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Application of the g-formula  

 

We outlined the algorithm for our application of the g-formula approach as follows: 

 

Step 1, for each year between 2007 and 2016, model the conditional densities of time-varying 

PM2.5 and all confounding variables using the whole sample, given covariate histories, in the 

following temporal ordering: (1) airshed; (2) community size; (3) urban form; (4) annual family 

income (in decile); (5) census-tract level ethnic concentration; (6) census-tract level deprivation 

index; (7) census-tract level instability measure; (8) census-tract level dependency measure; and 

(9) annual PM2.5 exposure. Each variable was regressed against everything that came before it. 

Time-fixed covariates were included in all models. 

 

Step 2, model the conditional probability (discrete hazard) of nonaccidental death at each year, 

given PM2.5 and covariate histories, time-fixed covariates, and surviving and remaining 

uncensored to the previous time, using the whole sample. 

 

Step 3, simulate a cohort followed between 2007 and 2016 under the intervention of interest as 

follows: (1) select a random sample (n=10,000) from the study population; (2) for each 

individual in the resample cohort and for 2007, set PM2.5 and all other covariates to the observed 

values; (3) for each individual and for each year t from 2008 to 2016, predict time t covariates by 

applying coefficients estimated by covariate models in step 1 to data from times t-3, t-2, t-1, and 

t; (4) change time t covariate data as specified by the intervention of interest; (5) predict the 

probability of nonaccidental death between time t and t+1 by applying the coefficients estimated 

by outcome model in step 2 to data from times t-3, t-2, t-1, and t. Repeat (2) to (5) for each 

individual and for each year in the resampled cohort.  

 

Step 4, estimate marginal estimate of the risk of nonaccidental death under the intervention as the 

average of the subject-specific risks in the resampled cohort. 

 

Step 5, repeat steps 3 and 4 for each intervention of interest. 

 

Step 6, repeat steps 3-5 on 200 nonparametric bootstrap resamples to construct the 95% 

confidence intervals (CI) for the risk difference and risk ratio of nonaccidental death with 

measures of comparison between two interventions. 

 

 

Identifiability assumptions 

 

Like any modern causal inference methods, the application of the g-formula relies on three 

identifiability assumptions (exchangeable, positivity, and consistency). Exchangeability assumes 

the absence of unmeasured confounding. This identifiability assumption is external to the data,1-3 

requiring us to make the assumption based on subject-matter knowledge about the PM2.5-

mortality relationship. To do this, we created a directed acyclic diagram (DAG) to conceptualize 

our subject-matter knowledge about the qualitative causal structure linking PM2.5 exposure, 

nonaccidental death, and other measured and unmeasured covariates, according to the existing 
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literature. Using the established graphic rules (i.e., d-separation rules),4 we carefully evaluated 

potential confounding variables to be considered in the analysis and the possible impact of 

unmeasured confounding (if any). As shown in the DAG (Appendix Figure S1), it is highly 

unlikely that unmeasured confounding would appreciably explain our observed association of 

changes in PM2.5 exposure with changes in nonaccidental mortality. In addition, as described in 

our manuscript, we conducted a sensitivity analysis using Cox model to compare this study with 

the existing literature. We found that our estimated PM2.5-mortality association was consistent 

with those reported elsewhere.16-22 For example, in a recent large multiple-country cohort study, 

Strak et al. (2022) reported that each μg/m3 increase in PM2.5 exposure was associated with a 

hazard ratio of 1.02 (95% CI: 1.02 to 1.03) with nonaccidental mortality.16 Similarly, in a large 

cohort study comprising 61 million adults in the continental U.S., Di et al. estimated that every 

μg/m3 increase in PM2.5 exposure was associated with a hazard ratio of 1.01 (95% CI: 1.01 to 

1.01) with nonaccidental mortality.17 To enhance communication about our causal theories with 

readers and to be explicit about our assumption about exchangeability, we presented this DAG in 

our manuscript.  

 

The second assumption (positivity) posits that the probability of being exposed conditional on 

adjustment variables is greater than zero.3 This assumption was well supported by the fact that 

this study comprised a very large population-based cohort (2.7 million adults) and that all the 

intervention strategies examined would lead to only modest changes in individuals’ PM2.5 

exposures proportional to their observed exposure levels (ranging from ~1% to 14%, depending 

on year and source). The third assumption (consistency) further posits that the PM2.5 exposure 

levels under comparison correspond to well-defined interventions.2,3 This is indeed an important 

strength of this study. Previous studies often predicted sizable near-term reductions in the 

mortality effect of PM2.5 based on unspecified interventions and under the assumption of 

instantaneously eliminating human-caused PM2.5. In comparison, for our study interventions, we 

evaluated sustained and dynamic treatment regimes that comprised a sequence of actions across 

multiple strategies (e.g., 25% incremental), emission sources (e.g., transportation), and time 

periods. Our refined specifications of interventions were more supported by the data because the 

declines in ambient PM2.5 in many developed countries including Canada have been progressive 

over last several decades and were largely driven by air quality regulations (and technology 

developments). Although we may further delineate the intervention specifications, for example, 

to require the potential reductions in transportation PM2.5 by means of improving a given engine 

technology (e.g., crankcase ventilation systems or diesel oxidation catalysts), it is reasonable to 

assume that these additional specifications would produce approximately equivalent results. 

Taken together, by focusing on more clearly defined interventions that correspond to complex 

but more realistic air quality actions, this study improved upon the previous studies by 

sharpening counterfactual contrasts in PM2.5 exposures and mortality. This allowed for more 

meaningful interpretation of PM2.5 reductions and changes in mortality risk.  

 

We acknowledge that regardless of how much data are available, we cannot completely rule out 

the uncertainty about the identifiability assumptions. However, conditional on these 

identifiability assumptions (which are deemed reasonable in this study), our results derived from 

the g-formula approach can have causal interpretations. 
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Selected differences between the traditional Cox model and the g-formula 

 

Compared with the Cox model, a notable strength of the g-formula approach is that it is highly 

flexible and can be used to evaluate a range of potential interventions. These include complex 

dynamic interventions that can comprise a sequence of actions over time, which cannot be 

evaluated by the traditional Cox model. In addition, the g-formula generates marginal effect 

measures that are directly interpreted as the contrasts between the risk that would have been 

observed if everyone in the entire population had been subject to an intervention regime of 

interest and the risk that would have been observed if all individuals had been subject to a 

different intervention regime (e.g., the natural course). Such effect estimates are more useful for 

informing population-level interventions. Furthermore, the g-formula allows to yield the effect 

measures on the additive scale (in addition to the multiplicative scale). All of these 

characteristics are particularly relevant to the inferential goal of this study. An additional strength 

of the g-formula is that when the assumption that the covariates are independent of pollution 

does not hold, the Cox modeling approach would yield biased estimates but the g-formula 

approach would yield unbiased estimates.24 Although this advantage is likely inconsequential in 

the present study given the relatively low PM2.5 levels in Canada, in other regions with relatively 

high PM2.5 levels, this aspect of the g-formula may be more important. For more details, please 

refer to Appendix Table S4.  

 

 

Syntax of R code for implementation of the g-formula approach 

 

library(gfoRmula) 

library(data.table) 

library(survival) 

library(Hmisc) 

library(parallel) 

library(dplyr) 

 

########## Model code for Chen et al. ########## 

### Impact of lowering fine particulate matter from major emission sources on  

### mortality in Canada: a nationwide causal analysis 

 

########## Variables ########## 

### Baseline time-fixed variables 

### X1-X4: cubic spline terms of age 

### X5: sex 

### X6: race/ethnicity 

### X7: indigenous identity 

### X8: landed immigrant status 

### X9: years since in Canada 

### X10: marital status 

### X11: education 

### X12: employment 
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### X13: occupation 

### person_id: subject id 

 

### Time-varying variables 

### L1: airshed  

### L2: community size   

### L3: urban form 

### L4: family income 

### L5: ethnic concentration  

### L6: material deprivation  

### L7: residential instability 

### L8: dependency 

### A: annual PM2.5 (in log scale) 

### Y: nonaccidental death 

### time: follow up (in years) 

 

 

########## Specify model for outcome ########## 

 

outcome_model <- reformulate(c( 

  ### exposure  

  "I( log((exp(lag1_A)+exp(lag2_A)+exp(lag3_A))/3) )", 

   

  ### baseline covariates 

  "X1", "X2", "X3", "X4", "X5",  

  "X10", 'X12', 'X13', 'X11', 

  "X6", "X7", "X8", "I(X9 * X8)", 

   

  ### time-varying covariates 

  ### time-varying covariates are modeled using bounded normal likelihoods 

  ### they are rounded to closest integer and specified as factors in the outcome regression model  

  "as.factor(lag1_L1)", "as.factor(lag2_L1)", "as.factor(lag3_L1)",  

  "as.factor(lag1_L2)", "as.factor(lag2_L2)", "as.factor(lag3_L2)",   

  "as.factor(lag1_L3)", "as.factor(lag2_L3)", "as.factor(lag3_L3)", 

  "as.factor(lag1_L4)", "as.factor(lag2_L4)",  "as.factor(lag3_L4)", 

  "as.factor(lag1_L8)", "as.factor(lag2_L8)", "as.factor(lag3_L8)", 

  "as.factor(lag1_L6)", "as.factor(lag2_L6)", "as.factor(lag3_L6)", 

  "as.factor(lag1_L5)",  "as.factor(lag2_L5)", "as.factor(lag3_L5)", 

  "as.factor(lag1_L7)", "as.factor(lag2_L7)", "as.factor(lag3_L7)", 

   

  ### time 

  "time", "I(time*time)", 

   

  ### time - exposure interaction  

  paste0("I( log((exp(lag1_A)+exp(lag2_A)+exp(lag3_A))/3) )", " : ", "factor(time)")), 
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  response = "Y") 

 

 

########## Specify time-vayring covariates  ########## 

### variable names 

covnames <- c("L1", "L2", "L3",  

              "L4", "L5",  

              "L6", "L7", "L8", 

              "A") 

 

### model likelihoods 

covtypes <- c("bounded normal", "bounded normal", "bounded normal", 

              "bounded normal", "bounded normal",  

              "bounded normal", "bounded normal", "bounded normal",  

              "normal")   

 

### name labels 

covlabels <- covnames 

names(covlabels) <- c("Airshed", "Community size", "Urban form",  

                      "Family Income", "Ethnic concentration",  

                      "Material deprivation", "Residential instability", "Dependency",  

                      "PM2.5") 

 

### regression models 

tv_cov_models <- list(covmodels = c(  

   

  ### model for airshed 

  L1 ~ X1 + X2 + X3 + X4 +  

    X10 + X12 + X11 + X13 + 

    X5 +  

    X6 + X7 + X8 + I(X9 * X8) + 

    lag1_L1 + lag2_L1 + lag3_L1 +  

    lag1_L2 + lag2_L2 + lag3_L2 +  

    lag1_L3 + lag2_L3 + lag3_L3 +  

    lag1_L4 + lag2_L4 + lag3_L4 +  

    lag1_L5 + lag2_L5 + lag3_L5 +  

    lag1_L6 + lag2_L6 + lag3_L6 +  

    lag1_L7 + lag2_L7 + lag3_L7 +   

    lag1_L8 + lag2_L8 + lag3_L8 +  

    lag1_A + lag2_A + lag3_A +  

    time + I(time * time), 

   

  ### model for CMA/CA size 

  L2 ~ X1 + X2 + X3 + X4 +  

    X10 + X12 + X11 + X13 + 
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    X5 +  

    X6 + X7 + X8 + I(X9 * X8) + 

    L1 + lag1_L1 + lag2_L1 + lag3_L1 +  

    lag1_L2 + lag2_L2 + lag3_L2 +  

    lag1_L3 + lag2_L3 + lag3_L3 +  

    lag1_L4 + lag2_L4 + lag3_L4 +  

    lag1_L5 + lag2_L5 + lag3_L5 +  

    lag1_L6 + lag2_L6 + lag3_L6 +  

    lag1_L7 + lag2_L7 + lag3_L7 +   

    lag1_L8 + lag2_L8 + lag3_L8 +  

    lag1_A + lag2_A + lag3_A +  

    time + I(time * time), 

   

  ### model for L3 form characteristics 

  L3 ~ X1 + X2 + X3 + X4 +  

    X10 + X12 + X11 + X13 + 

    X5 +  

    X6 + X7 + X8 + I(X9 * X8) + 

    L1 + lag1_L1 + lag2_L1 + lag3_L1 +  

    L2 + lag1_L2 + lag2_L2 + lag3_L2 +  

    lag1_L3 + lag2_L3 + lag3_L3 +  

    lag1_L4 + lag2_L4 + lag3_L4 +  

    lag1_L5 + lag2_L5 + lag3_L5 +  

    lag1_L6 + lag2_L6 + lag3_L6 +  

    lag1_L7 + lag2_L7 + lag3_L7 +   

    lag1_L8 + lag2_L8 + lag3_L8 +  

    lag1_A + lag2_A + lag3_A +  

    time + I(time * time), 

   

  ### model for income decile 

  L4 ~ X1 + X2 + X3 + X4 +  

    X10 + X12 + X11 + X13 + 

    X5 +  

    X6 + X7 + X8 + I(X9 * X8) + 

    L1 + lag1_L1 + lag2_L1 + lag3_L1 +  

    L2 + lag1_L2 + lag2_L2 + lag3_L2 +  

    L3 + lag1_L3 + lag2_L3 + lag3_L3 +  

    lag1_L4 + lag2_L4 + lag3_L4 +  

    lag1_L5 + lag2_L5 + lag3_L5 +  

    lag1_L6 + lag2_L6 + lag3_L6 +  

    lag1_L7 + lag2_L7 + lag3_L7 +   

    lag1_L8 + lag2_L8 + lag3_L8 +  

    lag1_A + lag2_A + lag3_A +  

    time + I(time * time), 
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  ### model for ethnic concentration 

  L5 ~  X1 + X2 + X3 + X4 +  

    X10 + X12 + X11 + X13 + 

    X5 +  

    X6 + X7 + X8 + I(X9 * X8) + 

    L1 + lag1_L1 + lag2_L1 + lag3_L1 +  

    L2 + lag1_L2 + lag2_L2 + lag3_L2 +  

    L3 + lag1_L3 + lag2_L3 + lag3_L3 +  

    L4 + lag1_L4 + lag2_L4 + lag3_L4 +  

    lag1_L5 + lag2_L5 + lag3_L5 +  

    lag1_L6 + lag2_L6 + lag3_L6 +  

    lag1_L7 + lag2_L7 + lag3_L7 +   

    lag1_L8 + lag2_L8 + lag3_L8 +  

    lag1_A + lag2_A + lag3_A +  

    time + I(time * time), 

   

  ### model for material deprivation 

  L6 ~  X1 + X2 + X3 + X4 +  

    X10 + X12 + X11 + X13 + 

    X5 +  

    X6 + X7 + X8 + I(X9 * X8) + 

    L1 + lag1_L1 + lag2_L1 + lag3_L1 +  

    L2 + lag1_L2 + lag2_L2 + lag3_L2 +  

    L3 + lag1_L3 + lag2_L3 + lag3_L3 +  

    L4 + lag1_L4 + lag2_L4 + lag3_L4 +  

    L5 + lag1_L5 + lag2_L5 + lag3_L5 +  

    lag1_L6 + lag2_L6 + lag3_L6 +  

    lag1_L7 + lag2_L7 + lag3_L7 +   

    lag1_L8 + lag2_L8 + lag3_L8 +  

    lag1_A + lag2_A + lag3_A + 

    time + I(time * time), 

   

  ### model for residential instability 

  L7 ~ X1 + X2 + X3 + X4 +  

    X10 + X12 + X11 + X13 + 

    X5 +  

    X6 + X7 + X8 + I(X9 * X8) + 

    L1 + lag1_L1 + lag2_L1 + lag3_L1 +  

    L2 + lag1_L2 + lag2_L2 + lag3_L2 +  

    L3 + lag1_L3 + lag2_L3 + lag3_L3 +  

    L4 + lag1_L4 + lag2_L4 + lag3_L4 +  

    L5 + lag1_L5 + lag2_L5 + lag3_L5 +  

    L6 + lag1_L6 + lag2_L6 + lag3_L6 +  

    lag1_L7 + lag2_L7 + lag3_L7 +   

    lag1_L8 + lag2_L8 + lag3_L8 +  
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    lag1_A + lag2_A + lag3_A +  

    time + I(time * time), 

   

  ### model for dependency 

  L8 ~ X1 + X2 + X3 + X4 +  

    X10 + X12 + X11 + X13 + 

    X5 +  

    X6 + X7 + X8 + I(X9 * X8) + 

    L1 + lag1_L1 + lag2_L1 + lag3_L1 +  

    L2 + lag1_L2 + lag2_L2 + lag3_L2 +  

    L3 + lag1_L3 + lag2_L3 + lag3_L3 +  

    L4 + lag1_L4 + lag2_L4 + lag3_L4 +  

    L5 + lag1_L5 + lag2_L5 + lag3_L5 +  

    L6 + lag1_L6 + lag2_L6 + lag3_L6 +  

    L7 + lag1_L7 + lag2_L7 + lag3_L7 +  

    lag1_L8 + lag2_L8 + lag3_L8 +  

    lag1_A + lag2_A + lag3_A +  

    time + I(time * time), 

   

  ### model for PM2.5 exposure 

  A ~ X1 + X2 + X3 + X4 +  

    X10 + X12 + X11 + X13 + 

    X5 +  

    X6 + X7 + X8 + I(X9 * X8) + 

    L1 + lag1_L1 + lag2_L1 + lag3_L1 +  

    L2 + lag1_L2 + lag2_L2 + lag3_L2 +  

    L3 + lag1_L3 + lag2_L3 + lag3_L3 +  

    L4 + lag1_L4 + lag2_L4 + lag3_L4 +  

    L5 + lag1_L5 + lag2_L5 + lag3_L5 +  

    L6 + lag1_L6 + lag2_L6 + lag3_L6 +  

    L7 + lag1_L7 + lag2_L7 + lag3_L7 +  

    L8 + lag1_L8 + lag2_L8 + lag3_L8 +  

    lag1_A + lag2_A + lag3_A +   

    time + I(time * time) 

)) 

 

 

########## Specify intervention functions ########## 

 

### sr_t0_run is for x% incremental mitigation strategy 

sr_t0_run <- function(newdf, pool, intvar, intvals, time_name, t) { 

  prop_reduce <- intvals[[2]] 

  n_red <- (1 / prop_reduce) - 1 

  src_name <- paste0("p_", intvals[[1]], "_", t) 
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  if (t >= 0  & t <= n_red) { 

    newdf[, (intvar) := log(exp(get(intvar)) - (exp(get(intvar)) * (get(src_name) * prop_reduce)))] 

  } 

  if (t == (n_red + 1)) { 

    newdf[, (intvar) := log(exp(get(intvar)) - (exp(get(intvar)) *  

                                                  (get(src_name) * (get(src_name) *  

                                                                      (1 %% prop_reduce)))))] 

  } 

} 

 

### sr_phased_50 is for 50% phased mitigation strategy 

sr_phased_50 <- function(newdf, pool, intvar, intvals, time_name, t) { 

  src_name <- paste0("p_", intvals[[1]], "_", t) 

  prop_reduce <- 0.5 

   

  ## set intervention at time = 0 and time = 5 

  if (t == 0 | t == 5) { 

    newdf[, (intvar) := log(exp(get(intvar)) - (exp(get(intvar)) * (get(src_name) * prop_reduce)))] 

  } 

} 

 

### sr_phased_25 is for 25% phased mitigation strategy 

sr_phased_25 <- function(newdf, pool, intvar, intvals, time_name, t) { 

  src_name <- paste0("p_", intvals[[1]], "_", t) 

  prop_reduce <- 0.25 

   

  ## set intervention at time = 0, 3, 6, and 9 

  if (t == 0 | t == 3 | t == 6 | t == 9) { 

    newdf[, (intvar) := log(exp(get(intvar)) - (exp(get(intvar)) * (get(src_name) * prop_reduce)))] 

  } 

} 

 

### sr_t0 is idealistic zero-out mitigation strategy 

sr_t0 <- function(newdf, pool, intvar, intvals, time_name, t) { 

  prop_reduce <- intvals[[2]] 

   

  ## set intervention at time = 0 

  if (t == 0) {  

    src_name <- paste0("p_", intvals[[1]], "_", t) 

    newdf[, (intvar) := log(exp(get(intvar)) - (exp(get(intvar)) * (get(src_name) * prop_reduce)))] 

  } 

} 

 

 

### specify interventions (use agriculture “AG” as an example) 
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interventions <- list( 

   

  ### 25% incremental interventions 

  list(c(sr_t0_run, "AG", 0.25)) 

) 

 

### specify names for the interventions 

pnames_int <- c('p_AG') 

int_descript <- c(paste0("inc25_", pnames_int)) 

 

### specify variable that is intervened upon 

intvars <- list("A") 

 

 

########## Specify customized lag function and convert to factor ########## 

 

lag1_round <- function(pool, histvars, time_name, t, id_name){ 

   

  current_ids <- unique(pool[get(time_name)==t][[id_name]]) 

   

  lapply(histvars, FUN = function(histvar) { 

    i <- 1 

 

    pool[get(time_name)==t, 

         (paste0("lag1_round_", histvar)) := 

           ifelse((round(tapply(pool[get(id_name) %in% current_ids & 

                                       get(time_name) == t-i][[histvar]], 

                                pool[get(id_name) %in% current_ids & 

                                       get(time_name) == t-i][[id_name]], 

                                FUN=min), 0)) >= 1, 

                  round(tapply(pool[get(id_name) %in% current_ids & 

                                      get(time_name) == t-i][[histvar]], 

                               pool[get(id_name) %in% current_ids & 

                                      get(time_name) == t-i][[id_name]], 

                               FUN=min), 0), 

                  1)] 

  }) 

} 

 

lag2_round <- function(pool, histvars, time_name, t, id_name){ 

   

  current_ids <- unique(pool[get(time_name)==t][[id_name]]) 

   

  lapply(histvars, FUN = function(histvar) { 

    i <- 2 
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    pool[get(time_name)==t, 

         (paste0("lag2_round_", histvar)) := 

           ifelse((round(tapply(pool[get(id_name) %in% current_ids & 

                                       get(time_name) == t-i][[histvar]], 

                                pool[get(id_name) %in% current_ids & 

                                       get(time_name) == t-i][[id_name]], 

                                FUN=min), 0)) >= 1, 

                  round(tapply(pool[get(id_name) %in% current_ids & 

                                      get(time_name) == t-i][[histvar]], 

                               pool[get(id_name) %in% current_ids & 

                                      get(time_name) == t-i][[id_name]], 

                               FUN=min), 0), 

                  1)] 

  }) 

} 

 

lag3_round <- function(pool, histvars, time_name, t, id_name){ 

   

  current_ids <- unique(pool[get(time_name)==t][[id_name]]) 

   

  lapply(histvars, FUN = function(histvar) { 

    i <- 3 

     

    pool[get(time_name)==t, 

         (paste0("lag3_round_", histvar)) := 

           ifelse((round(tapply(pool[get(id_name) %in% current_ids & 

                                       get(time_name) == t-i][[histvar]], 

                                pool[get(id_name) %in% current_ids & 

                                       get(time_name) == t-i][[id_name]], 

                                FUN=min), 0)) >= 1, 

                  round(tapply(pool[get(id_name) %in% current_ids & 

                                      get(time_name) == t-i][[histvar]], 

                               pool[get(id_name) %in% current_ids & 

                                      get(time_name) == t-i][[id_name]], 

                               FUN=min), 0), 

                  1)] 

  }) 

} 

 

 

########## Set baseline covariates ########## 

basecovs.all <- c("X1", "X2", "X3", "X4", "X10",  

                  "X12", "X11", "X13", "X5", "X8", "X6", 

                  "X9", "X7", paste0("p_AG_", 0:9)) 
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########## Run gformula model ########## 

gf <- gformula_survival( 

  obs_data = dt,  

  id = "person_id", 

  time_points = time_points, 

  time_name = "time", 

  covnames = covnames, 

  outcome_name = "Y", 

  ymodel = outcome_model, 

  covtypes = covtypes, 

  covparams = tv_cov_models,     

  intvars = intvars, 

  ref_int = 0,   

  interventions = interventions, 

  int_descript = int_descript, 

  histories = c(lagged, lag1_round, lag2_round, lag3_round), 

  histvars = list(covnames,  

                  c("L1", "L2", "L3",  

                    "L4", "L5",  

                    "L6", "L7", "L8"),  

                  c("L1", "L2", "L3",  

                    "L4", "L5",  

                    "L6", "L7", "L8"),  

                  c("L1", "L2", "L3",  

                    "L4", "L5",  

                    "L6", "L7", "L8")), 

  basecovs = basecovs.all, 

  sim_data_b = TRUE, 

  nsimul = 10000, 

  seed = 1234)  
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Table S1. Illustration of hypothetical intervention strategies that reduce source contributions to 

ambient PM2.5 in Canada over the period of 2007 to 2016, by years and intervention strategies 

 

Intervention 

strategies 

Annual reduction in observed source contributions to                                  

PM2.5 from a source * 

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

25% phased 25% 25% 25% 50% 50% 50% 75% 75% 75% 100% 

50% phased  50% 50% 50% 50% 50% 100% 100% 100% 100% 100% 

10% incremental 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

25% incremental 25% 50% 75% 100% 100% 100% 100% 100% 100% 100% 

50% incremental 50% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

zero out 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
  

* Relative to the natural course of observed source contributions from a specified emission 

source  
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Table S2. Summary of covariates in the analysis of emission mitigation and mortality with the 2006 CanCHEC and g-formula 

 

Variables 

Years 

assessed  

Type of variable when used as 

predictor 

Type of variable when used as 

dependent variable 

Age 2006 1-year category * Not predicted 

Sex 2006 Indicator Not predicted 

Race/ethnicity 2006 Indicator Not predicted 

Indigenous identity 2006 Indicator Not predicted 

Landed immigrant 2006 An indicator for immigrant (y/n) 

and a continuous variable for years 

since immigration to Canada 

Not predicted 

Marital status 2006 6 categories Not predicted 

Education 2006 4 categories Not predicted 

Employment 2006 3 categories Not predicted 

Occupation 2006 6 categories Not predicted 

Time (years since baseline) All A linear term and a quadratic term Not predicted 

Annual household income  All 10 categories † Continuous (bounded normal) 

Urban form characteristics All 5 categories † Continuous (bounded normal) 

Community size All 6 categories † Continuous (bounded normal) 

Airshed All 6 categories † Continuous (bounded normal) 

Neighborhood material deprivation All 5 categories † Continuous (bounded normal) 

Neighborhood dependency  All 5 categories † Continuous (bounded normal) 

Neighborhood residential instability  All 5 categories † Continuous (bounded normal) 

Neighborhood ethnic concentration All 5 categories † Continuous (bounded normal) 

Annual PM2.5 (natural logarithm transformed) All Continuous (normal) Continuous (normal) 

Nonaccidental death (outcome) All - Time to event (pooled logistic) 

 
*  Restricted cubic spline function with 5 knots in all analyses, with the exception of analyses stratified by age in which it used 3 

knots.  
 

†  Fitted as a categorical variable in the outcome model, whereas fitted as a continuous variable in the covariate models.   
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Table S3. Shape Constrained Health Impact Function outputs from 20 potential shapes of PM2.5-

mortality association examined 

 

Location mu Coeffect 

Standard 

error tau AIC Model form 

0 3.33E-07 0.013758586 0.001610607 0.1 2098016.314 z*logit 

25 5.066667 0.009400996 0.001242146 0.1 2098031.985 z*logit 

50 6.719052 0.007373060 0.001170288 0.1 2098049.578 z*logit 

75 8.366667 0.005984167 0.001224286 0.1 2098065.372 z*logit 

0 3.33E-07 0.156753366 0.016322073 0.1 2097996.869 log(z)*logit 

25 5.066667 0.089558889 0.010705904 0.1 2098019.218 log(z)*logit 

50 6.719052 0.068149780 0.009877653 0.1 2098041.647 log(z)*logit 

75 8.366667 0.054302063 0.010275815 0.1 2098061.335 log(z)*logit 

0 3.33E-07 0.012744721 0.001560701 0.2 2098022.619 z*logit 

25 5.066667 0.010767467 0.001494651 0.2 2098037.422 z*logit 

50 6.719052 0.010337010 0.001547356 0.2 2098044.696 z*logit 

75 8.366667 0.010331821 0.001682928 0.2 2098051.639 z*logit 

0 3.33E-07 0.139854219 0.015296147 0.2 2098005.589 log(z)*logit 

25 5.066667 0.108444057 0.013546337 0.2 2098025.189 log(z)*logit 

50 6.719052 0.101785116 0.013777825 0.2 2098034.724 log(z)*logit 

75 8.366667 0.099889509 0.014803401 0.2 2098043.785 log(z)*logit 

5 3.143111 0.120384691 0.012754868 0.1 2098000.025 log(z)*logit 

-5 -3.14311 0.166020730 0.017572047 0.1 2097999.873 log(z)*logit 

- * - 0.014085478 0.001678212 - 2098018.857 log-linear 

- * - 0.108517703 0.010948828 - 2097990.713 log-log 

 

* Two parameters, mu and tau, are not required for outcome regression under the assumption of 

log-log or log-linear shape for PM2.5-mortality relationship 
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Table S4. Selected advantages and disadvantages of the g-formula approach compared with the 

traditional Cox model approach 

 

Selected differences Cox model g-formula  

Evaluate any interventions (e.g., sustained and dynamic) No Yes 

Scale of effect measure Multiplicative Additive and multiplicate 

Conditional or marginal effect measure Conditional Marginal 

Identifiability assumptions Less explicit More explicit 

Overcome exposure-confounder feedback * No Yes 

Subject to built-in selection bias ** Yes No 

Subject to non-collapsibility issue  Yes No 

Transportability *** More transportable Less transportable 

Easy to implement Yes No 

Computational constraint Low to moderate High 

 

* A confounder affects exposure and the exposure affects the confounder 

** A bias arising from conditioning on being free of the outcome during the follow-up. Because 

being free of outcome can be a common effect of the exposure of interest and frailty (a common 

but unobserved cause of future outcome), this opens an associational path between the exposure 

and future outcome, introducing a bias in the effect measure (e.g., hazard ratio). 

*** Transportability of causal effects with air pollution relies on a mix of causal effect modifiers 

such as age and SES among populations. The estimated effect measures using the g-formula 

from Canada may be more transportable to other high-income countries than low- and mid-

income countries.  
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Table S5. Baseline characteristics of study population (count, percent, or mean ± SD, total N = 

2,663,645) 
 

Baseline Characteristics 
                                   Cohort  

N=2,663,645 * % 
   

Demographic characteristics   

Person years, y 25,730,790 100 

Age, y 50.9±12.8 - 

Sex   

   Male 1,293,890 48.6 

   Female 1,369,755 51.4 

Race/ethnicity   

   White or Indigenous 2,383,790 89.5 

   Visible minority 279,855 10.5 

Indigenous identity   

   Not Indigenous 2,540,545 95.4 

   Aboriginal 123,100 4.6 

Landed immigrant   

   Lived in Canada for 6-10 years 80,935 3.0 

   Lived in Canada for 11-20 years 136,980 5.1 

   Lived in Canada for >20 years 335,465 12.6 

Marital status   

   Single 308,865 11.6 

   Common-law 298,740 11.2 

   Married 1,662,825 62.4 

   Separated 80,770 3.0 

   Divorced 190,815 7.2 

   Widowed 121,630 4.6 

Education   

   Less than high school 542,060 20.4 

   High school 964,700 36.2 

   Post-secondary non-university 638,165 24.0 

   University 518,720 19.5 

Employment    

   Employed 1,744,340 65.5 

   Unemployed 90,440 3.4 

   Not in labor force 828,865 31.1 

Occupation   

   Management 225,175 8.5 
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Baseline Characteristics 
                                   Cohort  

N=2,663,645 * % 

   Professional 355,255 13.3 

   Skilled 602,075 22.6 

   Semi-skilled 571,250 21.5 

   Unskilled 187,320 7.0 

   Not applicable 722,570 27.1 

Household income adequacy †   

   1st decile - lowest 234,020 8.8 

   2nd decile  250,245 9.4 

   3rd decile  260,760 9.8 

   4th decile 268,645 10.1 

   5th decile 273,045 10.3 

   6th decile 275,025 10.3 

   7th decile 274,415 10.3 

   8th decile 274,000 10.3 

   9th decile 272,925 10.2 

   10th decile - highest 280,565 10.5 

Environmental characteristics   

Urban form characteristics    

   Active urban core 203,110 7.6 

   Transit-reliant suburb 180,310 6.8 

   Car-reliant suburb 1,136,480 42.7 

   Exurban 154,455 5.8 

   Non-CMA/CA ‡ 989,290 37.1 

CMA/CA size   

   Pop: >1,500,000 § 806,390 30.3 

   Pop: 500,000–1,499,999 415,150 15.6 

   Pop: 100,000–499,999 498,795 18.7 

   Pop: 30,000–99,999 264,745 9.95 

   Pop: 10,000–29,000 100,240 3.8 

   Non-CMA/CA 578,325 21.7 

Airshed   

   Western 331,160 12.4 

   Prairie 354,705 13.3 

   Western Central 151,315 5.7 

   East Central 1,557,790 58.5 

   South Atlantic 245,770 9.2 

   Northern 22,905 0.9 

Social-economic characteristics ||   
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Baseline Characteristics 
                                   Cohort  

N=2,663,645 * % 

Dependency    

   1st quintile - lowest 477,010 17.9 

   2nd quintile  443,710 16.7 

   3rd quintile 429,755 16.1 

   4th quintile 537,020 20.2 

   5th quintile - highest 776,150 29.1 

Material deprivation    

   1st quintile - lowest 549,700 20.6 

   2nd quintile  513,105 19.3 

   3rd quintile 531,545 20.0 

   4th quintile 454,770 17.1 

   5th quintile - highest 614,525 23.1 

Residential instability    

   1st quintile - lowest 624,005 23.4 

   2nd quintile  709,620 26.6 

   3rd quintile 535,990 20.1 

   4th quintile 462,855 17.4 

   5th quintile - highest 331,175 12.4 

Ethnic concentration   

   1st quintile - lowest 841,290 31.6 

   2nd quintile  662,200 24.9 

   3rd quintile 467,215 17.5 

   4th quintile 361,700 13.6 

   5th quintile - highest 331,240 12.4 
 

* All counts were rounded up to the nearest five in compliance with privacy requirements by 

Statistics Canada. 
 

† Household income adequacy is an index used by Statistics Canada that accounts for total 

household income and household size. 
 

‡ CMA/CA: census metropolitan area/census agglomeration area. 
 

§ Pop: population. 
 

|| From Canadian Census, at the census dissemination area level, the smallest standard 

geographic area for which all census data are disseminated in Canada.  
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Table S6. Absolute change in mortality risk (per million population) and 95% confidence interval (95% CI) for the associations 

of PM2.5 reduction with premature mortality in Canada over the period 2007-2016, by years, emission sources, and intervention 

strategies relative to the natural course of observed PM2.5 exposures (‘no intervention’ scenario) 

 
Sources Interventions 

Agriculture Zero out 50% incremental 25% incremental 10% incremental 50% phased 25% phased 

2007 0 0 0 0 0 0 

2008 -26.0 (-31.3, -20.8) -12.9 (-15.5, -10.3) -6.4 (-7.7, -5.1) -2.6 (-3.1, -2) -12.9 (-15.5, -10.3) -6.4 (-7.7, -5.1) 

2009 -73.9 (-87.3, -60.5) -51.0 (-60.2, -41.9) -25.3 (-29.9, -20.7) -10.2 (-12, -8.3) -36.4 (-43.0, -29.8) -18.0 (-21.4, -14.6) 

2010 -134.2 (-157.5, -110.9) -102.6 (-120.2, -85.0) -57.1 (-67.1, -47.1) -22.9 (-26.9, -18.9) -65.3 (-76.9, -53.8) -31.8 (-37.5, -26.0) 

2011 -171.8 (-202.0, -141.5) -145.4 (-172.0, -118.9) -94.2 (-111.9, -76.4) -37.5 (-44.6, -30.5) -83.8 (-98.7, -69.0) -47.5 (-56.1, -38.8) 

2012 -204.3 (-242.1, -166.4) -178.9 (-213.3, -144.6) -132.1 (-158.4, -105.7) -55.5 (-66.8, -44.2) -99.6 (-118.1, -81.1) -64.6 (-77.4, -51.8) 

2013 -227.7 (-272.0, -183.5) -203.4 (-244.2, -162.6) -161.0 (-195.0, -126.9) -70.8 (-86.1, -55.5) -120.7 (-145.1, -96.3) -78.9 (-95.3, -62.4) 

2014 -243.6 (-293.5, -193.8) -221.6 (-267.4, -175.8) -182.2 (-221.7, -142.6) -89.0 (-109.2, -68.8) -143.2 (-173.8, -112.7) -95.8 (-116.6, -75.0) 

2015 -252.8 (-306.0, -199.6) -232.0 (-281.0, -182.9) -195.7 (-241.7, -149.7) -103.9 (-130.7, -77.2) -163.2 (-203.4, -122.9) -108.7 (-135.9, -81.5) 

2016 -255.4 (-312.7, -198.1) -235.3 (-290.6, -180.0) -202.8 (-254.3, -151.4) -114.8 (-148.9, -80.7) -173.9 (-220.5, -127.2) -118.1 (-151.8, -84.3) 

 

Industry Zero out 50% incremental 25% incremental 10% incremental 50% phased 25% phased 

2007 0 0 0 0 0 0 

2008 -36.9 (-44.4, -29.3) -18.3 (-22, -14.5) -9.1 (-10.9, -7.2) -3.6 (-4.4, -2.9) -18.3 (-22, -14.5) -9.1 (-10.9, -7.2) 

2009 -106.2 (-125.1, -87.2) -73.3 (-86.4, -60.1) -36.2 (-42.6, -29.8) -14.5 (-17.1, -11.9) -52.2 (-61.6, -42.8) -25.7 (-30.2, -21.1) 

2010 -193.8 (-227.0, -160.5) -147.8 (-172.8, -122.8) -82.7 (-96.8, -68.6) -32.6 (-38.4, -26.9) -94.4 (-110.5, -78.3) -46.0 (-54.2, -37.7) 

2011 -247.8 (-292.1, -203.6) -208.7 (-246.8, -170.6) -135.8 (-161.8, -109.9) -53.8 (-64.0, -43.6) -120.7 (-141.9, -99.5) -68.5 (-81.1, -55.9) 

2012 -294.7 (-349.1, -240.2) -257.0 (-305.4, -208.6) -189.5 (-227.4, -151.5) -79.4 (-95.6, -63.2) -143.1 (-169.9, -116.3) -92.8 (-111.4, -74.2) 

2013 -327.9 (-390.3, -265.5) -292.2 (-350.0, -234.3) -232.1 (-281.2, -183.0) -102.3 (-124.4, -80.1) -174.3 (-208.8, -139.9) -114.1 (-137.9, -90.2) 

2014 -353.2 (-425.1, -281.2) -319.1 (-384.0, -254.1) -264.3 (-320.3, -208.2) -126.4 (-154.7, -98.1) -208.1 (-251.8, -164.5) -137.0 (-166.7, -107.3) 

2015 -366.2 (-442.3, -290.2) -333.8 (-403.9, -263.7) -282.8 (-349.0, -216.7) -149.0 (-187.6, -110.4) -236.8 (-294.1, -179.5) -156.1 (-195.3, -117.0) 

2016 -369.3 (-452.3, -286.4) -339.0 (-418.3, -259.6) -291.6 (-365.2, -218.0) -164.7 (-213.4, -116.0) -250.2 (-316.2, -184.2) -170.0 (-216.9, -123.1) 

 

Power 

generation 

Zero out 50% incremental 25% incremental 10% incremental 50% phased 25% phased 

2007 0 0 0 0 0 0 

2008 -20.2 (-24.4, -16.0) -10 (-12.1, -8.0) -5.0 (-6.0, -4.0) -2.0 (-2.4, -1.6) -10.0 (-12.1, -8.0) -5.0 (-6.0, -4.0) 

2009 -58.5 (-69.1, -47.9) -40.5 (-47.7, -33.4) -20.1 (-23.7, -16.4) -8.0 (-9.5, -6.5) -28.8 (-34.0, -23.6) -14.2 (-16.9, -11.5) 

2010 -106.1 (-124.4, -87.7) -81.4 (-95.4, -67.4) -45.4 (-53.4, -37.3) -18.2 (-21.4, -14.9) -51.7 (-60.7, -42.7) -25.3 (-29.9, -20.7) 

2011 -135.0 (-159.4, -110.6) -115.3 (-136.8, -93.8) -74.7 (-89.0, -60.4) -29.6 (-35.3, -23.9) -66.3 (-78.3, -54.3) -37.7 (-44.7, -30.7) 

2012 -159.4 (-189.5, -129.4) -140.9 (-168.6, -113.2) -104.9 (-126.0, -83.7) -43.9 (-52.8, -34.9) -78.7 (-93.8, -63.5) -51.6 (-61.9, -41.3) 
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2013 -178.4 (-213.1, -143.7) -160.5 (-192.5, -128.5) -128.1 (-155.2, -101.0) -55.9 (-68.3, -43.5) -95.1 (-114.6, -75.6) -62.4 (-75.9, -48.9) 

2014 -191.1 (-230.2, -151.9) -174.8 (-210.3, -139.3) -144.4 (-175.1, -113.7) -69.3 (-85.1, -53.4) -112.1 (-136.0, -88.2) -74.7 (-91.1, -58.3) 

2015 -198.1 (-239.7, -156.6) -183.1 (-222.3, -143.9) -155.3 (-191.3, -119.3) -81.8 (-103.1, -60.5) -129.6 (-160.7, -98.5) -85.8 (-107.1, -64.4) 

2016 -201.4 (-247.1, -155.6) -185.9 (-229.9, -141.8) -160.7 (-201.7, -119.7) -90.3 (-117.4, -63.3) -136.8 (-173.4, -100.0) -92.9 (-119.4, -66.4) 

 

Residential 

combustion 

Zero out 50% Incremental 25% Incremental 10% Incremental 50% Phased 25% Phased 

2007 0 0 0 0 0 0 

2008 -35.7 (-43, -28.4) -17.7 (-21.3, -14.0) -8.8 (-10.6, -7.0) -3.5 (-4.2, -2.8) -17.7 (-21.3, -14.0) -8.8 (-10.6, -7.0) 

2009 -104.7 (-123.2, -86.2) -72.8 (-85.6, -59.9) -36.1 (-42.5, -29.8) -14.2 (-16.7, -11.7) -51.7 (-61.0, -42.4) -25.6 (-30.1, -21.0) 

2010 -195.3 (-228.7, -161.9) -148.3 (-173.4, -123.2) -83.0 (-97.2, -68.9) -32.8 (-38.6, -26.9) -94.2 (-110.4, -77.9) -46.1 (-54.2, -37.9) 

2011 -251.3 (-296.0, -206.6) -209.3 (-248.2, -170.4) -135.8 (-161.8, -109.9) -53.9 (-64.2, -43.6) -120.8 (-142.2, -99.4) -68.5 (-81.0, -56.0) 

2012 -300.0 (-355.3, -244.8) -258.0 (-307.3, -208.7) -189.7 (-227.2, -152.2) -78.8 (-94.7, -62.9) -143.0 (-169.6, -116.5) -92.6 (-110.0, -74.0) 

2013 -335.9 (-399.2, -272.6) -294.9 (-353.1, -236.7) -231.4 (-280.5, -182.3) -103 (-125.3, -80.7) -174.3 (-208.8, -139.8) -114.8 (-139.0, -90.6) 

2014 -362.2 (-433.7, -290.6) -322.9 (-387.9, -257.9) -264.6 (-321.0, -208.2) -127.8 (-156.9, -98.7) -207.7 (-251.2, -164.1) -138.3 (-168.1, -108.5) 

2015 -377.6 (-455.5, -299.7) -339.1 (-410.5, -267.6) -285.0 (-350.5, -219.5) -149.9 (-187.8, -112.0) -238.6 (-295.2, -182.1) -157.1 (-195.6, -118.6) 

2016 -384.5 (-470.5, -298.6) -346.0 (-426.2, -265.7) -295.5 (-369.1, -221.8) -164.9 (-214.1, -115.7) -253.3 (-319.4, -187.3) -169.3 (-216.7, -121.8) 

 

Transport Zero out 50% Incremental 25% Incremental 10% Incremental 50% Phased 25% Phased 

2007 0 0 0 0 0 0 

2008 -38.9 (-46.8, -30.9) -19.2 (-23.1, -15.3) -9.6 (-11.5, -7.6) -3.8 (-4.6, -3.0) -19.2 (-23.1, -15.3) -9.6 (-11.5, -7.6) 

2009 -112.0 (-132.0, -92.1) -77.4 (-91.3, -63.5) -38.3 (-45.1, -31.6) -15.2 (-18.0, -12.5) -55.1 (-65.1, -45.1) -27.2 (-32.1, -22.3) 

2010 -206.2 (-241.7, -170.6) -156.2 (-182.6, -129.8) -87.6 (-102.6, -72.7) -34.8 (-41.0, -28.5) -100.2 (-117.5, -82.9) -48.9 (-57.6, -40.2) 

2011 -262.9 (-309.7, -216.1) -221.7 (-262.8, -180.7) -144.0 (-171.3, -116.6) -57.3 (-68.1, -46.4) -128.5 (-150.8, -106.0) -72.6 (-85.8, -59.4) 

2012 -313.7 (-371.5, -255.9) -272.5 (-324.4, -220.6) -200.8 (-240.6, -161.0) -84.1 (-101.3, -66.8) -152.0 (-180.5, -123.5) -98.9 (-118.6, -79.1) 

2013 -351.4 (-418.4, -284.4) -311.0 (-371.9, -250.1) -246.3 (-298.3, -194.0) -109.0 (-132.5, -85.5) -185.0 (-221.7, -148.3) -121.9 (-147.5, -96.2) 

2014 -377.4 (-452.6, -302.1) -338.7 (-407.5, -270.0) -280.0 (-339.8, -220.2) -134.5 (-165.1, -103.0) -220.0 (-266.7, -173.2) -145.6 (-177.1, -114.1) 

2015 -391.2 (-471.8, -310.7) -353.4 (-428.6, -278.2) -300.0 (-370.6, -229.4) -157.8 (-198.4, -117.0) -252.1 (-313.3, -190.9) -166.2 (-207.5, -125.0) 

2016 -395.9 (-484.1, -307.6) -360.3 (-444.2, -276.4) -310.5 (-388.6, -232.4) -174.7 (-226.1, -123.0) -266.4 (-336.3, -196.4) -180.1 (-230.9, -129.4) 

 

  



 24 

Table S7. Mean percentage change in mortality risk and 95% confidence interval (95% CI) for the associations of PM2.5 

reduction with premature mortality in Canada over the period 2007-2016, by years, emission sources, and intervention strategies 

relative to the natural course of observed PM2.5 exposures (‘no intervention’ scenario) 

 
Sources Interventions 

Agriculture Zero out 50% Incremental 25% Incremental 10% Incremental 50% Phased 25% Phased 

2007 1 1 1 1 1 1 

2008 -0.2% (-0.3%, -0.2%) -0.1% (-0.1%, -0.1%) -0.1% (-0.1%, 0%) 0% (0%, 0%) -0.1% (-0.1%, -0.1%) -0.1% (-0.1%, 0%) 

2009 -0.4% (-0.5%, -0.3%) -0.3% (-0.3%, -0.2%) -0.1% (-0.2%, -0.1%) -0.1% (-0.1%, 0%) -0.2% (-0.2%, -0.2%) -0.1% (-0.1%, -0.1%) 

2010 -0.5% (-0.6%, -0.4%) -0.4% (-0.5%, -0.3%) -0.2% (-0.3%, -0.2%) -0.1% (-0.1%, -0.1%) -0.3% (-0.3%, -0.2%) -0.1% (-0.1%, -0.1%) 

2011 -0.5% (-0.6%, -0.4%) -0.4% (-0.5%, -0.4%) -0.3% (-0.3%, -0.2%) -0.1% (-0.1%, -0.1%) -0.3% (-0.3%, -0.2%) -0.1% (-0.2%, -0.1%) 

2012 -0.5% (-0.6%, -0.4%) -0.5% (-0.5%, -0.4%) -0.3% (-0.4%, -0.3%) -0.1% (-0.2%, -0.1%) -0.3% (-0.3%, -0.2%) -0.2% (-0.2%, -0.1%) 

2013 -0.5% (-0.6%, -0.4%) -0.4% (-0.5%, -0.3%) -0.3% (-0.4%, -0.3%) -0.2% (-0.2%, -0.1%) -0.3% (-0.3%, -0.2%) -0.2% (-0.2%, -0.1%) 

2014 -0.4% (-0.5%, -0.4%) -0.4% (-0.5%, -0.3%) -0.3% (-0.4%, -0.3%) -0.2% (-0.2%, -0.1%) -0.3% (-0.3%, -0.2%) -0.2% (-0.2%, -0.1%) 

2015 -0.4% (-0.5%, -0.3%) -0.4% (-0.5%, -0.3%) -0.3% (-0.4%, -0.2%) -0.2% (-0.2%, -0.1%) -0.3% (-0.3%, -0.2%) -0.2% (-0.2%, -0.1%) 

2016 -0.4% (-0.5%, -0.3%) -0.3% (-0.4%, -0.3%) -0.3% (-0.4%, -0.2%) -0.2% (-0.2%, -0.1%) -0.3% (-0.3%, -0.2%) -0.2% (-0.2%, -0.1%) 

 

Industry Zero out 50% Incremental 25% Incremental 10% Incremental 50% Phased 25% Phased 

2007 1 1 1 1 1 1 

2008 -0.3% (-0.4%, -0.2%) -0.2% (-0.2%, -0.1%) -0.1% (-0.1%, -0.1%) 0% (0%, 0%) -0.2% (-0.2%, -0.1%) -0.1% (-0.1%, -0.1%) 

2009 -0.6% (-0.7%, -0.5%) -0.4% (-0.5%, -0.3%) -0.2% (-0.2%, -0.2%) -0.1% (-0.1%, -0.1%) -0.3% (-0.3%, -0.2%) -0.1% (-0.2%, -0.1%) 

2010 -0.8% (-0.9%, -0.6%) -0.6% (-0.7%, -0.5%) -0.3% (-0.4%, -0.3%) -0.1% (-0.2%, -0.1%) -0.4% (-0.4%, -0.3%) -0.2% (-0.2%, -0.1%) 

2011 -0.8% (-0.9%, -0.6%) -0.6% (-0.8%, -0.5%) -0.4% (-0.5%, -0.3%) -0.2% (-0.2%, -0.1%) -0.4% (-0.4%, -0.3%) -0.2% (-0.2%, -0.2%) 

2012 -0.7% (-0.9%, -0.6%) -0.6% (-0.8%, -0.5%) -0.5% (-0.6%, -0.4%) -0.2% (-0.2%, -0.2%) -0.4% (-0.4%, -0.3%) -0.2% (-0.3%, -0.2%) 

2013 -0.7% (-0.8%, -0.6%) -0.6% (-0.7%, -0.5%) -0.5% (-0.6%, -0.4%) -0.2% (-0.3%, -0.2%) -0.4% (-0.4%, -0.3%) -0.2% (-0.3%, -0.2%) 

2014 -0.7% (-0.8%, -0.5%) -0.6% (-0.7%, -0.5%) -0.5% (-0.6%, -0.4%) -0.2% (-0.3%, -0.2%) -0.4% (-0.5%, -0.3%) -0.3% (-0.3%, -0.2%) 

2015 -0.6% (-0.7%, -0.5%) -0.5% (-0.7%, -0.4%) -0.5% (-0.6%, -0.4%) -0.2% (-0.3%, -0.2%) -0.4% (-0.5%, -0.3%) -0.3% (-0.3%, -0.2%) 

2016 -0.5% (-0.7%, -0.4%) -0.5% (-0.6%, -0.4%) -0.4% (-0.5%, -0.3%) -0.2% (-0.3%, -0.2%) -0.4% (-0.5%, -0.3%) -0.2% (-0.3%, -0.2%) 

 

Power 

generation 

Zero out 50% Incremental 25% Incremental 10% Incremental 50% Phased 25% Phased 

2007 1 1 1 1 1 1 

2008 -0.2% (-0.2%, -0.1%) -0.1% (-0.1%, -0.1%) 0% (-0.1%, 0%) 0% (0%, 0%) -0.1% (-0.1%, -0.1%) 0% (-0.1%, 0%) 

2009 -0.3% (-0.4%, -0.3%) -0.2% (-0.3%, -0.2%) -0.1% (-0.1%, -0.1%) 0% (-0.1%, 0%) -0.2% (-0.2%, -0.1%) -0.1% (-0.1%, -0.1%) 

2010 -0.4% (-0.5%, -0.3%) -0.3% (-0.4%, -0.3%) -0.2% (-0.2%, -0.1%) -0.1% (-0.1%, -0.1%) -0.2% (-0.2%, -0.2%) -0.1% (-0.1%, -0.1%) 

2011 -0.4% (-0.5%, -0.3%) -0.4% (-0.4%, -0.3%) -0.2% (-0.3%, -0.2%) -0.1% (-0.1%, -0.1%) -0.2% (-0.2%, -0.2%) -0.1% (-0.1%, -0.1%) 

2012 -0.4% (-0.5%, -0.3%) -0.4% (-0.4%, -0.3%) -0.3% (-0.3%, -0.2%) -0.1% (-0.1%, -0.1%) -0.2% (-0.2%, -0.2%) -0.1% (-0.2%, -0.1%) 
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2013 -0.4% (-0.5%, -0.3%) -0.3% (-0.4%, -0.3%) -0.3% (-0.3%, -0.2%) -0.1% (-0.1%, -0.1%) -0.2% (-0.2%, -0.2%) -0.1% (-0.2%, -0.1%) 

2014 -0.4% (-0.4%, -0.3%) -0.3% (-0.4%, -0.3%) -0.3% (-0.3%, -0.2%) -0.1% (-0.2%, -0.1%) -0.2% (-0.3%, -0.2%) -0.1% (-0.2%, -0.1%) 

2015 -0.3% (-0.4%, -0.3%) -0.3% (-0.4%, -0.2%) -0.3% (-0.3%, -0.2%) -0.1% (-0.2%, -0.1%) -0.2% (-0.3%, -0.2%) -0.1% (-0.2%, -0.1%) 

2016 -0.3% (-0.4%, -0.2%) -0.3% (-0.3%, -0.2%) -0.2% (-0.3%, -0.2%) -0.1% (-0.2%, -0.1%) -0.2% (-0.3%, -0.1%) -0.1% (-0.2%, -0.1%) 

 

Residential 

combustion 

Zero out 50% Incremental 25% Incremental 10% Incremental 50% Phased 25% Phased 

2007 1 1 1 1 1 1 

2008 -0.3% (-0.4%, -0.2%) -0.1% (-0.2%, -0.1%) -0.1% (-0.1%, -0.1%) 0% (0%, 0%) -0.1% (-0.2%, -0.1%) -0.1% (-0.1%, -0.1%) 

2009 -0.6% (-0.7%, -0.5%) -0.4% (-0.5%, -0.3%) -0.2% (-0.2%, -0.2%) -0.1% (-0.1%, -0.1%) -0.3% (-0.3%, -0.2%) -0.1% (-0.2%, -0.1%) 

2010 -0.8% (-0.9%, -0.6%) -0.6% (-0.7%, -0.5%) -0.3% (-0.4%, -0.3%) -0.1% (-0.2%, -0.1%) -0.4% (-0.4%, -0.3%) -0.2% (-0.2%, -0.1%) 

2011 -0.8% (-0.9%, -0.6%) -0.6% (-0.8%, -0.5%) -0.4% (-0.5%, -0.3%) -0.2% (-0.2%, -0.1%) -0.4% (-0.4%, -0.3%) -0.2% (-0.2%, -0.2%) 

2012 -0.8% (-0.9%, -0.6%) -0.7% (-0.8%, -0.5%) -0.5% (-0.6%, -0.4%) -0.2% (-0.2%, -0.2%) -0.4% (-0.4%, -0.3%) -0.2% (-0.3%, -0.2%) 

2013 -0.7% (-0.9%, -0.6%) -0.6% (-0.8%, -0.5%) -0.5% (-0.6%, -0.4%) -0.2% (-0.3%, -0.2%) -0.4% (-0.4%, -0.3%) -0.2% (-0.3%, -0.2%) 

2014 -0.7% (-0.8%, -0.5%) -0.6% (-0.7%, -0.5%) -0.5% (-0.6%, -0.4%) -0.2% (-0.3%, -0.2%) -0.4% (-0.5%, -0.3%) -0.3% (-0.3%, -0.2%) 

2015 -0.6% (-0.7%, -0.5%) -0.5% (-0.7%, -0.4%) -0.5% (-0.6%, -0.4%) -0.2% (-0.3%, -0.2%) -0.4% (-0.5%, -0.3%) -0.3% (-0.3%, -0.2%) 

2016 -0.6% (-0.7%, -0.4%) -0.5% (-0.6%, -0.4%) -0.4% (-0.5%, -0.3%) -0.2% (-0.3%, -0.2%) -0.4% (-0.5%, -0.3%) -0.2% (-0.3%, -0.2%) 

 

Transportation Zero out 50% Incremental 25% Incremental 10% Incremental 50% Phased 25% Phased 

2007 1 1 1 1 1 1 

2008 -0.3% (-0.4%, -0.3%) -0.2% (-0.2%, -0.1%) -0.1% (-0.1%, -0.1%) 0% (0%, 0%) -0.2% (-0.2%, -0.1%) -0.1% (-0.1%, -0.1%) 

2009 -0.6% (-0.7%, -0.5%) -0.4% (-0.5%, -0.3%) -0.2% (-0.2%, -0.2%) -0.1% (-0.1%, -0.1%) -0.3% (-0.3%, -0.2%) -0.1% (-0.2%, -0.1%) 

2010 -0.8% (-0.9%, -0.7%) -0.6% (-0.7%, -0.5%) -0.3% (-0.4%, -0.3%) -0.1% (-0.2%, -0.1%) -0.4% (-0.5%, -0.3%) -0.2% (-0.2%, -0.2%) 

2011 -0.8% (-1.0%, -0.7%) -0.7% (-0.8%, -0.6%) -0.4% (-0.5%, -0.4%) -0.2% (-0.2%, -0.1%) -0.4% (-0.5%, -0.3%) -0.2% (-0.3%, -0.2%) 

2012 -0.8% (-0.9%, -0.6%) -0.7% (-0.8%, -0.6%) -0.5% (-0.6%, -0.4%) -0.2% (-0.3%, -0.2%) -0.4% (-0.5%, -0.3%) -0.2% (-0.3%, -0.2%) 

2013 -0.8% (-0.9%, -0.6%) -0.7% (-0.8%, -0.5%) -0.5% (-0.6%, -0.4%) -0.2% (-0.3%, -0.2%) -0.4% (-0.5%, -0.3%) -0.3% (-0.3%, -0.2%) 

2014 -0.7% (-0.8%, -0.6%) -0.6% (-0.8%, -0.5%) -0.5% (-0.6%, -0.4%) -0.2% (-0.3%, -0.2%) -0.4% (-0.5%, -0.3%) -0.3% (-0.3%, -0.2%) 

2015 -0.6% (-0.8%, -0.5%) -0.6% (-0.7%, -0.5%) -0.5% (-0.6%, -0.4%) -0.3% (-0.3%, -0.2%) -0.4% (-0.5%, -0.3%) -0.3% (-0.3%, -0.2%) 

2016 -0.6% (-0.7%, -0.4%) -0.5% (-0.6%, -0.4%) -0.4% (-0.6%, -0.3%) -0.3% (-0.3%, -0.2%) -0.4% (-0.5%, -0.3%) -0.3% (-0.3%, -0.2%) 
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Figure Legends 

 

Figure S1. Causal diagram for the association between ambient PM2.5 and mortality  

Figure S2. Flow chart of cohort creation  

Figure S3. Annual mean exposure to ambient PM2.5 in the 2006 CanCHEC cohort (2.7M adults, 

aged 30-79 years), by year  

Figure S4. Changes in mean annual exposure of ambient PM2.5 in the 2006 CanCHEC cohort 

(2.7M adults, aged 30-79 years) if source contributions to PM2.5 exposure had been reduced in 

Canada over the period 2007-2016, by selected major emission sources and intervention 

strategies relative to the natural course of observed PM2.5 exposures (‘no intervention’ scenario) 

Figure S5. Sensitivity analyses of PM2.5 reduction with mortality in the CanCHEC cohort, 2007-

2016 (expressed as absolute difference in mortality risks, per million), by emission sources and 

strategies  

Figure S6. Sensitivity analyses of PM2.5 reduction with mortality in the CanCHEC cohort, 2007-

2016 (expressed as percentage change in mortality risk, in %), by emission sources and strategies 

Figure S7. Comparison of observed and predicted survival probability, PM2.5 exposure, and 

time-varying covariates for each year during the period 2007-2016 

 

Figure S8. Absolute change in mortality risk and 95% confidence interval (95% CI) per million 

persons for the associations of reductions in source contributions to PM2.5 with premature 

mortality in the 2006 CanCHEC cohort over the period 2007-2016, by two selected emission 

sources, intervention strategies, and personal-level characteristics at baseline 
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Figure S1. Causal diagram for the association between ambient PM2.5 and mortality (note that 

grey nodes indicate unmeasured factors whereas red nodes denote measured factors) 
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Figure S2. Flow chart of cohort creation 

  

432,580 study participants (or 12.9%) excluded 

because they did not meet inclusion criteria for 

age (25-79 years old) on census day in 2006 

2,668,525 study participants 

2,910,790 study participants 

 

3,343,370 study participants in the 2006 CanCHEC cohort 

 

2,795,330 study participants 

 

31,835 study participants (or 1.0%) excluded 

due to missing exposure of interest 

 

 

126,805 study participants (or 3.8%) excluded 

due to missing covariates (e.g., annual income) 

 

4,880 study participants (or 0.1%) excluded due 

to death occurred before baseline (in 2007) 

 

2,663,645 study participants included in the analysis 

 

 

2,827,165 study participants 

 

83,630 study participants (or 2.5%) excluded 

because they had lived in Canada for <5 years 
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Figure S3. Annual mean exposure to ambient PM2.5 in the 2006 CanCHEC cohort (2.7M adults, 

aged 30-79 years), by year 
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Figure S4. Changes in mean annual exposure of ambient PM2.5 in the 2006 CanCHEC cohort 

(2.7M adults, aged 30-79 years) if source contributions to PM2.5 exposure had been reduced in 

Canada over the period 2007-2016, by selected major emission sources and intervention 

strategies relative to the natural course of observed PM2.5 exposures (‘no intervention’ scenario) 
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Figure S5. Sensitivity analyses of PM2.5 reduction with mortality in the CanCHEC cohort, 2007-

2016 (expressed as absolute difference in mortality risks, per million), by emission sources and 

strategies ([1] Reorder B assumed a causal ordering of time-varying covariates: airshed → 

community size → urban form → area-level deprivation → income → PM2.5; [2] Reorder C: 

income → airshed → community size → urban form → area-level deprivation → PM2.5; [3] 

Reorder D: airshed → community size → urban form → PM2.5 → income → area-level 

deprivation; [4] Reorder E: PM2.5 → airshed → community size → urban form → income → 

area-level deprivation; [5] 6-year mean exposure denotes 6-year moving average of PM2.5 with 

1-yr lag; [6] linear C-R function assumes a log-linear shape of PM2.5-mortality association) 
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Figure S6. Sensitivity analyses of PM2.5 reduction with mortality in the CanCHEC cohort, 2007-

2016 (expressed as percentage change in mortality risk, in %), by emission sources and strategies 

([1] Reorder B assumed a causal ordering of time-varying covariates: airshed → community size 

→ urban form → area-level deprivation → income → PM2.5; [2] Reorder C: income → airshed 

→ community size → urban form → area-level deprivation → PM2.5; [3] Reorder D: airshed → 

community size → urban form → PM2.5 → income → area-level deprivation; [4] Reorder E: 

PM2.5 → airshed → community size → urban form → income → area-level deprivation; [5] 6-

year mean exposure denotes 6-year moving average of PM2.5 with 1-year lag; [6] linear C-R 

function assumes a log-linear shape of PM2.5-mortality association) 
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Figure S7. Comparison of observed and predicted survival probability, PM2.5 exposure, and 

time-varying covariates for each year during the period 2007-2016 
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Figure S8. Absolute change in mortality risk and 95% confidence interval (95% CI) per million 

persons for the associations of reductions in source contributions to PM2.5 with premature 

mortality in the 2006 CanCHEC cohort over the period 2007-2016, by two selected emission 

sources, intervention strategies, and personal-level characteristics at baseline 
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