3}, 𝑘 ∈ {1,2,… ,1000} 

indicating whether effect sizes are population specific and which variance component it is 

assigned to. For example, 𝑧#  equals (1,4) if the effect sizes of SNP 𝑗 are population 1 specific and 

it is assigned to the fourth variance component.  

Compute 𝑨𝟏,𝑩𝟏, 𝑨𝟐,𝑩𝟐:  𝑨𝟏 = (𝑹𝟏 + 𝑁:𝑎𝑰)=:𝑹𝟏, 𝑩𝟏 = 𝑹𝟏𝑨𝟏. 𝑨𝟐 = (𝑹𝟐 + 𝑁>𝑎𝐼)=:𝑹𝟐, 𝑩𝟐 =

𝑹𝟐𝑨𝟐. 

 

Sampling 𝑧#: For each LD block, we first integrate out 𝜷𝟏 and 𝜷𝟐 to derive the conditional 

probability of SNP 𝑗	 whose effect sizes are correlated in two populations and assigned to the kth 

variance component:  

𝑃C𝑧# = (3, 𝑘)D. F

∝ HH𝑝C𝜷J𝟏D𝜷𝟏𝒋, 𝜂F	𝑝C𝜷J𝟐D𝜷𝟐𝒋, 𝜂F	𝑝C𝜷𝟏𝒋, 𝜷𝟐𝒋D𝑧# = (3, 𝑘), 𝜎NO> F 𝑑𝛽:#𝑑𝛽># 	

× 	𝑃C𝑧# = (3, 𝑘)F	



∝ HHexp V−
1
2
C𝜷J𝟏 − 𝜂𝑹𝟏𝜷𝟏F

X(𝑹𝟏/𝑁: + 𝑎𝑰)=:C𝜷J𝟏 − 𝜂𝑹𝟏𝜷𝟏FZ exp V−
1
2
C𝜷J>

− 𝜂𝑹𝟐𝜷𝟐F
X(𝑹𝟐/𝑁> + 𝑎𝑰)=:C𝜷J𝟐

− 𝜂𝑹𝟐𝜷𝟐FZ
1

2𝜋𝜎NO> \1 − 𝜌>
exp ^−

1
2(1 − 𝜌>)

_
𝛽:#> + 𝛽>#> − 2𝜌𝛽:#𝛽>#

𝜎NO>
`a 𝑑𝛽:#𝑑𝛽>#

× 𝜋NO𝑝N	

∝ HHexp V−
𝑁:
2 𝜂

>𝜷𝟏𝑻𝑩𝟏𝜷𝟏 + 𝑁:𝜂𝜷J𝟏
𝑻
𝑨𝟏𝜷𝟏Z exp V−

𝑁>
2 𝜂>𝜷𝟐𝑻𝑩𝟐𝜷𝟐

+ 𝑁>𝜂𝜷J𝟐
𝑻
𝑨𝟐𝛽:>Z

1
2𝜋𝜎NO> \1 − 𝜌>

exp ^−
1

2(1 − 𝜌>)
_
𝛽:#> + 𝛽>#> − 2𝜌𝛽:#𝛽>#

𝜎NO>
`a 𝑑𝛽:#𝑑𝛽>#

× 𝜋NO𝑝N		

∝ HHexp c−
𝑁:
2 𝜂

>𝐵:,##𝛽:#> − 𝑁:𝜂>e𝐵:,f#𝛽:f𝛽:#
fg#

+ 𝑁:𝜂e𝐴:,f#𝛽i:f𝛽:#
f

		j	 exp c−
𝑁>
2 𝜂>𝐵>,##𝛽>#> − 𝑁>𝜂>e𝐵>,f#𝛽>f𝛽>#

fg#

+ 𝑁>𝜂e𝐴>,f#𝛽i>f𝛽>#
f

		j
1

2𝜋𝜎NO> \1 − 𝜌>
exp ^−

1
2(1 − 𝜌>)

_
𝛽:#> + 𝛽>#> − 2𝜌𝛽:#𝛽>#

𝜎NO>
`a𝑑𝛽:#𝑑𝛽>#

× 𝜋NO𝑝N	

∝ 	HHexpk−𝑎#O:𝛽:#> −𝑎#O>𝛽>#> + 𝑁:𝑏:# + 𝑁>𝑏># + 𝑐O𝛽:#𝛽>#	n	
1

2𝜋𝜎NO> \1 − 𝜌>
𝑑𝛽:#𝑑𝛽>#

× 𝜋NO𝑝N	

∝
1

C4𝑎#O:𝑎#O> − 𝑐O>F
:
>𝜎NO>

	expk𝑎#O:𝜇#O:> + 𝑎#O>𝜇#O>> − 𝑐O𝜇#O:𝜇#O>	n ×
𝜋NO𝑝N
\1 − 𝜌>

 

(1) 



where  

𝑏:# = 	 𝜂e𝐴:,f#𝛽i:f
f

− 	𝜂>e𝐵:,f#𝛽:f
fg#

	

𝑏># = 	 𝜂e𝐴>,f#𝛽i>f
f

− 	𝜂>e𝐵>,f#𝛽>f
fg#

	 

𝑎#O: 	=
𝑁:
2 𝜂>𝐵:,## +

1
2𝜎NO> (1 − 𝜌>)

	

𝑎#O> 	=
𝑁>
2 𝜂>𝐵>,## +

1
2𝜎NO> (1 − 𝜌>)

	

𝜇#O: =
2𝑎#O>𝑁:𝑏:# + 𝑐O𝑁>𝑏>#

4𝑎#O:𝑎#O> − 𝑐O>
	

𝜇#O> =
2𝑎#O:𝑁>𝑏># + 𝑐O𝑁:𝑏:#

4𝑎#O:𝑎#O> − 𝑐O>
	

𝑐O =
𝜌

(1 − 𝜌>)𝜎NO>
 

We next derive the conditional probability of SNP 𝑗	 whose effect sizes are population specific 

or null. It can be viewed as the special case to evaluate the last integrand by setting 𝜌 =

0, 𝛽># = 0 (population 1 specific),  𝜌 = 0, 𝛽:# = 0 (population 2 specific), and 𝛽:# = 𝛽># =

0	(both null).  

𝑃C𝑧# = (1, 𝑘)D. F ∝
1

q𝑁:𝜂>𝐵:,##𝜎:O> + 1
exp ^

𝑁:>𝑏:#>

2(𝑁:𝜂>𝐵:,## + 𝜎:O=>)
a × 𝜋:O𝑝: 

𝑃C𝑧# = (2, 𝑘)D. F ∝
1

q𝑁>𝜂>𝐵>,##𝜎>O> + 1
exp ^

𝑁>>𝑏>#>

2(𝑁>𝜂>𝐵>,## + 𝜎>O=>)
a × 𝜋>O𝑝>	

𝑃C𝑧# = (0,0)D. F ∝ 𝑝r 



We use log-exp-sum trick to avoid numerical overflow. Note that because SNPs in different LD 

blocks are approximately independent, we can sample their assignments in parallel. For 

population 1 specific SNPs, we only need to evaluate 𝑃C𝑧# = (1, 𝑘)D. F and 𝑃C𝑧# = (0,0)D. F.  

 

Sampling 𝜷𝟏, 𝜷𝟐: For SNPs that are non-causal in any populations, we simply set the 

corresponding entries of 𝜷𝟏 and 𝜷𝟐	as zero. We then jointly sample the effect sizes of causal 

SNPs in one independent LD block. We introduce two indexes 𝛾: and 	𝛾>	such that 𝜷𝟏,𝜸𝟏  and 

𝜷𝟐,𝜸𝟐		are non-zero. We combine 𝜷𝟏,𝜸𝟏  and 𝜷𝟐,𝜸𝟐		into one vector 𝜷𝜸, which follows a bivariate 

normal distribution with mean 0 and variance-covariance matrix 𝚺𝟎. The jth diagonal entry of 

𝚺𝟎 is 𝜎wx
> . If effect sizes of one SNP are non-zero with correlation in two populations, then 

Σr,f# = Σr,z{ = 𝜌𝜎wx
> . Other entries of Σr are zero. Note that the special structure of 𝚺𝟎 allows an 

analytical solution of 𝚺𝟎=𝟏. We next derive the conditional likelihood as: 

𝑝C𝜷𝟏,𝜸𝟏, 𝜷𝟐,𝜸𝟐D	. F

∝ exp V−
𝑁:
2 𝜂

>𝜷𝟏𝑻𝑩𝟏𝜷𝟏

+ 𝜂𝜷J𝟏
𝑻
𝑨𝟏𝜷𝟏Z exp V−

𝑁>
2 𝜂>𝜷𝟐𝑻𝑩𝟐𝜷𝟐 + 𝜂𝜷J𝟐

𝑻
𝑨𝟐𝜷𝟐Z exp V−

1
2	
C𝜷𝟏,𝜸𝟏	𝜷𝟐,𝜸𝟐F

𝑻
𝚺𝟎=𝟏C𝜷𝟏,𝜸𝟏	𝜷𝟐,𝜸𝟐FZ 

∝ exp V−
1
2 𝜂

>C𝜷𝟏,𝜸𝟏	𝜷𝟐,𝜸𝟐	F
𝑻
|
𝑵𝟏𝑩𝟏,𝜸𝟏 𝟎

𝟎 𝑵𝟐𝑩𝟐,𝜸𝟐
~ C𝜷𝟏,𝜸𝟏	𝜷𝟐,𝜸𝟐	F

+ 𝜂(𝑁:𝜷J𝟏𝑻𝑨𝟏,𝜸𝟏 𝑁>𝜷J𝟐𝑻𝑨𝟐,𝜸𝟐)Z exp V−
1
2	
C𝜷𝟏,𝜸𝟏	𝜷𝟐,𝜸𝟐F

𝑻
𝚺𝟎=𝟏C𝜷𝟏,𝜸𝟏	𝜷𝟐,𝜸𝟐FZ	

∝ exp V−
1
2 𝜂

>𝜷𝜸𝑻𝑩𝜸𝜷𝜸 + 𝜂𝜷J𝑻𝑨𝜸𝜷𝜸Z exp V−
1
2𝜷𝜸

𝑻𝚺𝟎=𝟏𝜷𝜸Z	



= 𝑀𝑉𝑁(𝜂𝚺𝑨𝜸𝑻𝜷J𝜸, 	𝚺) 

(2)

where 𝚺 = C	𝜂>𝑩𝜸 + 𝚺𝟎=𝟏F
=:
, 𝑨𝜸 = C𝑁:𝜷J𝟏𝑻𝑨𝟏,𝜸𝟏 𝑁>𝜷J𝟐𝑻𝑨𝟐,𝜸𝟐F, 𝑩𝜸 = |

𝑁:𝑩𝟏,𝜸𝟏 0
0 𝑁>𝑩𝟐,𝜸𝟐

~. 𝑨𝟏,𝜸𝟏  

is the submatrix by selecting columns from matrices 𝑨𝟏 based on the index 𝛾:.  𝑩𝟏,𝜸𝟏  is the 

submatrix by selecting rows and columns from matrices 𝑩𝟏 based on the index 𝛾:.    

  

Sampling 𝜂: The full conditional likelihood is  

𝑝(𝜂|. )

∝ exp V−
1
2𝑁:𝜂

>e𝜷𝟏𝑻𝑩𝟏𝜷𝟏

+ 𝑁:𝜂e𝜷J𝟏𝑻𝑨𝟏𝜷𝟏		Z exp V−
1
2𝑁>𝜂

>e𝜷𝟐𝑻𝑩𝟐𝜷𝟐 + 𝑁>𝜂e𝜷J𝟐𝑻𝑨𝟐𝜷𝟐		Z exp ^−
𝜂>

2 × 10=�a		

= 𝑁 �
𝑁:(∑𝜷J𝟏𝑻𝑨𝟏𝜷𝟏) + 𝑁>(∑𝜷J𝟐𝑻𝑨𝟐𝜷𝟐)

𝑁:(∑𝜷𝟏𝑻𝑩𝟏𝜷𝟏) + 𝑁>(∑𝜷𝟐𝑻𝑩𝟐𝜷𝟐) + 10=�
, 	

1
𝑁:(∑𝜷𝟏𝑻𝑩𝟏𝜷𝟏) + 𝑁>(∑𝜷𝟐𝑻𝑩𝟐𝜷𝟐) + 10=�

� 

 

Sampling 𝜎:O> , 𝜎>O> , 𝜎NO> : The full conditional likelihood is   

𝑝(𝜎:O> |. ) ∝ �
1
𝜎:O

exp ^−
𝛽:#>

2𝜎:O>
a

#:wx�(:,O)

𝜎:O
=>(.�=:) exp ^−

. 5
𝜎:O>

a	

= 𝐼𝐺(
𝑀:O

2 + .5,
∑ 𝛽:#>#:wx�(:,O)	

2 + .5) 



𝑝(𝜎>O> |. ) ∝ �
1
𝜎>O

exp ^−
𝛽>#>

2𝜎>O>
a

#:wx�(>,O)

𝜎>O
=>(.�=:) exp ^−

. 5
𝜎>O>

a	

= 𝐼𝐺(
𝑀>O

2 + .5,
∑ 𝛽>#>#:wx�(>,O)	

2 + .5) 

𝑝(𝜎NO> |. ) ∝ �
1
𝜎NO

exp ^−
𝛽:#> + 𝛽>#> − 2𝜌𝛽:#𝛽>#

2(1 − 𝜌>)𝜎NO>
a

#:wx�(N,O)

𝜎NO
=>(.�=:) exp ^−

. 5
𝜎NO>

a	

= 𝐼𝐺(
𝑀NO

2 + .5,
∑ 𝛽:#> + 𝛽>#> − 2𝜌𝛽:#𝛽>##:wx�(N,O)	

2(1 − 𝜌>) + .5) 

where 𝑀:O = ∑ 𝐼 �𝑧# = (1, 𝑘)� ,𝑀>O = ∑ 𝐼 �𝑧# = (2, 𝑘)�# , 𝑀NO = ∑ 𝐼 �𝑧# = (3, 𝑘)�##  and 𝐼 is 

the indicator function. 

 

Sampling 𝑉�O,𝑚 ∈ {1,2,3}, 𝑘 ∈ {1,2,… ,1000}: The full conditional likelihood is 

𝑝(𝑉�O|. ) ∝ 𝑉O
���(1 − 𝑉O)��(���)�⋯���������=:		

= 𝐵𝑒𝑡𝑎(1 + 𝑀�O, 𝛼 + e 𝑀��

:rrr

��O�:

	) 

for j=1,2,3 and k = 1, …, 999. 𝑉�:rrr  equals 1 according to the definition of the truncated stick-

breaking process. 

 

Computing 𝜋�O,𝑚 ∈ {1,2,3}: The prior probability can be computed as 

𝜋�: = 𝑉�:		



𝜋�O =�(1 − 𝑉��)
O=:

��:

𝑉�O		(𝑘 ≥ 2)	 

 

Sampling 𝑝r, 𝑝:, 𝑝>, 𝑝N:  The conditional distribution is: 

𝑝r, 𝑝:, 𝑝>, 𝑝N|. ∼ 𝐷𝑖𝑟(𝑀r + 1,𝑀: + 1,𝑀> + 1,𝑀N + 1) 

where 𝑀r = ∑ 𝐼 �𝑧# = (0,0)� ,# 𝑀: = ∑ 𝐼 �𝑧# = (1, . )� , 𝑀> = ∑ 𝐼 �𝑧# = (2, . )�# ,𝑀NO =#

∑ 𝐼 �𝑧# = (3, . )�# . Note that we exclude population specific variants when computing 

𝑀r,𝑀:,𝑀>,𝑀N. 

 

Sampling 𝛼�,𝑚 ∈ {1,2,3}: The full conditional likelihood is  

𝑝(𝛼�|. ) ∝ 	 � 𝛼�(1 − 𝑉��)��=:𝛼�.:=: exp{−.1 × 𝛼�}	
:rrr=:

��:

	

= 𝐺𝑎𝑚𝑚𝑎(0.1 + 1000 − 1, 0.1 −	 e log	(1 − 𝑉�O)
:rrr=:

O�:

) 

 

We record the effect sizes 𝜂𝜷𝟏 and 𝜂𝜷𝟐 together with the heritability ℎ:> = 𝜷𝟏𝑻𝑹𝟏𝜷𝟏 and ℎ>> =

𝜷𝟐𝑻𝑹𝟐𝜷𝟐 for each iteration and compute the average of all posterior samples as the final 

estimator. We note that ℎ:> and ℎ>> together with the maximum of effect sizes can be used to 

assess whether the algorithm converges. 
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