

Supplementary Material

1 Supplementary Figures and Tables

1.1 Supplementary Figures

Supplementary Figure 1: Workflow for ranking MHC class I epitopes from viral proteins. The amino acid sequences of the viral proteins VSV-N, VSV-P, VSV-M, LCMV-GP and VSV-L were cut into peptides of length 8-11 using a sliding window approach. Epitope binding predictions were performed using the algorithms netMHCpan 4.1 (based on different data basis/method for binding affinity (BA) and eluted ligands (EL)) as well as MHCflurry 2.0 for the MHC alleles of interest. Predicted MHC class I binding epitopes were ranked by the consensus results of the three methods, which categorized them as strong binders (SB, %rank < 0.5), weak binders (WB, %rank < 2) or marginal binders (MB, %rank < 3), respectively. Peptides with similar ranking were further prioritized by binding stability of the peptide-MHC complex predicted with netMHCstabpan and dissimilarity to the unmutated mouse proteome by sequence alignments using the R package antigen.garnish. If applicable, the final candidate lists for each viral protein and each MHC class I allele were limited to a maximum of three peptides with an overlapping sequence of more than six amino acids.

¹ Strong binder (SB); weak binder (WB); marginal binder (MB).

² Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res (2020) 48:W449–W454.

³ O'Donnell TJ, Rubinsteyn A, Laserson U. MHCflurry 2.0: Improved Pan-Allele Prediction of MHC Class I-Presented Peptides by Incorporating Antigen Processing. Cell Syst (2020) 11:42–48.

⁴ Rasmussen M, Fenoy E, Harndahl M, Kristensen AB, Nielsen IK, Nielsen M, Buus S. Pan-Specific Prediction of Peptide–MHC Class I Complex Stability, a Correlate of T Cell Immunogenicity. J Immunol (2016) 197:1517–1524.

⁵ Richman LP, Vonderheide RH, Rech AJ. Neoantigen Dissimilarity to the Self-Proteome Predicts Immunogenicity and Response to Immune Checkpoint Blockade. Cell Syst (2019) 9:375-382.e4.

* The percentage of hydrophobic amino acids and the foreignness score were computed but were not used for epitope ranking.

Supplementary Figure 2: Overview of methodology. Based on the amino acid (AA) sequences of the viral proteins in silico epitope predictions were performed. Due to the decreasing viral protein expression, a decreasing number of candidate epitopes were included in the peptide candidate matrix. In this exemplary matrix, the same predicted epitope was included in both a horizontal and a vertical pool (e.g. N3 was included in pools 1 and 10). The peptides of the predicted epitopes were synthesized and subsequently the peptide pools were screened using splenocytes of VSV-GP immunized mice in an IFN- γ ELISpot. The significantly activating peptide pools were used to perform matrix deconvolution, for the selection of the individual peptide candidates. These were tested using splenocytes of VSV-GP immunized mice in an IFN- γ ELISpot, to identify the VSV-GP T cell epitopes that are presented by MHC-I and recognized by anti-viral T cells with their TCR.

Supplementary Material Vijver et al., 2023

H2-Kb-L46

H2-Kb-L47

H2-Kb-L48

H2-Kb-L49

H2-Kb-L50

H2-Kb-M39

H2-Kb-M40

H2-Kb-GP42

Α		POOL 1	POOL 2	POOL 3	POOL 4	POOL 5	POOL 6	POOL 7	
	POOL 8	H2-Db-N1	H2-Db-N8	H2-Db-N15	H2-Db-P22	H2-Db-P29	H2-Db-M36	H2-Db-GP43	
	POOL 9	H2-Db-N2	H2-Db-N9	H2-Db-P16	H2-Db-P23	H2-Db-P30	H2-Db-M37	H2-Db-GP44	
	POOL 10	H2-Db-N3	H2-Db-N10	H2-Db-P17	H2-Db-P24	H2-Db-M31	H2-Db-M38	H2-Db-GP45	
	POOL 11	H2-Db-N4	H2-Db-N11	H2-Db-P18	H2-Db-P25	H2-Db-M32	H2-Db-M39	H2-Db-L46	
	POOL 12	H2-Db-N5	H2-Db-N12	H2-Db-P19	H2-Db-P26	H2-Db-M33	H2-Db-M40	H2-Db-L47	
	POOL 13	H2-Db-N6	H2-Db-N13	H2-Db-P20	H2-Db-P27	H2-Db-M34	H2-Db-GP41	H2-Db-L48	
	POOL 14	H2-Db-N7	H2-Db-N14	H2-Db-P21	H2-Db-P28	H2-Db-M35	H2-Db-GP42	H2-Db-L49	H2-Db-L50
								H2-Db-L50	
B		POOL 1	POOL 2	POOL 3	POOL 4	POOL 5	POOL 6	POOL 7	
	POOL 8	H2-Kb-N1	H2-Kb-N8	H2-Kb-N15	H2-Kb-P22	H2-Kb-P29	H2-Kb-M36	H2-Kb-GP43	
	POOL 9	H2-Kb-N2	H2-Kb-N9	H2-Kb-P16	H2-Kb-P23	H2-Kb-P30	H2-Kb-M37	H2-Kb-GP44	
	POOL 10	H2-Kb-N3	H2-Kb-N10	H2-Kb-P17	H2-Kb-P24	H2-Kb-M31	H2-Kb-M38	H2-Kb-GP45	

									H2-Kb-L50		
Suppl	lementa	ry Figur	e 3: H2-	Db and 1	H2-Kb	matrix	deco	nvolution	to identify	individu	al
peptio	de candi	idates. A	-B) Based	on the pe	ptide poo	ol scree	ening, i	non-signifi	icant peptide	pools we	re
crosse	ed out (i	ndicated	by grey te	ext and fa	inter col	ors), th	nereby	identifyin	g the individ	dual H2-D)b
peptid	le candid	lates (A) a	and individ	ual H2-Kl	o peptide	candid	lates (E	3).			

H2-Kb-P27

POOL 11 H2-Kb-N4 H2-Kb-N11 H2-Kb-P18 H2-Kb-P25

POOL 12 H2-Kb-N5 H2-Kb-N12 H2-Kb-P19 H2-Kb-P26

POOL 14 H2-Kb-N7 H2-Kb-N14 H2-Kb-P21 H2-Kb-P28

POOL 13

H2-Kb-P20

Supplementary Figure 4: VSV-GP T cell epitopes presented by MHC-I alleles H2-Db and H2-Kb. Average number of IFN- γ spots of each VSV-GP T cell epitope per MHC-I allele. No statistically significant difference in mean number of IFN- γ spots was detected between H2-Db and H2-Kb (Mann Whitney U test; p=0.62).

7

Supplementary Figure 5: Intracellular cytokine staining and corresponding ELISpots using VSV-GP T cell epitopes. A) gating strategy and representative plots of negative control, positive control (PHA/ionomycin) and isotype control staining. B) Frequencies of IFN- γ^+ CD4⁺ T cells of splenocytes from mock or VSV-GP treated mice upon stimulation with individual peptides (10 µg/ml). C) Quantification of corresponding IFN- γ ELISpots, which were performed as a control for each ICS experiment (n=6 for mock, n=6 for VSV-GP, from three independently performed experiments). Significant differences between mock and VSV-GP treatment are indicated with asterisks (tested using two-way ANOVA with Sidak's multiple comparison). * p < 0.05; *** p ≤ 0.001; **** p ≤ 0.0001. Bar color represents from which viral protein the peptide is derived.

1.2 Supplementary Tables

Supplementary Table 1: VSV-GP T cell epitopes presented by H2-Db. The peptide name, average IFN- γ spot count, peptide sequence and peptide length are indicated for the significant epitopes from Figure 3.

Peptide	Average IFN-γ spot	Peptide	Peptide length
	count	sequence	
	VSV-GP treated mice		
H2-Db-N15	127	RAVMSLQGL	9
H2-Db-P18	156	FQPKKASLQPL	11
H2-Db-P21	92	RAEKSNYEL	9
H2-Db-GP42	494	KAVYNFATC	9
H2-Db-L50	313	FSLLNIYRI	9

Supplementary Table 2: VSV-GP T cell epitopes presented by H2-Kb. The peptide name, average IFN- γ spot count, peptide sequence, peptide length and overlapping motif are indicated for the significant epitopes from Figure 4.

Peptide	Average IFN-γ spot	Peptide	Peptide	Overlapping motif
	count	sequence	length	
	VSV-GP treated mice			
H2-Kb-N3	403	NSYLYGAL	8	NSYLYGAL
H2-Kb-N4	313	VNSYLYGAL	9	NSYLYGAL
H2-Kb-N5	268	ALATFGHL	8	-
H2-Kb-N7	662	RGYVYQGL	8	-
H2-Kb-N9	267	PAFHFWGQL	9	-
H2-Kb-P17	251	LGLRYKKL	8	KL
H2-Kb-P19	117	YLKSYSRL	8	-
H2-Kb-P21	178	VQSAKYWNL	9	-
H2-Kb-P23	133	KLYNQARV	8	KL
H2-Kb-P26	211	SNYELFQEDGV	11	-
H2-Kb-M38	148	AAPMIWDHF	9	-
H2-Kb-GP42	545	AVYNFATC	8	-
H2-Kb-GP45	168	LNHNFCNL	8	-
H2-Kb-L47	149	LIRKFNSL	8	-
H2-Kb-L50	103	LAGRFFSL	8	-