Supporting Information

Antioxidant green-factories: Towards sustainable production of vitamin E in plant in vitro cultures

M Vidya Muthulakshmi, Aparajitha Srinivasan¹, Smita Srivastava*

Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences,

Indian Institute of Technology Madras (IIT Madras), Chennai-600 036, Tamil Nadu, India;

*Corresponding author: Prof. Smita Srivastava

E-mail: smita@iitm.ac.in;

Tel: 91-44-22574127

Fax: <u>91-44- 22274102</u>

¹ Present address: Berkeley Lab, Emeryville, California 94608, United States

Table 1. Plant metabolic model reconstructions and their applications

Species	Reconstructed model	Objective function (Modeling approach)	Applications
Arabidopsis thaliana	Heterotrophic cell culture ^{1,2,3}	Minimize total reaction flux (FBA)	Predicting metabolic capabilities under heterotrophy, elevated temperature and hyperosmosis
	AraGEM ⁴	Minimize uptake of photon/sucrose (FBA)	Predicting metabolic capabilities under photosynthesis, photorespiration and heterotrophy
	Improved AraGEM and C4GEM ⁵	Maximize (separately) CO ₂ fixation and biomass synthesis (FBA)	Comparative analysis of the effect of gene knockouts, light intensity and CO ₂ concentration between C3 and C4 plants
	Compartmentalized and photosynthetic / heterotrophic tissue-specific models ⁶	Minimization of flux difference (MoMA/ROOM)	Assessment of metabolic behavior of various tissue types with integration of omics data, predicting flux distribution following gene knockout, Metabolic engineering strategies (knockout targets) for vitamin E biosynthesis
	Bottom-up metabolic reconstruction- AraCore ⁷	Maximize biomass and energy efficiency (FBA)	Carbon utilization under normal, carbon-and nitrogen- limiting conditions, estimation of metabolic cost for enzyme production
Oryza sativa (Rice)	Photoautotrophic model based on RiceCyc ⁸	Minimize total reaction flux (FBA)	Predicting flux distributions in response to varying light intensity
	Central metabolic/regulatory network model representing germinating seeds and photorespiring leaves ⁹	Maximize biomass (FBA) followed by Flux variability analysis (FVA)	Predicting phenotypic and metabolic states of cells under anaerobic conditions and photorespiration (simulating flooding and drought stress)
	Improved genome-scale model iOS2164 ¹⁰	Maximize biomass (FBA) followed by random sampling	Understanding metabolic and regulatory states in response to light by integrating multi-omics data with constraint-based analysis
Solanum lycopersicum (Tomato)	Medium-scale central metabolic flux model of tomato fruit, constrained with experimental data ¹¹	Minimization of sum of the fluxes (FBA)	Understanding metabolic changes in developing tomato fruit
	Genome-scale metabolic model of tomato leaf-iHY3410 ¹²	Minimize total reaction flux (FBA) followed by max/min of individual reactions (FVA)	Investigating the photorespiratory metabolism (metabolic response to drought stress) and reaction essentiality analysis.

C4GEM	Multi-tissue models of maize,	Minimize photon uptake	Capturing interaction between mesophyll and bundle sheath
	sugarcane and wheat ¹³	(FBA)	cells in C4 photosynthesis.
Zea mays (Maize)	iRS1563 ¹⁴	Maximize biomass (FBA)	Predicting metabolic capabilities under photosynthesis,
			photorespiration and respiration
	Compartmentalized leaf	a. Flux-sum analysis	Constraint-based analysis of GSM integrated with
	genome-scale model	(FBA) followed by	a. Transcriptome and proteome data under nitrogen-
	a. Maize ¹⁵	FVA	limitation
	b. Mazie ¹⁶	b. Maximum rate of	b. Metabolomics and enzyme activity data to
		sucrose export	investigate yield of kernels
		(FBA)	
Hordeum vulgare	Central metabolic network of	Maximization of growth	Metabolic flux distribution under anoxic, hypoxic, aerobic
(Barley)	developing endosperm ¹⁷	(FBA) followed by	and enzyme deletion conditions
		minimization of overall flux	
		(Quadratic programming)	
	Multiscale metabolic modeling	Minimize carbon source	Dynamic FBA (dFBA) to analyze source-sink interactions
	by integrating static organ-	uptake followed by	during barley seed development
	specific models with dynamic	minimization of overall flux	
	whole-plant model ¹⁸	(FBA-static part)	
Brassica napus	Compartmentalized model of	Maximize biomass (FBA)	Simulation of seed growth at various oil accumulation stages
(Rapeseed)	central metabolism ¹⁹		and insights into network plasticity by FBA, principal
			component analysis and reaction deletion studies.
	Metabolic network model of	Allowable range of fluxes	Quantitative analysis of reaction contributions during storage
	seed storage metabolism in	(FVA)	metabolism using flux variabilities
	developing embryos- bna572 ²⁰		

References:

- Poolman, M. G.; Miguet, L.; Sweetlove, L. J.; Fell, D. A. A Genome-Scale Metabolic Model of Arabidopsis and Some of Its Properties. *Plant Physiol.* 2009, 151 (3), 1570–1581. https://doi.org/10.1104/pp.109.141267.
- Williams, T. C. R.; Poolman, M. G.; Howden, A. J. M.; Schwarzlander, M.; Fell, D. a.; Ratcliffe, R. G.; Sweetlove, L. J. A Genome-Scale Metabolic Model Accurately Predicts Fluxes in Central Carbon Metabolism under Stress Conditions. *Plant Physiol.* **2010**, *154* (1), 311–323. https://doi.org/10.1104/pp.110.158535.
- Cheung, C. Y. M.; Williams, T. C. R.; Poolman, M. G.; Fell, D. A.; Ratcliffe, R. G.; Sweetlove, L. J. A Method for Accounting for Maintenance Costs in Flux Balance Analysis Improves the Prediction of Plant Cell Metabolic Phenotypes under Stress Conditions. *Plant J.* 2013, 75 (6), 1050–1061. https://doi.org/10.1111/tpj.12252.
- de Oliveira Dal'Molin, C. G.; Quek, L.-E.; Palfreyman, R. W.; Brumbley, S. M.; Nielsen, L. K. AraGEM, a Genome-Scale Reconstruction of the Primary Metabolic Network in Arabidopsis. *Plant Physiol.* 2010, 152 (2), 579–589. https://doi.org/10.1104/pp.109.148817.
- Wang, C.; Guo, L.; Li, Y.; Wang, Z. Systematic Comparison of C3 and C4 Plants Based on Metabolic Network Analysis. *BMC Syst. Biol.* 2012, 6 (Suppl 2), S9. https://doi.org/10.1186/1752-0509-6-S2-S9.
- Mintz-Oron, S.; Meir, S.; Malitsky, S.; Ruppin, E.; Aharoni, A.; Shlomi, T. Reconstruction of Arabidopsis Metabolic Network Models Accounting for Subcellular Compartmentalization and Tissue-Specificity. *Proc. Natl. Acad. Sci.* 2012, 109 (1), 339–344. https://doi.org/10.1073/pnas.1100358109.
- Arnold, A.; Nikoloski, Z. Bottom-up Metabolic Reconstruction of Arabidopsis and Its Application to Determining the Metabolic Costs of Enzyme Production. *PLANT Physiol.* 2014, *165* (3), 1380– 1391. https://doi.org/10.1104/pp.114.235358.
- Poolman, M. G.; Kundu, S.; Shaw, R.; Fell, D. A. Responses to Light Intensity in a Genome-Scale Model of Rice Metabolism. Plant Physiol. 2013, 162 (2), 1060–1072. https://doi.org/10.1104/pp.113.216762.
- Lakshmanan, M.; Zhang, Z.; Mohanty, B.; Kwon, J.Y.; Choi, H.Y.; Nam, H.J.; Kim, D.I.; Lee, D.-Y. Elucidating Rice Cell Metabolism under Flooding and Drought Stresses Using Flux-Based Modeling and Analysis. *Plant Physiol.* **2013**, *162* (4), 2140–2150. https://doi.org/10.1104/pp.113.220178.
- Lakshmanan, M.; Lim, S.H.; Mohanty, B.; Kim, J. K.; Ha, S.H.; Lee, D.Y. Unraveling the Light-Specific Metabolic and Regulatory Signatures of Rice through Combined in Silico Modeling and Multi-Omics Analysis. *Plant Physiol.* 2015, *169* (4), pp.01379.2015. https://doi.org/10.1104/pp.15.01379
- Colombié, S.; Nazaret, C.; Bénard, C.; Biais, B.; Mengin, V.; Solé, M.; Fouillen, L.; Dieuaide-Noubhani, M.; Mazat, J.-P.; Beauvoit, B.; Gibon, Y. Modelling Central Metabolic Fluxes by Constraint-Based Optimization Reveals Metabolic Reprogramming of Developing *Solanum Lycopersicum* (Tomato) Fruit. *Plant J.* 2015, *81* (1), 24–39. https://doi.org/10.1111/tpj.12685.
- Yuan, H.; Cheung, C. Y. M.; Poolman, M. G.; Hilbers, P. A. J.; van Riel, N. A. W. A Genome-Scale Metabolic Network Reconstruction of Tomato (Solanum Lycopersicum L.) and Its Application to Photorespiratory Metabolism. *Plant J.* 2016, *85* (2), 289–304. https://doi.org/10.1111/tpj.13075.
- de Oliveira Dal'Molin, C. G.; Quek, L.-E.; Palfreyman, R. W.; Brumbley, S. M.; Nielsen, L. K. C4GEM, a Genome-Scale Metabolic Model to Study C4 Plant Metabolism. PLANT Physiol. 2010, 154 (4), 1871–1885. https://doi.org/10.1104/pp.110.166488.
- Saha, R.; Suthers, P. F.; Maranas, C. D. Zea Mays Irs1563: A Comprehensive Genome-Scale Metabolic Reconstruction of Maize Metabolism. PLoS ONE 2011, 6 (7), e21784. https://doi.org/10.1371/journal.pone.0021784.

- Simons, M.; Saha, R.; Amiour, N.; Kumar, A.; Guillard, L.; Clément, G.; Miquel, M.; Li, Z.; Mouille, G.; Lea, P. J.; Hirel, B.; Maranas, C. D. Assessing the Metabolic Impact of Nitrogen Availability Using a Compartmentalized Maize Leaf Genome-Scale Model. *Plant Physiol.* 2014, *166* (3), 1659–1674. https://doi.org/10.1104/pp.114.245787.
- 16. Cañas, R. A.; Yesbergenova-Cuny, Z.; Simons, M.; Chardon, F.; Armengaud, P.; Quilleré, I.; Cukier, C.; Gibon, Y.; Limami, A. M.; Nicolas, S.; Brulé, L.; Lea, P. J.; Maranas, C. D.; Hirel, B. Exploiting the Genetic Diversity of Maize Using a Combined Metabolomic, Enzyme Activity Profiling, and Metabolic Modeling Approach to Link Leaf Physiology to Kernel Yield. *Plant Cell* **2017**, *29* (5), 919–943. https://doi.org/10.1105/tpc.16.00613.
- Grafahrend-Belau, E.; Schreiber, F.; Koschützki, D.; Junker, B. H. Flux Balance Analysis of Barley Seeds: A Computational Approach to Study Systemic Properties of Central Metabolism. *Plant Physiol.* 2009, *149* (1), 585–598. https://doi.org/10.1104/pp.108.129635.
- Grafahrend-Belau, E.; Junker, A.; Eschenroder, A.; Muller, J.; Schreiber, F.; Junker, B. H. Multiscale Metabolic Modeling: Dynamic Flux Balance Analysis on a Whole-Plant Scale. *Plant Physiol.* 2013, *163* (2), 637–647. https://doi.org/10.1104/pp.113.224006.
- Pilalis, E.; Chatziioannou, A.; Thomasset, B.; Kolisis, F. An in Silico Compartmentalized Metabolic Model of Brassica Napus Enables the Systemic Study of Regulatory Aspects of Plant Central Metabolism. *Biotechnol. Bioeng.* 2011, 108 (7), 1673–1682. https://doi.org/10.1002/bit.23107.
- Hay, J.; Schwender, J. Metabolic Network Reconstruction and Flux Variability Analysis of Storage Synthesis in Developing Oilseed Rape (Brassica Napus L.) Embryos. *Plant J.* 2011, 67 (3), 526– 541. https://doi.org/10.1111/j.1365-313X.2011.04613.x.