

Supplementary Information for

High-Throughput Functional Annotation of Natural Products by Integrated Activity Profiling

Suzie K. Hight^{1,8}, Trevor N. Clark², Kenji L. Kurita^{2,6}, Elizabeth A. McMillan¹, Walter Bray³, Anam F. Shaikh⁴, Aswad Khadilkar³, F. P. Jake Haeckl², Fausto Carnevale-Neto², Scott La³, Akshar Lohith³, Rachel M. Vaden¹, Jeon Lee⁵, Shuguang Wei⁴, R. Scott Lokey³, Michael A. White^{1,7*}, Roger G. Linington^{2*}, John B. MacMillan^{3,4*}

*Corresponding authors: Michael White; Roger Linington; John Macmillan

Email: Michael White <u>mikewhite3224@gmail.com;</u> Roger Linington <u>rliningt@sfu.ca</u>; John Macmillan <u>jomacmil@ucsc.edu</u>

This PDF file includes:

Supplementary text

Figures S1 to S33 and legends

Tables S1 to S6

SI References

Other supplementary materials for this manuscript include the following:

Dataset S1: List of all Selleck compounds included in the reference library and their target class annotations.

Dataset S2: Raw gene expression data for parkamycin A.

SUPPORTING INFORMATION

Contents

Supplementary Note 1: Chemical Libraries
Supplementary Note 2: Metabolomics
Supplementary Note 3: Bioassays8
Supplementary Note 4: Statistical analysis
Supplementary Note 5: Compound isolation14
Supplementary Note 6: Parkamycins A/B isolation, structure elucidation, and NMR table
Supplementary Figure 1: Selleck library target class membership
Supplementary Figure 2: Pearson correlation distributions in FUSION and CP22
Supplementary Figure 3: Venn diagrams illustrating overlap among target classes identified as significantly enriched in a k-means cluster
Supplementary Figure 4: Annotated heatmaps showing which target classes are significantly enriched in k-means clusters
Supplementary Figure 5. Alluvial diagrams for each target class using k-means clustering of the FUSION and CP datasets25
Supplementary Figure 6. Alluvial diagrams for each cluster in FUSION and each cluster in CP
Supplementary Figure 7: Adapted similarity network fusion workflow
Supplementary Figure 8: CDF plots comparing pairwise associations between in-class and out-of-class associations
Supplementary Figure 9: "Dead" Compounds in CP and FUSION cluster together in the SNF-Euclidean APC map
Supplementary Figure 10. Affinity propagation clustering map of the SNF-pearson network191
Supplementary Figure 11: Bokeh Server demonstration of functionality
Supplementary Figure 12. Density distributions of SNF scores for unique metabolites in the natural product fraction library195
Supplementary Figure 13: Compound Activity map for combined SNF profiles and untargeted metabolomics features
Supplementary Figure 14: Signatures from natural product fractions containing trichostatin A197

Supplementary Figure 15. Signatures from natural product fractions containing surugamide	.198
Supplementary Figure 16. Signatures from natural product fractions containing parkamycin A	.199
Supplementary Figure 17. ¹ H NMR of parkamycin A	.200
Supplementary Figure 18. ¹³ C NMR of parkamycin A	.201
Supplementary Figure 19. HSQC NMR spectrum of parkamycin A	.202
HSQC NMR spectrum collected at 600 MHz in DMSO-d6	.202
Supplementary Figure 21. Expanded HSQC NMR spectrum of parkamycin A, region	ר 2. 204.
Supplementary Figure 22. COSY NMR spectrum of parkamycin A	.205
Supplementary Figure 23. HMBC NMR spectrum of parkamycin A	.206
Supplementary Figure 24. Expanded HMBC NMR spectrum of parkamycin A, region	า 1. .207
Supplementary Figure 25. Expanded HMBC NMR spectrum of parkamycin A, region	n 2. .208
Supplementary Figure 26. ¹⁵ N-HMBC NMR spectrum of parkamycin A	.209
Supplementary Figure 27. ¹ H NMR spectrum of parkamycin B (semi pure)	.210
Supplementary Figure 28. ¹³ C NMR spectrum of parkamycin B (semi pure)	.211
Supplementary Figure 29. HSQC NMR spectrum of parkamycin B (semi pure)	.212
Supplementary Figure 30. HMBC NMR spectrum of parkamycin B (semi pure)	.213
Supplementary Figure 31. Volcano plot displaying differential gene expression in the Nanostring metabolism panel after treatment with RLUS-2088 (Parkamycin A)	ə .214
Supplementary Figure 32. Metabolic pathway analysis on gene expression data collected after parkamycin treatment.	.215
Supplementary Figure 33. Comparison of pathway scores for select pathways altered with RLUS2088 (Parkamycin-A) treatment compared to DMSO	ed .216
Supplementary Table 1. Selleck library target representation	.217
Supplementary Table 2: K-means cluster membership in FUSION and CP for compounds in the top 30 largest target classes	.222
Supplementary Table 3: SNF-Euclidean APC hypergeometric test p-values	.237
Supplementary Table 4: Target class enrichment in APC clusters	.240
Supplementary Table 5: Cluster #49 members	.241
Supplementary Table 6: Differential expression of top 20 genes in the Nanostring metabolism panel.	.242

Supplementary Note 1: Chemical Libraries

Selleck Library

The reference library is a set of 2027 molecules spanning 196 compound classes, with 789 compounds not belonging to any annotated class. The library was purchased from Selleck as a premade library, combining compounds from the Bioactive, Kinase Inhibitor, and FDA-approved drug libraries. The compounds were formatted into two sets of 384 well plates at 10 mM and 2 mM.

Natural product libraries

Two natural product libraries were utilized in this study. The MacMillan lab collection used in this study was comprised of ~500 fractions derived from 25 marine-derived bacterial strains. The library of microbial natural product fractions was derived from marine-derived Actinomycetes (20), Firmicutes (5). These bacteria were cultivated from marine sediment samples collected in Tonga, the Gulf of Mexico (Texas, Louisiana), estuaries in South Carolina, and the Bahamas. A variety of techniques were utilized to isolate strains, including the use of nutrient-limited isolation media, such as those composed of only humic or fulvic acid, the use of small-molecule signaling compounds (N-acylhomoserine lactones, siderophores) that mimic the natural environment of the bacteria of interest, and isolation of spores using density gradient ultracentrifugation. Selection of bacterial isolates was carried out based on morphological appearance and followed up by phylogenetic characterization using 16S rRNA analysis using the Universal 16S rRNA sequences were compared to sequences in available databases using the Basic Local Alignment Search Tool.

To generate the fraction library used in this study, bacterial strains were fermented in $5 \times$ 2.8 L Fernbach flasks each containing 1 L of a seawater based medium (10 g starch, 4 g yeast extract, 2 g peptone, 1 g CaCO₃, 40 mg Fe₂(SO₄)₃·4H₂O, 100 mg KBr) and shaken at 200 rpm for seven days at 27 °C. After seven days of cultivation, XAD7-HP resin (20 g/L) was added to adsorb the organic products, and the culture and resin were shaken at 200 rpm for 2 h. The resin was filtered through cheesecloth, washed with deionized water, and eluted with acetone to give a crude extract, with an average yield of 2.0 g of crude extract/strain. Further fractionation of the bacterial crude extracts (~500 mg) was accomplished using an Isco medium pressure automatic purification system (equipped with UV and ELSD detectors) using reversed phase C18 chromatography (gradient from 90:10 H₂O:CH₃CN to 0:100 H₂O:CH₃CN over 25 minutes, RediSep Rf Gold High Performance column with 600 mg capacity). Fermentation of each bacterial strain gives rise to a total of either 10 or 20 natural product fractions/strain. All natural product fractions in the library are standardized to a concentration of 10 mg/mL in DMSO. All fractions have been analyzed by low resolution LC/MS using an Agilent Model 6130 single guadrupole instrument.

Due to the nature of the fractionation approach, there is by design, the potential for sequential fractions to contain the same compounds. For example, if the peak for staurosporine is split between fraction 6 and 7, one could expect to have a similar biological signature between the sequential fractions.

The Linington natural product fraction library contains >5000 microbial fractions. The library is comprised of extracts of marine sediment-derived bacterial strains isolated by the Linington laboratory over the past 10 years. The library contains a cross section of Gram-positive genera, enriched in Actinobacterial strains. These sediments were collected by hand using SCUBA from over 70 discrete dive sites on the west coast of the United States and Canada. Collection sites include locations from the Channel Islands (near Los Angeles, CA) to the San Juan Islands in northern Washington state and sites on Vancouver Island, and are part of one of the largest systematic sampling campaigns for marine microbial chemistry performed in this area. Samples were collected with 15mL centrifuge tubes and isolates were obtained from one of 8 selection media each supplemented with 50 mg of nalidixic acid and cycloheximide. Selective media listed below which end in "F" contain 1 L of MilliQ water and media ending in "S" contain 750 mL of 0.2 µm-filtered seawater, and 250 mL of MilliQ water to a total volume of 1 L. These media are as follows: actinomycete isolation agar (AIF and AIS, Difco[™]), SNF and SNS¹, NTF and NTS, and HVF and HVS². Plates were incubated at room temperature until the appearance of desired colony morphologies consistent with actinobacteria. Colonies were picked which displayed characteristic actinobacterial morphologies and were subcultured onto either MB (37.4 g DifcoTM Marine Broth, 18 g agar, 1 L Milli-Q water) or A1 (18 g agar, 20 g starch, 10 g glucose, 5 g yeast extract, 5 g NZ-amine, 1 g CaCO₃, 50 mg nalidixic acid, 50 mg cycloheximide, 31.2 g Instant Ocean, 1 L Milli-Q water) agar plates.

Isolates were inoculated from MB (18 g agar, 37.4 g marine broth (Difco[™]), 1 L MilliQ water) or A1 (18 g agar, 20 g soluble starch, 10 g glucose, 5 g yeast extract, 5 g NZamine, 1 g CaCO₃, 1 L MilliQ water) agar plates into 7 mL of modified SYP (mSYP) liquid media (10 g starch, 4 g peptone, 2 g yeast extract, 1 L Milli-Q water, 31.2 g Instant Ocean® sea salt) in 25 x 150 mm glass culture tubes for 2-3 days at room temperature with shaking at 200 rpm. These small-scale cultures were shaken at 25°C and 200 rpm for a minimum of three days before moving to 60-mL medium-scales. Cultures were stepped up to medium-scale by inoculating 3 mL of the small-scale culture into 60 mL of freshly prepared mSYP in wide-mouthed 250-mL Erlenmeyer flasks with small springs. Medium-scale cultures were shaken at 25°C and 200 rpm for 3-7 days. Large scale cultures were prepared by inoculating 40 mL of medium-scale culture into 1 L of freshly prepared mSYP in 2.8-L Fernbach flasks with a large spring and 20 g of pre-washed Amberlite XAD-16 adsorbent resin (DCM, MeOH, and water; Sigma). Large-scale cultures were shaken at 25°C and 200 rpm for 7-10 days. At the end of the fermentation period, cells and resin were separated from the culture medium by vacuum filtration using a Whatman® glass microfiber filter and washed with deionized water. Resin and cells from each culture flask were extracted with 250 mL of 1:1 DCM/MeOH. The organic extract was separated from the cells and resin by vacuum filtration and concentrated *in vacuo*.

Crude organic extracts from marine-derived actinobacteria were subjected to solid phase extraction using a Supelco-Discovery C18 cartridge (5 g) and eluted using a MeOH/H₂O step gradient (40 mL; 10% MeOH, 20% MeOH, 40% MeOH, 60% MeOH, 80% MeOH, 100% MeOH, 100% EtOAc) to afford seven fractions. The 10% MeOH fraction was discarded and the remaining six (fractions A - F) concentrated to dryness in vacuo. Dry pre-fractions were resolubilized in 1 mL of dimethyl sulfoxide (DMSO) and transferred to deep-well 96-well plates for long-term storage at -70°C.

For biological analysis, DMSO stocks of library fractions were thawed, sonicated, and reformatted to 384-well format for high-throughput screening.

For mass spectrometry analysis, DMSO stocks of library fractions were thawed, sonicated, and diluted 1:20,000 (5:200 DMSO, 10:240 50% MeOH/H₂O, 10:200 50% MeOH/H₂O) with mixing in 96-well format. Plates were reformatted into 384-well format, sealed, centrifuged at 1000 rpm for 30s, and analyzed.

Supplementary Note 2: Metabolomics

Data-Independent (DIA) UPLC-MS/MS Data Acquisition

All measurements were performed with an Acquity UPLC H-Class (Waters) using an HSS T3 C18, 100 mm × 2.1 mm, 1.7 µm column (Waters). Separation of 5 µL sample was achieved by a gradient of (A) H₂O + 0.01% FA to (B) MeCN + 0.01% FA at a flow rate of 500 µL/min and 45°C for 7.5 min (5% MeCN, 0-0.3 min; 5-90% MeCN, 0.3-4.7 min; 90-98% MeCN, 4.7-5.5 min; 98% MeCN, 5.5-5.8 min; 5% MeCN, 5.81-7.5 min). The LC flow was directly infused into a Synapt G2-Si operated in positive ion mode. Analysis was conducted using the HDMS^E mode which was set to alternate between collision energies of 0eV and 30eV every 0.3 sec. The instrument was operated in electrospray mode with 20 µg/mL leucine enkephalin lockspray infusion enabled every 10 seconds. Mass spectra were acquired from 50-1500 *m/z* at a 2Hz scan rate in continuum mode without lockmass correction.

Data Processing

All samples were analyzed in triplicate for downstream processing. All samples were measured as 384-well plate batches. Measurements were performed over the course of 7 months. Measurements for each 384-well plate were performed within two weeks of each other, with all replicates of a single 384-well plate batch measured before moving on to the next set of samples. The instrument was mass calibrated and collisional-cross section (CCS) calibrated using MajorMix (Waters) between every 384-well set of samples run. The average m/z error was never greater than 0.9 ppm for the calibrant signals prior to acquisition.

Metabolomics processing pipeline

All raw data files were processed using a customized workflow developed in collaboration with Waters. The initial peak detection and HDMS^E deconvolution software package MSeXpress 2.0 was employed to generate peak lists of precursor ions with their associated product ions for each sample. To ensure the validity of signals across replicates, another custom Python script (replicate comparison) removed any m/z feature that was not present in at least two of three analytical replicates within 0.03 Da and 0.05 min. Finally, all replicate-compared samples were basketed to give the distribution of all

features across the sample set. Features within 0.03 Da and 0.05 min baskets were collapsed to single features, annotated by the samples in which they appear. Features that appeared in solvent blanks were removed prior to bioactivity integration in the Jupyter notebook.

Supplementary Note 3: Bioassays

Cytological Profiling

General

Briefly, HeLa cells were cultured and seeded into 384-well at 2,500 cells/well. After a 24hour incubation, cells were pinned with test fractions (or pure compounds) using a Janus MDT robot (PerkinElmer). Two stain sets were used; Stain set 1: Hoechst, EdUrhodamine, and anti-Phosphohistone H3, Stain Set 2: Hoechst, FITC-alpha tubulin, and rhodamine-phalloidin. For stain set 1, cells were incubated with 20 µM EdU for 1 h prior to fixing in 4 % formaldehyde solution in PBS for 20 min. Cells were then washed with PBS and permeabilized with 0.5% Triton-X in PBS for 10 min before blocking with 2% BSA-PBS solution for at least 1 h. Following this, cells were incubated with primary antibodies overnight at 4°C. The following day, excess primary antibody was washed off with PBS and secondary antibodies and Hoechst solution were incubated for 1 h. Plates were washed with PBS and preserved with 0.1% sodium azide in PBS solution prior to imaging. For stain set 2, cells were fixed with a 4% formaldehyde solution in PBS for 20 min. Cells were then washed with PBS and permeabilized with 0.5% Triton-X in PBS for 10 min before blocking with 2% BSA-PBS solution for at least 1 h. Following this, cells were incubated with primary antibodies overnight at 4°C. After blocking the cells were washed and incubated with FITC conjugated anti-alpha tubulin antibody overnight at 4°C. The following day the cells are washed and then incubated with rhodaminephalloidin and Hoechst stain for 20 minutes. The cells were then given one final wash before imaging.

Selleck chemicals were screened at both 50 μ M and 10 μ M in CP. In the downstream analysis, signatures that were inactive in the 10 μ M dose were replaced with the signature obtained from 50 μ M treatment. Otherwise the signature produced at 10 μ M was used for downstream analysis. Macmillan natural product fractions were screened at 10 μ g/mL, and Linington natural product fractions were screened at 1000 x dilution from stock. NPFs that were cytotoxic in initial screening were run in 8 pt. 3-fold dilutions starting from 50 μ g/ml to obtain active but not dead CP signatures. CP signatures of the first NPF dilutions that was within three SDs of the mean control cell count replaced the initial 50 μ g/ml signatures and contributed CP data for SNF merging.

Imaging and Analysis

Two images per well were captured with an ImageXpress Micro XLS automated epiflourescent microscope (Molecular Devices, Sunnyvale). Images were then processed as previously described³. Briefly, initial image processing was performed using MetaXpress image analysis software, using built-in morphometry metrics, the multiwavelength cell scoring, transfluor, and micronuclei modules. Custom written scripts were used to compare the treated measurements with the measurements of the DMSO control wells, and then convert each feature to a "histogram difference" (HD) score. This produced a 408-feature vector fingerprint which was then reduced to 251 features using

additional feature reduction steps. Uninformative features with zero standard deviation across all perturbations were removed. In addition, redundancy was further reduced using the find Correlation function in the R-package caret (version 6.0-79; R-version 3.3.3). Briefly, all feature pairs with Pearson correlation coefficients greater than 0.95 were flagged and the member of each pair with the highest mean correlation to all other features was removed, resulting in the final 251-feature CP fingerprint. Compound treatment wells were labeled as 'dead' if the cell count for the treatment well was < 10% of the Median cell Count in the treatment plate. This resulted in 31 compounds and NPFs to be labeled as 'dead'. CP scores were calculated as the square-root of the sum of the squares of the CP features.

$$CPscore = \sqrt{\sum_{i=feature 1}^{n \ features} x_i^2}$$

FUSION

Assay and data processing

All perturbagens were screened in triplicate in the human lung cancer cell line NCI-H23 in 384-well microtiter plate format. Cells were seeded at a density of 5000 cells/well in either 50 or 60 μ L of RPMI containing 5% FBS and 1000 U/mL Penicillin-Streptomycin (ThermoFisher). The next day, cells were treated with natural product fraction extract (10 μ g/mL from the Macmillan library, and 1000x dilution from the Linington library) or Selleck chemicals (10 μ M) using an Echo 555 Liquid Handler (Labcyte; Sunnvale, CA). After 24 hours of incubation, QuantiGene Plex 2.0 Assay Lysis Mixture (ThermoFisher) with 10 μ L/mL proteinase K was added to each well for a final media:Lysis Mixture ratio of 2:1. Cells were lysed at 54°C for 30 min, and then stored at -80°C.

The FUSION assay concept was described previously⁴. We extended this concept to a lung cancer context by selecting a new set of genes that can report on the physiological state of lung cancer cell lines in particular. Expression of 14 dynamic reporter genes (DUSP6, FAM3C, GCNT3, GRHL2, HSD17B7, KIAA0922, LCN2, LTBR, RRM2, SIRPA, TLE2, TMEM30B, WSB2, YAP1) and 2 static reporter genes (EEF1A1, SIRT6) were detected using a 16-plex QuantiGene Plex 2.0 Assay (ThermoFisher). Using a panel of four different sets of 16-plex magnetic and fluorescent beads allowed 4 experiments to be multiplexed into each well, for a final plex of 4 experiments x 16 genes = 64measurements. An aliquot of cell lysate (~44-47% of the original volume) was then transferred to V-bottom 384-well plates and incubated with bead and hybridization probe mixes at 54°C in a MaxQ 4450 benchtop orbital shaker at 300 rpm for a minimum of 18 hours. After hybridization, samples were 4-plexed by bead set into flat-bottom 384-well plates using a Biomek robotic liquid handler and 384-well plate magnet. Plates were washed in Quantigene Assay Wash Buffer using an ELx405 CW plate washer with a 384well plate magnet. The signal was then amplified per manufacturer's protocol using preamplifier, amplifier, biotin label, at a ratio of 7.5 µL/mL Label Probe Diluent, and

streptavidin-phycoerythrin reagents at a ratio of 7.5 μ L/mL SAPE Diluent. Plates were then washed in SAPE Wash Buffer and read on a Flexmap 3D (Luminex).

FUSION gene expression data is processed first by deconvolution into bead sets, and then normalizing the raw median fluorescence intensity (MFI) value for each gene to the median MFI of that gene on a plate-by-plate basis. To control for cell number, each gene is normalized to the geometric mean of the static controls (*EEF1A1* and *SIRT6*) on a wellby-well basis. Expression values which are > 2x the standard deviation of all values for that gene are then filtered out to eliminate spurious outliers, and only perturbagens with at least 2 replicate values for each gene are processed further. Gene signatures are then normalized to the median of "no treatment" control wells on a plate-by-plate basis, collapsed to the median of each gene, and log_2 transformed to obtain the final FUSION signature. Perturbagens were flagged as 'dead' in the FUSION dataset if the geometric mean of the plate-median normalized MFI values for EEF1A1 and SIRT6 was ≤ 8 .

Compound activity assessment

Immunoblot analysis

H23 cells were plated in 6-well format at a density of 150,000 cells/well and allowed to incubate overnight before drug treatment. Upon 24 hour drug treatment, cells were lysed in 1% Triton X-100 buffer mixed with 1X protease and phosphatase inhibitor cocktails (Thermo Scientific). 20 µg of each lysate was loaded and electrophoresed on a 10% SDS-PAGE gel (Bio-Rad) and transferred to a PVDF membrane using the Transblot turbo transfer system (Bio-Rad). After blocking with Starting Block (PBS) Blocking Buffer (Thermo Scientific), membranes were probed overnight with primary antibodies diluted at 1:1,000 at 4°C according to manufacturer recommendations. Antibodies against GAPDH (#5174), Rb (# 9309), p-Rb (# 8516) were purchased from Cell Signaling Technology. After washing and incubation with the secondary antibody (HRP-conjugated anti-mouse and anti-rabbit IgG antibodies, Jackson Immunoresearch), protein signals were visualized with ECL Select detection solution (Amersham). GAPDH was used as whole cell lysate loading control.

Gene expression assay after parkamycin treatment

H23 cells were seeded in 6 well plates, 24 h later dosed with DMSO (0.1 %) or RLUS-2088 (10 μ M) in DMSO and incubated for 6 h. Cells were lysed and RNA was extracted with Monarch Total RNA Miniprep kit according to manufacturer's instructions (Catalog T2010S). RNA and yield determined using Nanodrop ND-100 spectrophotometer (ThermoFisher). RNA integrity was determined using Agilent Tape station 4150 (Agilent Technologies, Seattle WA) (RIN > 8.5). 100 ng of RNA was hybridized with Human Metabolic Pathways Panel XT-CSO-HMP1-12. Briefly, 70 μ I of hybridization buffer was added to Reporter CodeSet to prepare the master mix. To set up the hybridization reactions, each sample tube contained 8 μ l of master mix and 5 μ l of diluted RNA sample. Capture ProbeSet (2 μ l) was added to each tube and samples were hybridized at 65°C for 18 hours. Samples were processed on an nCounter MAX GEN2 prep station and digital analyzer. Quality control of nCounter data, data normalization and gene expression differences were performed using nSolver and Advanced Analysis Version 2.0.

Supplementary Note 4: Statistical analysis

Similarity Network Fusion (SNF) Methodology

SNF is a novel similarity metric designed to aggregate information across multiple datasets and assign a similarity score to perturbations based on evidence from multiple datasets. SNF was performed as previously described⁵, with some modifications (Supplementary Figure 1). Briefly, similarity within a dataset was first calculated. For perturbations i and j, similarity within a single dataset is calculated as:

$$\mathbf{W}(i,j) = \exp\left(-\frac{\rho^2(x_i,x_j)}{\mu\varepsilon_{i,j}}\right)$$

where $w_{i,j}$ gives the scaled similarity and $\rho(x, x_j)$ gives a similarity score (i.e., Euclidean distances) between perturbations i and j in one dataset. For Euclidean distances we used the dist2 function in the SNFtool package. For Pearson correlations, the distance matrix function from the R package ClassDiscovery was used to calculate a Pearson distance similarity matrix. W is calculated for each input dataset to be fused with SNF. The μ value is a hyperparameter that is empirically set and ε is used to eliminate the scaling problem. ε is given as:

$$\varepsilon_{i,j} = \frac{\operatorname{mean}(\rho(x_i, N_i)) + \operatorname{mean}(\rho(x_j, N_j)) + \rho(x_i, x_j)}{3}$$

To compute similarity across multiple sources of data with different scales of measurement a normalized weight matrix, P, was defined where $P = D^{-1}W$ where is D is the diagonal matrix whose entries $D(i,i) = \sum_{j} W(i,j)$. From here, K-nearest neighbors was used to measure self-similarities as follows:

$$\mathbf{S}(i,j) = \begin{cases} \mathbf{W}(i,j) \\ \overline{\Sigma_{k \in N_i} \mathbf{W}(i,k)}, & j \in N_i \\ 0 & \text{otherwise} \end{cases}$$

In this step, the k-nearest neighbors to a perturbation will be assigned similarity scores and the others will be set to zero. We found this step to be critical in introducing errors into the similarity measures for our purposes. Setting the similarity value to zero for similarity measures outside the k-nearest neighbors (KNN) effectively masked perturbation similarity in otherwise significantly similar associations. Thus, we chose to vary k from k=2 to k=n/2, where n is the total number of perturbations in each dataset, and use an agglomerate value of similarity across all k. Networks were then fused by prorogation information from each dataset into the other according to the following equation:

$$\mathbf{P}_{t+1}^{(1)} = \mathbf{S}^{(1)} \times \mathbf{P}_{t}^{(2)} \times (\mathbf{S}^{(1)})^{T}$$
$$\mathbf{P}_{t+1}^{(2)} = \mathbf{S}^{(2)} \times \mathbf{P}_{t}^{(1)} \times (\mathbf{S}^{(2)})^{T}$$

P and S are defined above where P carries information about the full similarity network and S carries information about similarity for KNN. The superscripts (1) and (2) indicate similarity in data types 1 or 2 (here FUSION or CP). After each iteration, the P matrices were re-normalized as described above. This process is iteratively updated for t-steps after which the final fused matrix is calculated as:

$$\mathbf{P}^{(c)} = \frac{\mathbf{P}_t^{(1)} + \mathbf{P}_t^{(2)}}{2} \cdot$$

As stated above, we perform SNF individually for values of k varying from k=2 to k=n/2, resulting in n/2-1 matrices total. To compute an aggregate matrix, we first normalize within each matrix by dividing by the maximum non-diagonal value and then take the average value between all matrices to result in a final, fused aggregate similarity matrix. This matrix was then log₁₀-transformed and clustered by affinity propagation clustering using either Euclidean distance or Pearson correlation as the similarity metric.

Integration of Metabolomics to SNF, CP, and FUSION data

Integration of the basketed metabolomics data was performed similarly to previous studies⁷. This approach treats every observed MS feature or basket as an individual chemical entity and asks the question, on average, what biological phenotype is expected when cells in the high content assays are treated with compound? It is acknowledged that combinations of multiple bioactive species as well as huge differences in titre are to be expected; however, the simplicity and naivety of the question serves as a reasonable starting point for further investigation.

In practice, each basket is treated as an object and assigned five numeric descriptors or attributes specific to the biological data acquisition: CP Cluster Score, CP Activity Score, FUSION Cluster Score, FUSION Activity Score, and SNF Cluster score. The Activity Score describes the strength or magnitude of the phenotype predicted when a basket is detected in an extract. The Activity Score values were calculated by first computing a numeric average of each of the observed attributes for each independent assay. The magnitude, square root of the sum of the squares, of this average predicted phenotype is the Activity Score. The Cluster Score describes the similarity of the phenotypes observed in the biological assays amongst all natural product extracts in which the basket was detected. The Cluster Score is computed using the NXN similarity matrices from each assay or the combined SNF similarity matrix and is simply the average of the nondiagonal values of the sub NXN matrix consisting of all the natural product fractions containing that basket. These descriptors are then exported as a table that can be used for discovery and visualized using tools such as the custom Bokeh server.

Supplementary Note 5: Compound isolation

General

Solvents used for HPLC chromatography were Optima grade and were used without further purification. NMR spectra were acquired on a Bruker 600 MHz Avance II spectrometer equipped with a 5 mm QCI cryoprobe and referenced to residual solvent proton and carbon signals ($\delta_H 2.50$, $\delta_C 39.5$ for DMSO-*d6*, or $\delta_H 3.31$, $\delta_C 49.0$ for MeOD-*d4*). High-resolution mass spectrometry data were acquired using an electrospray ionization (ESI) accurate-mass time-of-flight (TOF) liquid chromatograph-mass spectrometer (Acquity UPLC H-Class tandem Synapt G2-Si).

Fermentation, and extraction

Isolate RL12-067-NTF-D (resulting extract SW218953), isolate RL12-121-HVF-C (resulting extract SW218858), and isolate RL12-115-HVF-E (resulting extracts SW218754, SW218755, SW218756) were inoculated from A1 agar plates into 10 mL of modified SYP (mSYP) liquid media (10 g starch, 4 g peptone, 2 g yeast extract, 1 L Milli-Q water, 31.2 g Instant Ocean) in 25 × 150 mm glass culture tubes for 2 days at room temperature with shaking at 200 rpm before moving to 60-mL medium-scale cultures. Cultures were stepped up to medium-scale by inoculating 3 mL of the small-scale culture into 60 mL of freshly prepared mSYP in wide-mouthed 250-mL Erlenmeyer flasks with small springs. Medium-scale cultures were shaken at 25°C and 200 rpm for 3 days. Large-scale cultures were prepared by inoculating 40 mL of medium scale culture into 1 L of freshly prepared mSYP in 2.8-L Fernbach flasks with a large spring and 20 g of prewashed Amberlite HP-7 adsorbent resin (DCM, MeOH, and water; Sigma). Large scale cultures were shaken at 25°C and 200 rpm for 7days. At the end of the fermentation period, cells and resin were separated from the culture medium by vacuum filtration using a Whatman® glass microfiber filter and washed with deionized water. Resin and cells from each culture flask were extracted with 250 mL of 1:1 DCM/MeOH. The organic extract was separated from the cells and resin by vacuum filtration and concentrated in vacuo.

Fractionation

Crude organic extracts were subjected to solid phase extraction using a Teledynelsco CombiFlash C18 cartridge (5 g) and eluted using a MeOH/H₂O step gradient at 20 mL/min (40 mL; 10% MeOH, 20% MeOH, 40% MeOH, 60% MeOH, 80% MeOH, 100% MeOH, 100% EtOAc) to afford seven fractions. The 10% MeOH fraction was discarded and the remaining six (fractions A - F) concentrated to dryness *in vacuo*.

An aliquot (2.6 mg) of SW218953 (60 % MeOH) was found to be pure, providing structure **1** (2.6 mg, trichostatin A). All of fraction (153 mg) SW218858 (80% MeOH) was subjected to RP-HPLC (20 ml/min, 62:38, H₂O: MeCN with 0.02 % formic acid) using an Atlantis T3 OBD (19 x 250 mm, 5 μ m) column to give compound **2** (4.6 mg, surugamide A). All of fraction (96 mg) SW218756 was subjected to RP-HPLC (1.2 ml/min, 55:45, H₂O:MeCN

with 0.02% formic acid) using a Phenomenex Kinetix C18 (4.6 x 300 mm, 2.6 μ m) column to give compound **3** (7.9 mg, parkamycin A).

Yields

Approximate yields per liter of fermentation was as follows:

Compound 1(trichostatin A) = 100 mg/L

Compound 2 (surugamide A) = 4.6 mg/L

Compound 3/4 (parkamycin A/B) = 4.0 mg/L

Supplementary Note 6: Parkamycins A/B isolation, structure elucidation, and NMR table

Compound Isolation: Isolation of Parkamycins A and B was performed via reverse phase HPLC as described above with two clearly separated peaks (12 and 17 minutes, for B then A, respectively). HR-UPLC-MS analysis of each purified peak revealed rapid interconversion to a mixture of the two compounds in both cases, precluding chemical and biological analysis of the pure compounds. To reduce possible thermally mediated interconversion the purification was repeated collecting into test tubes placed in dry ice. However, HR-UPLC-MS analysis of the resulting fractions again revealed rapid interconversion. To reduce photochemically mediated interconversion the purification was repeated a second time in dark conditions, collecting into covered flasks. This resulted in clean separation of the two isomeric products with purities of >95% and >80% respectively based on integration of UV peaks for the two stereoisomers.

Structure elucidation: The molecular formula for parkamycin A was determined to be $C_{26}H_{34}N_2O_5$ from HRESIMS data for the protonated and sodiated adducts (455.2536 and 477.2345 respectively, calcd. 455.2450 and 477.2360) revealing eleven degrees of unsaturation. The ¹H and ¹³C NMR spectra indicated that the structure contained two carbonyl groups (δ_C 174.6 and 174.6) and 12 additional sp² hybridized centers (δ_C 121.1, 123.3, 126.2, 127.0, 128.5, 130.0, 130.2, 130.9, 134.7, 137.8, 142.0, and 148.9). ¹H and ¹³C NMR also revealed 12 sp³ hybridized methylene carbons (δ_C 24.6, 24.6, 28.4, 28.4, 28.6, 28.7, 30.2, 30.5, 30.6, 31.2, 34.0, and 34.0). Overall, the spectra displayed a high degree of repetition, suggestive of a pseudo-dimeric structure. COSY and HMBC correlations combined with long-range ⁴J_{HH} meta-couplings confirmed the presence of two ortho-substituted aromatic rings, accounting for 8 of the degrees of unsaturation and 12 of the 14 sp² hybridized carbons. COSY and HMBC correlations identified two pendant aliphatic chains, each containing six methylene units and terminating in a carbonyl group.

To place the remaining atoms, a ¹⁵N-HMBC spectrum was employed to determine the locations of the nitrogen atoms adjacent to each aromatic ring. This left five atoms (H_2O_3) remaining, as well as one double bond equivalent. This could be satisfied by either a cyclic compound with the carbonyls connected head to tail with the aryl nitrogen groups, or with an azoxy moeity joining the two aryl subunits and two carboxylic acid

termini. To confirm the presense of the carboxylic acid termini, parkamycin A (0.1 mg) was treated with TMS-diazomethane (100 eq. dissovled in hexanes) in anhydrous methanol (0.5 mL) at room temperature for 15 minutes. LCMS analysis revealed both both partial (one conversion of COOH to COOMe (+14 Da)) and complete methylation products (two conversions of COOH to COOMe (+28 Da)) confirming the presence of the two acid termini.

The remaining oxygen atom and double bond equivalent could only be satisfied by the presence of an azoxy moiety between the two aryl rings. This hypothesis was supported by the rapid interconversion between the cis and trans forms upon exposure to sunlight.

NMR data was acquired on pure parkamycin A for structure elucidation as described above (Figures S17-S26), whereas a sample containing ~85% parkamycin B was used for data collection and assignment of parkamycin B (Figures S27-S30).

Parkamycin A (**3**): UV (MeOH) λ_{max} (log ε) 235 (2.45), 275 (2.31) nm; IR v_{max} 2933, 1710, 1465 cm⁻¹. ¹H NMR (DMSO-*d6*, 600 MHz) δ 7.84 (1H, d, *J* =7.1 Hz, H-2'), 7.62 (1H, d, *J* = 8.4 Hz, H-2), 7.51 (1H, t, *J* =7.5 Hz, H-4), 7.46 (1H, d, *J* =7.5 Hz, H-5), 7.42 (1H, t, *J* =7.6 Hz, H-3), 7.37 (1H, d, *J* =6.7 Hz, H-5'), 7.32 (2H, m, H-3', H-4'), 2.73 (2H, t, *J* =7.7 Hz, H-7), 2.61 (2H, t, *J* =7.7 Hz, H-7'), 2.11 (4H, m, H-12, H-12'), 1.58 (2H, p, *J*

=7.2, H-8), 1.50 (2H, *J* = 7.0, p, H-8'), 1.43 (4H, m, H-11, H-11'), 1.24 (8H, m, H-9, H-8, H-9', H-8') ¹³C NMR (DMSO-*d6*, 150 MHz) δ 174.6 (C, C-13), 174.6 (C, C-13'), 148.9 (CH, C-1), 142.0 (CH, C-1'), 137.8 (CH, C-6'), 134.7 (CH, C-6), 130.9 (CH, C-5), 130.2 (CH, C-4), 130.0 (CH, C-5'), 128.5 (CH, C-4'), 127.0 (CH, C-3), 126.2 (CH, C-3'), 123.3 (CH, C-2), 121.1 (CH, C-2'), 34.0 (CH2, C-12), 34.0 (CH2, C-12'), 31.2 (CH2, C-7'), 30.6 (CH2, C-7), 30.5 (CH2, C-8'), 30.2 (CH2, C-8), 28.7 (CH2, C-10), 28.6 (CH2, C-10'), 28.4 (CH2, C-9), 28.4 (CH2, C-9'), 24.6 (CH2, C-11), 24.6 (CH2, C-11'), ¹⁵N NMR (DMSO-d6, 60 MHz) δ 333.2, 346.8, HRESIMS *m/z* 455.2560 (calcd. for C₂₆H₃₅N₂O₅, 455.2540). SMILES: OC(CCCCCCC1=CC=CC=C1/[N+]([O-])=N/C2=CC=CC=C2CCCCC(O)=O)=O

Parkamycin B (4): ¹H NMR (DMSO-*d6*, 600 MHz) δ 7.31 (2H, m, H-4 and H-5), 7.23 (1H, d, *J* = 7.6 Hz, H-5'), 7.13 (2H, m, H-2 and H-3), 7.05 (1H, t, *J* =7.5 Hz, H-4'), 6.90 (1H, t, *J* =6.9 Hz, H-3'), 6.50 (1H, d, *J* =8.0 Hz, H-2'), 2.67 (2H, m, H-7'), 2.46 (2H, m, H-7), 2.20 (2H, m, H-12), 2.12 (2H, m, H-12'), 1.61 (4H, m, H-8 and H8'), 1.49 (4H, m, H-11 and H11'), 1.29 (8H, m, H-9, H-10, H9', and H-10') ¹³C NMR (DMSO-*d6*, 150 MHz) δ 174.5 (C, C-13), 174.5 (C, C-13'), 147.2 (CH, C-1), 143.3 (CH, C-1'), 135.6 (CH, C-6'), 134.3 (CH, C-6), 130.1 (CH, C-5), 129.9 (CH, C-4), 129.6 (CH, C-5'), 127.3 (CH, C-4'), 126.6 (CH, C-3), 126.1 (CH, C-3'), 122.7 (CH, C-2), 121.4 (CH, C-2'), 33.7 (CH2, C-12), 33.6 (CH2, C-12'), 30.9 (CH2, C-7'), 30.6 (CH2, C-7), 29.5 (CH2, C-8'), 29.4 (CH2, C-8), 28.8 (CH2, C-10'), 28.6 (CH2, C-10), 28.5 (CH2, C-9), 28.3 (CH2, C-9'), 24.5 (CH2, C-11), 24.4 (CH2, C-11) HRESIMS *m/z* 455.2560 (calcd. for C₂₆H₃₅N₂O₅, 455.2540). SMILES: OC(CCCCCC1=CC=CC=C1/[N+][[O-]])=N\C2=CC=CC=C2CCCCCC(O)=O)=O

Cis/trans isomer interconversion: To determine equilibrium ratios between the two forms of this compound (parkamycins A and B), purified samples of each compound were prepared as solutions in both clear and amber vials (0.5 mL of 0.1mg/mL solution in MeOH). All four vials were exposed to ambient light at 10-minute intervals and aliquots from each timepoint analyzed by HR-UPLC-MS.

Under exposure to light (clear vial, top plot), both samples reached an equilibrium ratio of ~85:15 in under 20 minutes. By contrast, exposure to ambient light in amber vials (bottom plot) did not lead to appreciable levels of interconversion. These results demonstrate that parkamycin A is stable under long-term storage conditions, provided

that light is excluded. Further, the relative ratios of the two products at equilibrium supports the assignment of the azoxy configuration as trans for parkamycin A (the more stable isomer) due to steric arguments.

	Parkamycin A			Parkamycin B		
Position	δ _C	δ _Η	J (Hz)	δ _C	δ _H	J (Hz)
1	148.9			147.2		
2	123.3	7.62	8.4	122.7	7.13	
3	127.0	7.42	7.6	126.6	7.13	
4	130.2	7.51	7.5	129.9	7.31	
5	130.9	7.46	7.5	130.1	7.31	
6	134.7			134.3		
7	30.6	2.73	7.7	30.6	2.46	
8	30.2	1.58	7.2	29.4	1.61	
9	28.4	1.24		28.3	1.29	
10	28.7	1.24		28.6	1.29	
11	24.6	1.43		24.5	1.49	
12	34.0	2.11		33.7	2.20	
13	174.6			174.5		
1′	142.0			143.3		
2'	121.1	7.84	7.1	121.4	6.50	8.0
3′	126.2	7.32		126.1	6.90	6.9
4'	128.5	7.32		127.3	7.05	7.5
5′	130.0	7.37	6.7	129.6	7.23	7.6
6′	137.8			135.6		
7'	31.2	2.61	7.7	30.9	2.67	
8′	30.5	1.50	7.0	29.5	1.61	
9′	28.4	1.24		28.5	1.29	
10′	28.6	1.24		28.8	1.29	
11′	24.6	1.43		24.4	1.49	
12'	34.0	2.11		33.6	2.12	
13′	174.6			174.5		

NMR table for parkamycin A and B, acquired at 600 MHz in DMSO-d6.

Supplementary Figure 1: Selleck library target class membership.

Annotated targets in the Selleck library are listed in order of the number of chemicals that are assigned to that class. The top 30 largest target classes were selected for comparison by k-means clustering in Figure 1.

Supplementary Figure 2: Pearson correlation distributions in FUSION and CP. A) Hexplots and B) density plots illustrating the trends in Pearson correlations between indicated perturbagen types.

Supplementary Figure 3: Venn diagrams illustrating overlap among target classes identified as significantly enriched in a k-means cluster.

A) Overlap among target classes that were identified as significantly enriched in at least one kmeans (k=30) cluster by hypergeometric test with Bonferroni correction. B) Overlap among target classes that were not identified as significantly enriched by the same method.

Supplementary Figure 4: Annotated heatmaps showing which target classes are significantly enriched in k-means clusters.

Enrichment was assessed by hypergeometric test (Bonferroni-corrected alpha = 0.0016667) in k-means clusters (k=30) in A) FUSION and B) CP datasets. "Number of significant classes" refers to a count of the number of target classes found to be significantly enriched in that cluster (p<0.00167). "Number of clusters split between" refers to a count of the number of clusters in which a target class was significantly enriched.

Supplementary Figure 5. Alluvial diagrams for each target class using k-means clustering of the FUSION and CP datasets.

Comparison of k-means clustering (k=30) of FUSION and CP signatures for the top 30 target classes in the Selleck chemical library. Each line represents a compound, and each panel displays a separate target class with chemicals belonging to that class highlighted in red.

Supplementary Figure 6. Alluvial diagrams for each cluster in FUSION and each cluster in CP. Alluvial diagrams for each k-means cluster in the FUSION (A) and CP (B) datasets. Comparison of target class associations using k-means clustering (k=30) of FUSION and CP signatures for the top 30 target classes in the Selleck chemical library. Each line represents a compound, and each panel highlights a different cluster. Chemicals belonging to different target classes are indicated by different colors.

Supplementary Figure 7: Adapted similarity network fusion workflow.

All functions are from the SNFtool R package unless otherwise indicated. Normalized FUSION expression signatures and CP fingerprints are subjected to Z-score transformation by the standardNormalization function, followed by similarity matrix calculation using either the dist2 function for Euclidean Distance, or distanceMatrix function (ClassDiscovery package) for Pearson distance. Affinity matrices were then calculated by the AffinityMatrix function. Similarity network fusion (K=number of neighbors, α =hyperparameter) is applied to W_{FS} and W_{CP} across a range of K values from 2 to n/2 to generate a set of W_{SNF-K} matrices. An aggregate matrix is then calculated as described in Supplemental Note 4.

Supplementary Figure 8: CDF plots comparing pairwise associations between inclass and out-of-class associations. In-class-associations are colored in gray, with colored circles corresponding to cluster membership in the associated APC maps. Outof-class associations are colored in black. KS-test p-values are shown above each plot. (a) CDF plots comparing pairwise Euclidean distances and (b) pairwise Pearson correlations.

Euc Dist

Euc Dist

 Fusion
 CPmerge
 log.SNF

 trogen.progestogen.Receptor_anta(trogen.progestogen.Receptor_anta(trogen.progestogen.Receptor_anta(trogen.progestogen.Receptor_anta)
 p= 0.64
 p= 0.2
 p= 0.47

0.8

0.4

0.0

0.6 0.8

ECDF

Euc Dist

Factor.Xa p= 0.1

Euc Dist

1.0 1.2 1.4

Euc Dist

Euc Dist

-0.5

0.0

Pearson R

0.5

1.0

0.0

-1.0

1.0

0.0

-1.0

-0.5

0.0

Pearson R

0.5

1.0

0.0

-1.0

-0.5

0.0

Pearson R

0.5

Pearson R

-1.0

Pearson R

Pearson R

Supplementary Figure 9: "Dead" Compounds in CP and FUSION cluster together in the SNF-Euclidean APC map. Red arrow indicates a cluster enriched with compounds that were flagged as dead in either or both datasets.

Supplementary Figure 10. Affinity propagation clustering map of the SNF-pearson network. A) Hierarchical affinity propagation clustering map of the SNF network using Pearson correlation as the similarity metric. Edges are colored based on contribution from individual datasets: Orange, supported by FUSION; blue, supported by CP; purple, supported by both datasets. Perturbagen type is indicated by node color: black, NPF; gray, pure chemical. B) Bar plot showing the percent of total edges in each APC cluster that are supported by FUSION, CP, or both datasets. Clusters are labeled by cluster number. C) Heatmap showing minus log10 p-values calculated by hypergeometric test for each target annotation class, per APC cluster. Target classes without significant enrichment in any cluster are omitted (Bonferroni-corrected alpha = 0.0016).

AN INTERACTIVE EXPLORER FOR INTEGRATED NATURAL PRODUCTS MS METABOLOMICS DATA

Interact with the addpains on the life to query a subset of rink features to pion. Howe over the divide to see more information about each feature. The opacity of the spots is sumently set to the SNF Cluster Score (the average of the in group SNF similarity metrics for samples containing the mit feature). Instruct by the Bolter Movie Explore.

Please cite the code (http://www.kenjikurita.com)

Activity Score - magnitude of the response phenotype calculated as the square root of the sum of the squares of the perturbations. Cluster Score - the average of the cube of each pairwise similarity score (pearson) for samples in which the m/z features was detected.

а

b

Supplementary Figure 11: Bokeh Server demonstration of functionality. (a)

Labeled webpage for the bokeh server showing functionality and controllable components. (**b**) Minimum Occurrence set to 2 reduces the number of singleton ms features to ~4000. (**c**) Depiction of setting activity minimums in both CP and FUSION. (**d**) Searching bokeh server by sample (SW218754-1) to display all features in that fraction. General search features: Multiple codes may be searched at the same time using ", (space)" to show features in common among all searched codes. Using the text boxes and sliders on the left side of the plot, the feature list can be filtered to include only candidate features of interest. For example, increasing the Minimum Similarity Network Fusion Score slider removes features with low SNF Scores that are poorly correlated with any specific phenotype. Inserting a list of sample names into the 'Sample list name contains' text box filters the results to show only features present in a specific cluster of interest. Features are color-coded by SNF Score, from blue (strongly active) to red (weakly active). In addition, hovering the mouse over each feature in the plot reveals a pop-up window containing information about the feature including mass spectrometric data (*m*/*z*, rt, CCS) and distribution across the sample set.

Supplementary Figure 12. Density distributions of SNF scores for unique metabolites in the natural product fraction library. SNF scores are shown as density plots using (a) Euclidean distance and (b) Pearson Correlation as the similarity metric. Percentiles are indicated by dotted lines as labeled.

Supplementary Figure 13: Compound Activity map for combined SNF profiles and untargeted metabolomics features.

Large nodes represent extracts. Small nodes represent mass spectrometry features. Edges represent presence of mass spectrometric features in connected extracts. Only mass spectrometric features with predicted SNF scores >0.06 are included. A) Full Compound Activity Map. Large nodes color coded by AOC assignment class. B) Expansion of a representative region of the APC map with large nodes coloured by APC cluster.

а

Supplementary Figure 14: Signatures from natural product fractions containing trichostatin A. (a) Heatmaps of FUSION z-scores and CP fingerprints, and (b) CP images from natural products containing trichostatin A and pure trichostatin A. (c) TIC and EIC 303.1703 (Trichostatin A) of SW218953, SW218954, and SW218955.

Supplementary Figure 15. Signatures from natural product fractions containing surugamide. (a) Heatmaps of FUSION z-scores and CP fingerprints, and (b) CP images from natural products containing surugamides. (c) SNF-Euclidean APC cluster showing proximity of surugamide-containing natural product fractions. Nodes are labeled by either target class or perturbagen type. Clusters are shown as colored if they are significantly enriched for particular target class, otherwise are colored light blue. (d) HRMS spectrum of surugamide A. (e)¹H NMR spectrum and (f) ¹³C NMR spectrum for surugamide A in DMSO-*d6* at 600 MHz.

Supplementary Figure 16. Signatures from natural product fractions containing parkamycin A.

(a) Heatmaps of FUSION z-scores and CP fingerprints, (b) SNF-Euclidean APC cluster showing proximity of parkamycin A containing natural product fractions, with SW218754, SW218756 ,and SW218757 highlighted in yellow. Clusters are labeled and colored as described in Supplementary Figure 10., (c) EIC of m/z 455.2560 in adjacent fractions all containing parkamycin A (d) CP images from natural products containing parkamycin A.

Supplementary Figure 17. ¹H NMR of parkamycin A.

¹H NMR spectrum collected at 600 MHz in DMSO-*d*6

Supplementary Figure 18. ¹³C NMR of parkamycin A.

¹³C NMR spectrum collected at 150 MHz in DMSO-d6

Supplementary Figure 19. HSQC NMR spectrum of parkamycin A.

HSQC NMR spectrum collected at 600 MHz in DMSO-d6

Supplementary Figure 20. Expanded HSQC NMR spectrum of parkamycin A, region 1.

Expanded HSQC NMR spectrum collected at 600 MHz in DMSO-d6

Supplementary Figure 21. Expanded HSQC NMR spectrum of parkamycin A, region 2.

Expanded HSQC NMR spectrum collected at 600 MHz in DMSO-d6

Supplementary Figure 22. COSY NMR spectrum of parkamycin A.

COSY NMR spectrum collected at 600 MHz in DMSO-d6

Supplementary Figure 23. HMBC NMR spectrum of parkamycin A.

HMBC NMR spectrum collected at 600 MHz in DMSO-d6

Supplementary Figure 24. Expanded HMBC NMR spectrum of parkamycin A, region 1.

Expanded HMBC NMR spectrum collected at 600 MHz in DMSO-d6

Supplementary Figure 25. Expanded HMBC NMR spectrum of parkamycin A, region 2.

Expanded HMBC NMR spectrum collected at 600 MHz in DMSO-d6

Supplementary Figure 26. ¹⁵N-HMBC NMR spectrum of parkamycin A.

¹⁵N-HMBC NMR spectrum collected at 600 MHz in DMSO-*d*6

Supplementary Figure 27. ¹H NMR spectrum of parkamycin B (semi pure).

¹H NMR spectrum collected at 600 MHz in DMSO-d6

¹³C NMR spectrum collected at 150 MHz in DMSO-*d*6

Supplementary Figure 29. HSQC NMR spectrum of parkamycin B (semi pure).

HSQC NMR spectrum collected at 600 MHz in DMSO-*d*6

Supplementary Figure 30. HMBC NMR spectrum of parkamycin B (semi pure).

HMBC NMR spectrum collected at 600 MHz in DMSO-d6

Supplementary Figure 31. Volcano plot displaying differential gene expression in the Nanostring metabolism panel after treatment with RLUS-2088 (Parkamycin A).

Differential gene expression is shown as log2 fold change of treated compared to DMSO. Horizontal lines indicate various False Discovery Rate (FDR) thresholds. Genes are colored if the resulting p-value is below the given FDR or p-value threshold. The 40 most statistically significant genes are labeled in the plot.

Supplementary Figure 32. Metabolic pathway analysis on gene expression data collected after parkamycin treatment.

Heatmap of pathway scores. Orange indicates upregulation; blue indicates downregulation. Scores are displayed on the same scale via a Z-transformation.

Supplementary Figure 33. Comparison of pathway scores for select pathways altered with RLUS2088 (Parkamycin-A) treatment compared to DMSO. Data shown is from n=3 independent biological replicates. A) epigenetic regulation, B) transcriptional regulation, C) cell cycle signaling, D) Myc, E) KEAP1/NRF2 pathway, F) endocytosis, G) AMPK , H) p53 pathway.

Supplementary Table 1. Selleck library target representation. The number of Selleck compounds in each target class. See Dataset S1 for a full list of compounds and annotations,

Class	Count
Others	674
none	115
I3K	33
Histamine Receptor	33
HDAC	32
AChR antagonist	26
COX	26
Adrenergic Receptor antagonist	25
Adrenergic Receptor agonist	25
DNA/RNA Synthesis	24
CDK	22
RAAS	21
PDE	20
5HTR antagonist	20
VEGFR	20
JAK	20
Topoisomerase	20
Sodium Channel	19
mTOR	19
HSP (e.g. HSP90)	18
Aurora Kinase	17
EGFR	17
Calcium Channel	17
MEK	16
Microtubule Associated	14
PARP	13
RAF	13
5HTR agonist	13
Reverse Transcriptase	12
P450 (e.g. CYP17)	12
Proteasome	12
Estrogen/progestogen Receptor_agonist	11
p38 MAPK	11
GSK-3	11
EGFR_ERBB	10
Potassium Channel	10
Androgen Receptor antagonist	10
Wnt/beta-catenin	10
IGF-1R	9
ATPase	9
	217

TGF-beta/Smad	9
PPAR	9
ABL	9
Histone Methyltransferase	9
Epigenetic Reader Domain	9
c-Met	9
Dopamine Receptor antagonist	9
Bcl-2	8
HMG-CoA Reductase	8
IkB/IKK	8
DUB	8
Akt	8
PDGFR	7
GluR agonist	7
Gamma-secretase	7
GluR antagonist	7
PLK	7
Dehydrogenase	7
FAK	7
ATM/ATR	7
HIV Protease	6
Syk	6
DPP-4	6
STAT	6
Estrogen/progestogen Receptor_antagonist	6
Transferase	6
Src	6
PKC	6
AChR agonist	6
Hedgehog/Smoothened	6
p53	6
Kinesin	6
CFTR	6
Autophagy	5
c-Kit	5
Endothelin Receptor	5
SERT/NET	5
Aromatase	5
FLT3	5
SERT	5
ROCK	5
Caspase	5
VEGFR cKIT PDGFR	5
Carbonic Anhydrase	5

MMP	5
Dopamine Receptor agonist	5
NF-kB	5
TNF-alpha	5
Integrase	5
DNA Methyltransferase	5
GPR	5
Sirtuin	4
Histone demethylases	4
HCV Protease	4
Opioid Receptor agonist	4
Factor Xa	4
E3 Ligase	4
GABA Receptor antagonist	4
Cysteine Protease	4
Opioid Receptor antagonist	4
PDK-1	4
BTK	4
MET_VEGFR	4
Proton Pump	4
P2 Receptor	4
Pim	4
	4
Estrogen/progestogen Receptor_SERM	4
	4
OX Receptor	4
CRK Connahinaid Decenter exercist	4
	4
AIVIER Serine Protocolo	4 2
	ა კ
BMD	ა კ
Androgen Recentor agonist	ა კ
	3 3
FGER	3
SGLT	3
S1P Recentor	3
I RRK2	3
ALK	3
Rac	3
Mdm2	3
CRM1	3
Hydroxylase	3
Rho	3

p97 5-alpha Reductase HIF MAO JNK S6 Kinase Telomerase ELF4 Liver X Receptor PERK CaSR VDA P-gp Beta Amyloid VEGFR PDGFR ERK LPA Receptor Dynamin ELF2 HER2 PKA Cannabinoid Receptor antagonist PAK cAMP **ERBB** CSF-1R GABA Receptor agonist IDO TRPV FXR Phospholipase (e.g. PLA) Ferroptosis Cathepsin K E2 DDP-4 MTH NOD1 MNK Survivin IDH2 CXCR PDHK BMI BET

Fo-ATPase	1
Tie-2	1
gp120/CD4	1
MBT	1
Wee1	1
Histone Acetyltransferase	1
AxI	1
Substance P	1
AAAD/DOPA decarboxylase inhibitor	1
MT Receptor	1
Vasopressin Receptor	1
ribonucleotide reductase	1
с-Мус	1
APE	1
PAFR	1
IL Receptor	1
Ras	1
Ephrin receptor	1
GDP/GTP Exchange Factor Inhibitor	1
Procollagen C Proteinase	1
CCR	1
Integrin	1
Notch	1
Arp2/3	1
E1 Activating	1
DNA-PK	1
ATGL	1
Ftase	1
Phosphorylase	1

	Other_			Fusion_	
SWID	ID _	Pathway	Cmpd.Name	kmeans	CP_kmeans
SW220242-1	S2852	5HTR.agonist	BRL-54443	1	26
SW197244-4	S2025	5HTR.agonist	Urapidil HCl	6	26
SW197596-2	S1385	5HTR.agonist	Mosapride Citrate	7	22
			Sumatriptan		
SW197624-3	S1432	5HTR.agonist	Succinate	7	22
SW219416-1	S1488	5HTR.agonist	Naratriptan	7	8
SW219573-1	S4109	5HTR.agonist	Lorcaserin HCI	7	10
SW219882-1	S1436	5HTR.agonist	Tianeptine sodium	7	12
SW197762-2	S1649	5HTR.agonist	Zolmitriptan	21	3
SW219198-2	S2875	5HTR.agonist	Prucalopride	21	25
			Rizatriptan		
SW197669-2	S1607	5HTR.agonist	Benzoate	23	18
SW197521-3	S1975	5HTR.agonist	Aripiprazole	25	14
SW219418-1	S2096	5HTR.agonist	Almotriptan Malate	28	26
SW220149-1	S3180	5HTR.agonist	Eletriptan HBr	28	3
SW100810-5	S1390	5HTR.antagonist	Ondansetron HCI	1	26
			Vortioxetine (Lu		
SW219360-1	S8021	5HTR.antagonist	AA21004) HBr	3	20
SW219880-1	S4053	5HTR.antagonist	Sertraline HCI	3	20
SW196337-3	S3183	5HTR.antagonist	Amitriptyline HCI	8	24
SW196384-4	S2541	5HTR.antagonist	Clomipramine HCI	8	22
SW219879-1	S1283	5HTR.antagonist	Asenapine	8	5
		-	WAY-100635		
SW219571-1	S2663	5HTR.antagonist	Maleate	19	30
SW219811-1	S2865	5HTR.antagonist	VUF 10166	19	16
SW219375-1	S2677	5HTR.antagonist	BRL-15572	20	14
SW220247-1	S2459	5HTR.antagonist	Clozapine	20	1
SW220018-1	S2894	5HTR.antagonist	SB742457	21	12
SW220129-1	S2849	5HTR.antagonist	SB269970 HCI	21	30
SW198927-2	S1898	5HTR.antagonist	Tropisetron	23	18
			PRX-08066 Maleic		
SW219157-1	S8010	5HTR.antagonist	acid	23	27
SW219941-1	S2856	5HTR.antagonist	SB271046	25	20
SW196882-3	S2232	5HTR.antagonist	Ketanserin	26	11
SW219177-1	S1243	5HTR.antagonist	Agomelatine	26	13
SW219736-1	S2698	5HTR.antagonist	RS-127445	26	16
SW220248-1	S2493	5HTR.antagonist	Olanzapine	26	11
SW197348-4	S1615	5HTR.antagonist	Risperidone	28	12
			Pancuronium		
SW219131-1	S2497	AChR.antagonist	dibromide	1	25
			Solifenacin		
SW219141-1	S3048	AChR.antagonist	succinate	3	4
			Orphenadrine		
SW102176-4	S2054	AChR.antagonist	Citrate	6	30
			Gallamine		
SW196544-3	S2471	AChR.antagonist	Triethiodide	7	1
			Diphemanil		
SW196713-3	S4034	AChR.antagonist	Methylsulfate	7	25
SW197005-3	S4027	AChR.antagonist	Flavoxate HCl	7	3
			Homatropine		-
SW219039-1	S4024	AChR.antagonist	Methylbromide	7	25
					222

Supplementary Table 2: K-means cluster membership in FUSION and CP for compounds in the top 30 largest target classes.

11 8 25 24
8 25 24
25 24
25 24
24
17
14
14
4
18
10
26
20
26
20
8
30
22
1
1
20
20
10
26
9
4
4
10
16
05
25
11
_
8
25
11
23
11
25
25
1
20

		Adrenergic.Receptor.ago			
SW197048-3	S2516	nist	Xylazine HCl	20	30
		Adrenergic.Receptor.ago			
SW197681-3	S2458	nist	Clonidine HCl	20	11
		Adrenergic.Receptor.ago			
SW219096-1 S25	S2545	nist	Scopine	20	1
		Adrenergic.Receptor.ago			
SW220261-1 S3185	S3185	nist	Adrenalone HCI	20	25
		Adrenergic.Receptor.ago			
SW220301-1	S4009	nist	Mirabegron	20	26
		Adrenergic.Receptor.ago			
SW199068-2	S1437	nist	Tizanidine HCI	21	22
		Adrenergic.Receptor.ago			
SW219239-1	S3060	nist	Medetomidine HCI	24	3
		Adrenergic.Receptor.ago	Guanabenz		
SW197044-3	S4065	nist	Acetate	26	30
014/04/0075 4	00500	Adrenergic.Receptor.ago			4
SW219275-1	\$2533	nist Adamania Desenten ene	Ritodrine HCI	26	1
014/04/04/06/4	00500	Adrenergic.Receptor.ago	Dhamilan hair a UO	00	2
500219440-1	52569	nisi Adreneraio Decenter ere	Phenylephnne HCI	28	3
CW010456 1	00000	Adrenergic.Receptor.ago	Determiding LICI	20	0
500219450-1	52092	Misi	Detomidine HCI	28	ö
SW210607 2	62000	Autenergic.Receptor.ago		20	26
300219007-2	32090	Adronorgia Pocontar anta	HCI (FIECedex)	20	20
S\N/1075/7-3	S1831	aonist	Carvedilol	3	2
31191341-3 3103	51051	Adreneraic Recentor anta	Carveulior	5	2
SW219269-1	S1549	aonist	Nebivolol	З	16
000210200-1	01040	Adrenergic Receptor anta		0	10
SW199199-2	S1856	gonist	Metoprolol Tartrate	6	26
0111001002	0.000	Adrenergic.Receptor.anta	motoprotor rarticito	Ū	20
SW196705-3	S4010	aonist	Acebutolol HCI	7	26
		Adrenergic.Receptor.anta			
SW196913-4	S1409	gonist	Alfuzosin HCI	7	18
		Adrenergic.Receptor.anta			
SW219414-1	S4076	gonist	Propranolol HCI	7	24
		Adrenergic.Receptor.anta			
SW196892-3	S2517	gonist	Maprotiline HCl	8	27
		Adrenergic.Receptor.anta	Doxazosin		
SW197099-3	S1324	gonist	Mesylate	8	5
		Adrenergic.Receptor.anta			
SW219365-1	S2691	gonist	BMY 7378	12	24
		Adrenergic.Receptor.anta		. –	
SW196595-3	S4291	gonist	Labetalol HCI	15	22
0.4407455.0	0.4070	Adrenergic.Receptor.anta			4.0
SW197155-3	S4278	gonist	Carteolol HCI	15	10
014400000 0	04404	Adrenergic.Receptor.anta	Talazalina LIOI	40	2
200 196909-3	54124	gonist Adrenovsio Decenter ente	Tolazoline HCI	10	3
SW107151 2	S1206	Adrenergic.Receptor.anta	Picoprolol fumorato	20	26
500197151-5	51200	Adronorgio Pocontor ente		20	20
S\M/107352_/	\$2500	aonist	Sotalol	20	1
GW 137 332-4	02003	Adreneraic Recentor ente	oolaloi	20	I
SW196570-4	S2126	aonist	Naftonidil	21	11
0111000104	02120	Adreneraic Receptor anta	Phentolamine	<u> </u>	
SW196637-3	S2038	aonist	Mesvlate	23	11
		U			004
					224

		Advencesia Decenter ente	Betaxolol		
CM/40C047 4	04007	Adrenergic.Receptor.anta	nyarochionae (Detentio)	00	07
500 1969 17-4	51827	gonisi Adronarcia Decentor ente	(веюрис)	23	21
SW106017 5	S2001	Adrenergic.Receptor.anta	Potovolol	22	20
500 1909 17-5	52091	Adronoraio Pocontor anta	Delaxului Dhonoxyhonzomin	23	30
S\N/107327_3	\$2400	aonist		24	20
500197527-5	52499	Adreneraic Recentor anta	Cisatracurium	24	29
SW222230-1	S2113	aonist	Resulate	24	8
000222200-1	02110	Adreneraic Recentor anta	Desylate	27	0
SW196457-4	S2059	aonist	Terazosin HCI	28	26
	02000	Adrenergic Receptor anta		20	20
SW196570-5	S1387	gonist	Naftopidil DiHCl	28	23
	01001	Adrenergic Receptor anta		20	20
SW197240-3	S4123	gonist	Timolol Maleate	28	12
		Adrenergic.Receptor.anta			
SW219300-1	S2086	aonist	Ivabradine HCI	28	30
		Adrenergic.Receptor.anta			
SW219765-1	S1613	gonist	Silodosin	28	26
SW219886-1	S1154	Aurora.Kinase	SNS-314 Mesylate	2	21
SW219458-1	S7065	Aurora.Kinase	MK-8745	6	2
SW220051-1	S2718	Aurora.Kinase	TAK-901	10	2
			Danusertib (PHA-		
SW219462-1	S1107	Aurora.Kinase	739358)	13	15
SW219643-1	S1100	Aurora.Kinase	MLN8054	15	21
SW219491-1	S1171	Aurora.Kinase	CYC116	17	28
SW220282-1	S1103	Aurora.Kinase	ZM 447439	18	6
SW219480-1	S1519	Aurora.Kinase	CCT129202	19	6
			Barasertib		
SW219431-1	S1147	Aurora.Kinase	(AZD1152-HQPA)	21	28
SW219731-1	S2719	Aurora.Kinase	AMG-900	22	28
SW220174-1	S2770	Aurora.Kinase	MK-5108 (VX-689)	23	6
			VX-680		
011/040000			(Tozasertib; MK-	0-	•
SW212828-2	S1048	Aurora.Kinase	0457)	25	6
SW219481-1	S2744	Aurora.Kinase	CC1137690	25	21
014/04/0774 4	04400		Alisertib	07	0
SW219771-1	S1133	Aurora.Kinase	(MLN8237)	27	6
SVV219373-1	51454		PHA-080032	29	15
SW220199-1	S1451 S1520	Aurora.Kinase	Aurora A Innibitor I	29	21 15
SVV219400-1	S1029	Autora. Kinase	Menidinine	30	10
SVV219347-1 SVV210784 1	SZ401 S1202	Calcium Channel	Cilnidipine	2	29
SVV219704-1 SVV219704-1	Q1747		Nimodinino	2	29
SW219230-1	S1885		Felodinine	4	23
SW219299-1 SW/107582_2	S1005 S2017			14	Z1 /
SW197502-2 SW197620-3	S2017 S1/25		Ranolazine 2HCl	14	4
SW137020-3 SW/210737_1	S2/01		Nitrondinino	15	5
SW219737-1	S2403	Calcium Channel	Tetrandrine	18	12
SW196411-3	S2573	Calcium Channel	Tetracaine HCI	20	26
SW219572-1	S2721	Calcium Channel	Nilvadinine	21	20
SW220228-1	S1905	Calcium.Channel	Amlodipine	23	-0
SW219840-1	S1994	Calcium.Channel	Lacidipine	27	5
SW196530-3	S2030	Calcium.Channel	Flunarizine 2HCl	28	4
SW220017-1	S1662	Calcium.Channel	Isradipine	28	23

			Clevidipine		
SW220087-1	S2080	Calcium.Channel	Butvrate	28	16
SW219236-1	S3053	Calcium Channel	Azelnidinine	29	12
SW210200 1	S2482	Calcium Channel	Manidinine 2HCI	29	16
SW210040 1	S201/	CDK	BMS-265246	5	10
SW219100-1 SW210356_1	S1572		BS-181 HCI	6	20
SW219330-1	\$7110	CDK		8	20
SW220101-1	07440	CDK		10	10
SW219400-1	07464			10	19
SVV219031-1	07401			10	19
500219878-1	52742	CDK		10	28
011/04/00 40 4	00754			10	00
SW219949-1	\$2751	CDK	848125)	10	28
011/04/0054 4	00705		MK-8776 (SCH	10	
SW219954-1	S2735	CDK	900776)	10	21
SW220252-1	S1487	CDK	PHA-793887	10	28
SW219231-1	S2679	CDK	Flavopiridol HCl	11	28
SW219310-1	S8058	CDK	P276-00	11	28
			SNS-032 (BMS-		
SW219478-1	S1145	CDK	387032)	11	28
SW219680-1	S2621	CDK	AZD5438	11	28
			Dinaciclib		
SW220016-1	S2768	CDK	(SCH727965)	11	28
SW220191-1	S2688	CDK	R547	11	28
SW219950-1	S7320	CDK	TG003	12	6
			Roscovitine		
SW220195-1	S1153	CDK	(Seliciclib;CYC202)	13	28
SW220039-1	S7114	CDK	NU6027	14	26
SW220083-1	S7509	CDK	ML167	14	8
SW219396-1	S1249	CDK	JNJ-7706621	19	19
			Palbociclib (PD-		
SW220131-1	S1116	CDK	0332991) HCI	27	5
SW219609-1	S1524	CDK	AT7519 [´]	30	21
SW219668-1	S3043	COX	Rofecoxib	5	14
SW196700-3	S4078	COX	Mefenamic Acid	7	14
SW196989-3	S2577	COX	Phenacetin	7	26
SW197564-2	S4049	COX	Valdecoxib	7	10
SW219542-1	S4011	COX	Ampiroxicam	7	26
SW196831-3	S3023	COX	Bufexamac	14	13
SW219543-1	S2121	COX	Licofelone	14	16
SW196404-3	S1903	COX	Diclofenac Sodium	14	20
000100404-0	01000	00/	Meclofenamate	10	20
SW210723_1	\$1205	COX	Sodium	10	1
SW219729-1	S3200		Triflusal	20	26
SW190902-3	S3200		Lumiracovib	20	20
SW219709-1	S2903 S1050			20	20
SW190735-3	S1909		Nonrovon	23	20
SW197100-3	S1020		Direviser	20	20
SVVZ1900Z-1	51/13		Piloxicam	23	20
SVV 190824-3	52002		Acemetacin	20	20
SVV 197312-3	54051		Nabumelone	20	30
SVV219241-1	52531		Asaraidenyde	20	22
SVV 199011-3	51201			21	20
SVV 190448-3	52108			∠ŏ	30
SVV196/84-3	51645		Ketoproten	∠ŏ	2
SW196/85-3	S2040	COX	Nimesulide	28	11
SW19/293-4	S1646	COX	Ketorolac	28	30
SW203738-2	S1638	COX	Ibuproten	28	3

SW219801-1	S3008	COX	Zaltoprofen	28	3
500220125-1	52047		Lomoxicam	28	14
SW197496-2	S1289	DNA.RNA.Synthesis	Carmotur	1	<u>/</u>
SW197705-2	S1192	DNA.RNA.Synthesis	Raltitrexed	1	1
0	0 4 0 0 0		Fluorouracil (5-		_
SW199617-3	S1209	DNA.RNA.Synthesis	Fluoracil; 5-FU)	1	7
	- · · · -		Mercaptopurine (6-		
SW199090-2	S1305	DNA.RNA.Synthesis	MP)	2	19
SW197258-4	S4288	DNA.RNA.Synthesis	Chloroambucil	4	28
SW219115-1	S4297	DNA.RNA.Synthesis	Mupirocin	5	11
SW220050-1	S2029	DNA.RNA.Synthesis	Uridine	6	25
			FT-207 (NSC		
SW220241-1	S1300	DNA.RNA.Synthesis	148958)	7	20
SW222225-1	S1166	DNA.RNA.Synthesis	Cisplatin	11	10
SW000346-2	S2554	DNA.RNA.Synthesis	Daphnetin	12	22
SW218080-2	S1218	DNA.RNA.Synthesis	Clofarabine	12	28
SW218086-2	S1213	DNA.RNA.Synthesis	Nelarabine	12	7
		-	Fludarabine		
SW218146-2	S1229	DNA.RNA.Synthesis	Phosphate	12	7
SW222226-1	S1214	DNA.RNA.Synthesis	Bleomycin Sulfate	13	19
SW197746-4	S1199	DNA.RNA.Synthesis	Cladribine	16	28
SW199649-2	S1714	DNA RNA Synthesis	Gemcitabine	16	28
SW219867-1	S1221	DNA RNA Synthesis	Dacarbazine	19	30
SW220273-1	S1299	DNA RNA Synthesis	Floxuridine	19	7
SW/219881-1	S1983	DNA RNA Synthesis	Adenine HCI	20	. 24
S\N/107177_/	S1302	DNA RNA Synthesis	lfosfamide	20	1/
000107117-4	01002	DIVA. NIVA. Oynthesis	Sofosbuvir (PSI-	21	14
SW210116 1	S2701	DNA DNA Synthesis		26	11
SW219110-1	G1221	DNA DNA Synthesis	Flupirting malasta	20	11
SW219300-1	S1334	DNA.RNA.Synthesis	Ovalialatia	20	20
SVV219131-1	S1224	DNA.RNA.Synthesis	Oxalipiatin	21	20
300220171-1	31100	DNA.RNA.Synthesis		30	14
014/04/0070 4	04440		AG-490 (Tyrphosun	4	10
500219272-1	51143	EGFR	B42) Estatistis UCL(OCL	I	13
014/04/04/47 4	04000			0	10
500219447-1	51023	EGFR	744) 00.4000 (A) //	Z	18
014/04/0475 4	07004		CO-1686 (AVL-	0	•
SW219475-1	S7284	EGFR	301)	2	6
SW219315-1	S1173	EGFR	VVZ4002	17	3
SW219395-1	S1179	EGFR	WZ8040	17	2
			AG-1478		
0.0000	00700		(Tyrphostin AG-	4-	
SW219714-1	S2728	EGFR	1478)	17	27
SW199108-4	S1025	EGFR	Gefitinib (ZD1839)	18	4
SW219863-1	S7297	EGFR	AZD9291	18	9
SW219293-1	S2205	EGFR	OSI-420	19	17
SW219394-1	S1170	EGFR	WZ3146	25	15
SW219476-1	S7206	EGFR	CNX-2006	25	9
SW218184-2	S7039	EGFR	PD168393	27	5
SW219523-1	S8009	EGFR	AG-18	28	10
SW219267-1	S1392	EGFR	Pelitinib (EKB-569)	30	2
SW219698-1	S2922	EGFR	Icotinib	30	17
			CI994		
SW219372-1	S2818	HDAC	(Tacedinaline)	5	28
			RG2833		
SW219374-1	S7292	HDAC	(RGFP109)	5	28

			Rocilinostat (ACY-		
SW219836-1	S8001	HDAC	1215)	5	15
SW219287-2	S8049	HDAC	Tubastatin A	7	30
SW219287-1	S2627	HDAC	Tubastatin A HCI	8	28
SW219401-1	S7229	HDAC	RGFP966	8	5
SW219449-1	S7324	HDAC	TMP269	12	9
			Santacruzamate A		
SW219695-1	S7595	HDAC	(CAY10683)	12	20
			Valproic acid		
			sodium salt		
SW219169-2	S1168	HDAC	(Sodium valproate)	15	22
SW220150-1	S2012	HDAC	PCI-34051	16	30
SW219627-1	S1422	HDAC	Droxinostat	18	29
SW219738-1	S1484	HDAC	MC1568	20	20
0112101001	01101		Vorinostat (SAHA	20	20
SW/199536-4	S1047	HDAC	MK0683)	22	15
01100000 4	01041	HB/(G	Mocetinostat		10
SW/218130-2	S1122	HDAC	(MGCD0103)	22	28
011210100 2	01122	HB/(G	PCI-24781		20
SW/218266-2	S1090	HDAC	(Abevinostat)	22	15
000210200-2	01000	HBAG	Panobinostat		10
SW/210360_1	\$1030	НПАС		22	15
SW219309-1	S1030 S2770		(LDI 1563) M344	22	15
500219579-1	52119	IIDAC		22	15
SW/210285 1	S1005		(Decipostat)	22	15
300219303-1	31095	IIDAC	(Dacinostat) Pracinostat	22	15
SW210420 1	Q1515		(SD020)	22	15
300219429-1	31515	HDAC	(SB939) Rolinestat	22	15
SW210445 1	C1005			22	15
500219445-1	31000	HDAC	(FADIUI)	22	15
SW010460 1	00170			22	15
500219409-1	52170	HDAC	(IIF2337) Trick cotatin A	22	15
014/04/000/1/4	04045		Thenostatin A	00	45
500219004-1	51045	HDAC	(ISA)	22	15
01400074	04050		Entinostat (MS-	00	0
SVV219667-1	S1053	HDAC	275)	22	9
SW219675-1	S2693	HDAC	Resminostat	22	15
SW219772-1	S2244	HDAC	AR-42	22	15
0.400.0000			Quisinostat (JNJ-		
SW219796-1	S1096	HDAC	26481585)	22	15
SW219824-1	S8043	HDAC	Scriptaid	22	15
SW219934-1	S1194	HDAC	CUDC-101	22	15
SW220090-1	S7473	HDAC	Nexturastat A	22	9
			Romidepsin		
			(FK228;		
SW220304-1	S3020	HDAC	Depsipeptide)	22	5
			Sodium		
SW219199-1	S4125	HDAC	Phenylbutyrate	26	25
SW219084-1	S2239	HDAC	Tubacin	29	29
			Clemastine		
SW196835-3	S1847	Histamine.Receptor	Fumarate	3	14
SW197416-3	S1358	Histamine.Receptor	Loratadine	3	5
			Cyproheptadine		
SW196450-4	S2044	Histamine.Receptor	HCI	5	4
SW196380-2	S1845	Histamine.Receptor	Cimetidine	6	26
SW196927-3	S4139	Histamine.Receptor	Cyclizine 2HCl	7	20
SW196969-3	S3176	Histamine.Receptor	Betahistine 2HCI	7	11
					228
					220

0.000	00440		Tripelennamine	_	
SW197446-3	S3146	Histamine.Receptor	HCI	7	1
SW199568-2	S3208	Histamine.Receptor	Fexofenadine HCI	7	3
SW219552-1	S4118	Histamine.Receptor	Histamine 2HCI	7	30
SW197471-3	S2552	Histamine.Receptor	Azelastine HCl Azatadine	8	24
SW219888-1	S3186	Histamine.Receptor	dimaleate	12	26
SW196707-3	S1382	Histamine.Receptor	Mianserin HCI Rupatadine	14	27
SW219889-1	S3052	Histamine.Receptor	Fumarate	14	29
SW196598-4	S1357	Histamine Receptor	Lidocaine	15	25
SW196972-3	S1291	Histamine Receptor	Cetirizine DiHCl	15	22
SW219424-1	S2905	Histamine.Receptor	JNJ-7777120 Bepotastine	15	22
SW220161-1	S3037	Histamine Receptor	Besilate	15	26
SW197397-2	S2078	Histamine.Receptor	Famotidine	16	26
SW/197031-3	\$2585	Histamine Recentor	bydrogen maleate	20	26
SW197771-3	S2494	Histamine.Receptor	Olopatadine HCl Chlorobeniramine	20	25
SW196372-4	S1816	Histamine Recentor	Maleate	23	1
S\N/106887_/	\$2024	Histamine Receptor	Ketotifen Eumarate	23	11
SW197026-2	S2308	Histamine.Receptor	Hesperetin Revatiding Acatata	23	11
SW107646 2	C1000	Histomina Recontor		22	10
SW 197040-3	S1000	Histomine Receptor	Ciprovifon	20	12
500219107-1	52813	Histamine.Receptor	Ciproxitan	23	12
SW196800-3	S1801	Histamine.Receptor	Ranitidine	26	13
SW219837-1	S4131	Histamine.Receptor	Levodropropizine	26	25
SW196508-3	S1890	Histamine.Receptor	Nizatidine	28	18
SW196577-3	S4026	Histamine.Receptor	Hydroxyzine 2HCI	28	16
SW197234-3	S4293	Histamine.Receptor	Promethazine HCI	28	5
SW197792-3	S4012	Histamine.Receptor	Desloratadine Benztropine	28	3
SW219521-1	S3163	Histamine.Receptor	mesylate	28	12
SW219706-1	S2065	Histamine.Receptor	Lafutidine	28	26
SW219489-1	S7122	HSP	XL888	9	15
SW220214-1	S8039	HSP	PU-H71 SNX-2112 (PE-	9	15
SW219742-1	S2639	HSP	04928473)	13	15
S\N/210775_1	S1052	НСР	4783)	10	16
SVVZ19/7J-1	S1052 S1162		4703)	19	10
014/04/0000	01103	HOP	17-AAG	50	15
SW219302-1	S1141	HSP	(Tanespimycin) 17-DMAG	30	15
SW219303-1	S1142	HSP	(Alvespimycin) HCl AUY922 (NVP-	30	19
SW219319-1	S1069	HSP	AUY922)	30	15
SW219510-1	S2713	HSP	Geldanamycin	30	15
SW219606-1	S2685	HSP	KW-2478	30	15
SW219719-1	S7340	HSP	CH5138303	30	15
SW220092-1	S7458	HSP	VER-49009	30	19
SW220107-1	S7282	HSP	NMS-E973	30	15
			PF-04929113		
SW220153-1	S2656	HSP	(SNX-5422)	30	15
SW220170-1	S7459	HSP	VER-50589	30	15
CHELOHION	01 100				229

			HSP990 (NVP-		
SW220175-1	S7097	HSP	HSP990)	30	15
SW220186-1	S1175	HSP	BIIB021	30	15
0112201001	01110		Ganetespih (STA-		10
SW220253-1	S1159	HSP	9090)	30	15
SW220200-1	S8004		ZM 30023 HCI	7	10
SW219203-1 SW210757_1	S7036		210 03323 HOI	2 8	6
SW219757-1	S7030		MD1066	10	27
SW219103-1	SZ190			10	27
SVV219679-1	52219	JAK		10	19
SVV219864-1	58057	JAK	Pacritinib (SB1518)	10	21
SW220119-1	S1134	JAK	A19283	11	21
			Filgotinib	. –	
SW220020-1	S7605	JAK	(GLPG0634)	15	28
			Baricitinib		
			(LY3009104;		
SW220096-1	S2851	JAK	INCB028050)	15	28
			S-Ruxolitinib		
SW220207-1	S2902	JAK	(INCB018424)	15	8
			Tofacitinib (CP-		
SW220133-2	S2789	JAK	690550:Tasocitinib)	16	1
			TG101348		
SW218187-2	S2736	JAK	(SAR302503)	17	6
SW219632-1	S2692	JAK	TG101209	17	2
SW/219960-1	S2179	IAK	1 2784544	17	2
SW21000-1	S2686			18	2
SW219437-1	S2000			10	2
SW219400-1	SZ 10Z		AZD1400	19	2
SVVZ 19023-1	SZZ 14	JAK		19	21
SVV220243-1	52667	JAK	VVHI-P154	19	0
500219454-1	52806	JAK	GEP-33779	25	5
014/000000 4	04070		Ruxolitinib	07	
SW222338-1	S1378	JAK	(INCB018424)	27	23
			Tofacitinib (CP-		
SW220133-1	S5001	JAK	690550) Citrate	28	8
			Selumetinib		
SW202561-3	S1008	MEK	(AZD6244)	9	23
SW218101-2	S1036	MEK	PD0325901	9	10
SW219366-1	S1102	MEK	U0126-EtOH	9	29
SW219605-1	S1568	MEK	PD318088	9	2
			Pimasertib (AS-		
SW219691-1	S1475	MEK	703026)	9	10
SW219692-1	S2134	MEK	AZD8330	9	13
SW219839-1	S1066	MEK	SI -327	9	14
01121000001	0.000		MEK162 (ARRY-	Ū	
			162: ARRY-		
SW210010_1	\$7007		/38162)	Q	20
SW219910-1	S7007		430102) TAK 722	9	20
300220152-1	52017		TAR-755 Tromotinih	9	15
011/040000 0	00070			10	10
SVV218089-2	52073	MER	(GSK1120212)	13	10
SVV218254-2	511//	MEK	PD98059	13	10
SW219634-1	S1531	MEK	BIX 02189	16	23
SW19/494-3	S2310	MEK	Honokiol	24	20
SW219635-1	S1530	MEK	BIX 02188	28	12
			Refametinib		
			(RDEA119; Bay		
SW218136-2	S1089	MEK	86-9766)	30	5

			PD184352 (CI-		
SW219604-1	S1020	MEK	1040)	30	23
SW219216-1	S7493	Microtubule Associated	INH1 [´]	1	24
SW/219847-1	S1148	Microtubule Associated	Docetaxel	10	2
000210047-1	01140	Microtabale.Associated	Enothilone B	10	2
011000000 1	01004	Microtubula Accepted	(EFO900,	10	2
SVV220200-1	51304	Microlubule.Associated		10	2
SVV219685-1	S1165	Microtubule.Associated	AB1-751 (E7010)	11	27
SW220274-1	S1297	Microtubule.Associated	Epothilone A	11	2
SW219359-1	S7336	Microtubule.Associated	CW069	15	30
			Vinorelbine		
SW219257-1	S4269	Microtubule.Associated	Tartrate	18	2
SW219306-1	S7494	Microtubule.Associated	INH6	19	24
SW102861-5	S2775	Microtubule.Associated	Nocodazole	21	27
SW219468-1	S1241	Microtubule Associated	Vincristine	21	2
SW219940-1	S1248	Microtubule Associated	Vinblastine	21	5
SW/220198-1	S2195	Microtubule Associated	CYT997 (Lexibulin)	21	5
SW220100-1	S/071	Microtubule Associated	Griseofulvin	24	8
SW219019-1	S1150	Microtubule Associated	Paclitavel	24	2
311219030-1	31150	MICI OLUDUIE.ASSOCIALEU		29	Z
014/04/00 70 4	04000		Rapamycin	0	00
SW219073-1	S1039	mIOR	(Sirolimus)	2	29
			Temsirolimus (CCI-		
SW219138-1	S1044	mTOR	779; NSC 683864)	2	29
			Everolimus		
SW219218-1	S1120	mTOR	(RAD001)	2	23
			GDC-0980		
SW219472-1	S2696	mTOR	(RG7422)	2	9
			INK 128		
SW220210-1	S2811	mTOR	(MI N0128)	2	17
SW/2202101	\$2218	mTOR	PP2/2	2	17
500220211-1	02210	more	Pidaforolimus	2	17
			(Deferelimus) MK		
014/000004 4	04000			0	10
500222224-1	51022	MIOR	8009)	Z	16
			Palomid 529	1.0	
SW219676-1	S2238	mIOR	(P529)	10	2
SW219762-1	S8050	mTOR	ETP-46464	27	20
SW220190-1	S2699	mTOR	CH5132799	27	17
SW220246-1	S2624	mTOR	OSI-027	27	23
SW219732-1	S2406	mTOR	Chrysophanic Acid	28	12
SW218287-2	S1555	mTOR	AZD8055	29	20
			WYE-125132		
SW219487-1	S2661	mTOR	(WYE-132)	29	12
SW/219671-1	S1266	mTOR	WYE-354	29	16
SW210071-1	S2783	mTOP		20	27
SW219704-1	52705	mTOR		29	27
SVV219922-1	52009		VVA 1-000	29	21
500220188-1	51226	MIOR	KU-0063794	29	3
			Zotarolimus(AB1-		
SW222245-1	S7091	mTOR	578)	29	16
SW219628-1	S2187	P450	Avasimibe	2	4
SW196888-4	S1353	P450	Ketoconazole	3	29
SW197561-4	S2046	P450	Pioglitazone HCI	4	11
SW196866-2	S2262	P450	Apigenin	6	21
	-		Cobicistat (GS-		
SW219553-1	S2900	P450	9350)	8	29
2.12100001	02000		TAK-700	Ŭ	20
SW2196/2-1	S1105	P450	(Orteronel)	15	20
577213042-1	01130			15	50
					231

SW101224-2 SW197571-2 SW219043-1 SW219329-1 SW219546-1 SW219229-1 SW219192-1	S2526 S1442 S2555 S2394 S2921 S2268 S4273	P450 P450 P450 P450 P450 P450 PARP		
SW219820-1	S1004	PARP		
SW218142-2 SW219891-2 SW219192-2 SW219655-1 SW218112-2 SW219891-1 SW219733-1 SW219936-1 SW219802-1	S1060 S2886 S1132 S7048 S1087 S7300 S8038 S2178 S7029	PARP PARP PARP PARP PARP PARP PARP PARP		
SW219544-1 SW220067-1 SW197603-2 SW219717-1 SW219816-1 SW196433-3 SW199053-2 SW222234-1 SW197648-2	S1098 S7438 S1512 S1550 S7224 S2320 S1294 S2687 S3172	PARP PARP PDE PDE PDE PDE PDE PDE PDE		
SW197737-2 SW199664-3 SW219217-1 SW219244-1 SW219280-1 SW197542-3 SW219125-1 SW196583-4 SW196679-3 SW219741-1	S2515 S1431 S4019 S2127 S1455 S1929 S2312 S1430 S1504 S2620	PDE PDE PDE PDE PDE PDE PDE PDE PDE PDE		
SW219856-1 SW220196-1 SW199286-2 SW219311-1 SW202556-4 SW218117-2 SW219415-1 SW219812-1 SW220128-1 SW220216-1 SW219482-1 SW219650-1	S8034 S2131 S1673 S2671 S1065 S1038 S1360 S1118 S2814 S2814 S2767 S7018 S8002	PDE PDE PI3K PI3K PI3K PI3K PI3K PI3K PI3K PI3K		

Alizarin	20	22
Voriconazole	20	22
Clarithromycin	20	11
Naringenin	23	11
PF-4981517	24	22
Baicalein	27	10
3-Aminobenzamide	7	25
Veliparib (ABT-		
888)	7	14
Olanarih		
0059436)	8	7
D 134	8	20
NO-1001	12	12
DMN 672	12	12
Iniparih (PSI 201)	12	20
	13	10
	15	2
0PF 1069	20	9
AG-14301	21	28
AZD2461	23	/
Rucaparib (AG-		
014699;PF-	00	-
01367338)	26	/
ME0328	28	20
	1	22
Pimobendan	5	2
Deltarasin	10	20
Luteolin	11	8
Cilostazol	15	14
PF-2545920	18	28
Anagrelide HCI	20	9
Vardenafil HCl		
Trihydrate	20	14
Sildenafil Citrate	20	14
Avanafil	20	16
S- (+)-Rolipram	20	17
Cilomilast	20	18
Irsogladine	23	3
Icariin	24	11
Rolipram	26	22
Dyphylline	26	8
GSK256066	26	24
Apremilast (CC-		
10004)	26	22
Roflumilast	26	11
Aminophylline	28	23
AS-252424	1	20
GDC-0941	2	12
PI-103	2	12
GSK1059615	2	27
XL147	2	19
BYL719	2	6
3-Methyladenine	5	26
CZC24832	7	18
GSK2636771	8	30

			BGT226 (NVP-		
SW219158-1	S2749	PI3K	BGT226)	10	27
SW219506-1	S1205	PI3K	PIK-75 [′]	11	28
SW113275-2	S2682	PI3K	CAY10505	12	13
SW/219297-1	S1352	PISK	TG100-115	12	1
000210207-1	01002	TION	CAL_101 (Idelalisib:	12	
S\N/210823_1	S2226			12	18
SW219020-1	52220		45 604950	12	10
SVV219919-1	S2001	PION	A3-004030	12	10
SVV220182-1	51072	PIJK	ZS1K474	13	4
SW220212-1	S2227	PI3K	PIK-294	13	4
SW217688-2	S1105	PI3K	LY294002	14	30
SW218196-2	S2636	PI3K	A66	14	3
SW218249-2	S1169	PI3K	TGX-221	14	16
SW219525-1	S2870	PI3K	TG100713	14	9
SW219822-1	S7028	PI3K	IPI-145 (INK1197)	14	17
			GSK2126458		
SW219502-1	S2658	PI3K	(GSK458)	17	21
SW219871-1	S2759	PI3K	CUDC-907	17	20
SW218129-2	S1219	PI3K	YM201636	18	20
SW210125-2	S2207		DIK-203	24	27
SW219550-1	07256			24	22
SVV219073-1	5/300	PION		20	21
SVV219187-1	51462	PIJK	AZD6482	27	3
SW219245-1	S1489	PI3K	PIK-93	27	5
SW220201-1	S7016	PI3K	VS-5584 (SB2343) SAR245409	27	7
SW218114-2	S1523	PI3K	(XL765)	28	20
			BKM120 (NVP-		
			BKM120:		
SW218149-2	S2247	PI3K	Buparlisib)	29	27
SW219545-1	S2758	PI3K	Wortmannin	29	4
0112100101	02.00		Nafamostat	20	
SW/219392-1	S1386	Proteasome	Mesylate	12	12
SW210002-1	\$7/62	Proteasome		12	0
SW219005-1	C2017	Protocomo	Appirin	12	3
311 199003-2	33017	FIOLEASOINE	Aspinin Bertezemik (DS	15	20
014/000077 0	04040	Destaura	Bortezomid (PS-	47	10
SVV208077-3	\$1013	Proteasome	341)	17	19
			Carfilzomib (PR-		
SW218090-2	S2853	Proteasome	171)	17	19
			CEP-18770		
SW219161-1	S1157	Proteasome	(Delanzomib)	17	19
SW219743-1	S2180	Proteasome	MLN2238	17	19
SW219744-1	S2181	Proteasome	MLN9708	17	19
SW219780-1	S2619	Proteasome	MG-132	17	19
			ONX-0914 (PR-		
SW220115-1	S7172	Proteasome	957)	17	19
0112201101	02	1 lotodoomo	Oprozomih (ONX		10
SW/220116-1	\$7049	Protessome	0912)	17	19
S\N/107284_3	S2101	Proteasome	Gabevate Mesulate	28	25
SW197204-3	52101			20	2J 10
SVV219493-1	S3040		Aziisariari	1	12
500219848-1	51793	RAAS	Ramipri	I	I
	<u> </u>	5	Candesartan		
SW220041-1	S2037	RAAS	Cilexetil	4	4
SW197658-2	S1894	RAAS	Valsartan	6	28
SW197676-3	S1738	RAAS	Telmisartan	6	26
SW199393-2	S2581	RAAS	Quinapril HCI	7	12
SW220093-1	S2109	RAAS	Imidapril HCI	7	26
			-		000
					∠აპ

			Aliskiren		
SW222231-1	S2199	RAAS	Hemifumarate Enalaprilat	7	22
SW197672-2	S1657	RAAS	Dihvdrate	13	22
SW220029-1	S2664	RAAS	Clinofibrate	19	11
011220020	02001		Losartan	10	
			Potassium (DuP		
SW199641-2	S1359	RAAS	753)	20	26
	0.000		Olmesartan		
SW199650-2	S1604	RAAS	Medoxomil	23	11
SW219263-1	S2079	RAAS	Moexipril HCI	23	26
SW220127-1	S7098	RAAS	PD123319	23	0
SW/197591_3	S1284	RAAS	Benazenril HCI	24	22
SW/107001-0	S10/1	RAAS	Englanril Maleate	24	26
SW130700-2	Q1570		Condocartan	20	20
SW199012-2 SW210164 1	S1070		Cantopril	20	11
30219104-1	32031	RAA3	Captophi	20	11
S/M/210202 1	C2001		Monohydrato	20	26
SW219303-1	S2001			20	20
500219431-1	52099	RAAS		20	10
014/04/04/04 4	00057		Azlısarları	00	0
SVV219494-1	53057	RAAS	Medoxomii	28	3
SW212797-2	S2872	RAF	GW5074	6	3
SW218185-2	S2720	RAF	ZM 336372	6	12
SW219204-1	S1104	RAF	GDC-0879	9	18
SW219448-1	S2746	RAF	AZ 628	9	21
			Dabrafenib		
SW219503-1	S2807	RAF	(GSK2118436)	9	21
SW219895-1	S7291	RAF	TAK-632	9	7
SW220064-1	S7108	RAF	LGX818	9	4
SW202562-3	S1040	RAF	Sorafenib Tosylate	10	7
SW202562-4	S7397	RAF	Sorafenib	10	29
			RAF265 (CHIR-		
SW219923-1	S2161	RAF	265)	11	16
			Vemurafenib		
			(PLX4032;		
SW218095-2	S1267	RAF	RG7204)	27	4
SW218119-2	S1152	RAF	PLX-4720	29	24
SW220229-1	S2220	RAF	SB590885	30	9
SW220279-1	S1398	Reverse.Transcriptase	Stavudine (d4T)	1	12
		·	Dapivirine		
SW220193-1	S2914	Reverse.Transcriptase	(TMC120)	2	2
SW198799-2	S2579	Reverse.Transcriptase	Židovudine	7	13
SW220232-1	S7303	Reverse.Transcriptase	Rilpivirine	10	9
SW219933-1	S1718	Reverse.Transcriptase	Adefovir Dipivoxil	13	19
		·	Tenofovir		
			Disoproxil		
SW220151-1	S1400	Reverse.Transcriptase	Fumarate	16	7
SW197364-4	S1719	Reverse Transcriptase	Zalcitabine	23	26
SW197614-3	S1706	Reverse Transcriptase	Lamivudine	23	26
SW220172-1	S1704	Reverse Transcriptase	Emtricitabine	23	14
••••••	••.		Etravirine		
SW219570-1	S3080	Reverse Transcriptase	(TMC125)	27	7
SW197569-2	S1742	Reverse Transcription	Nevirapine	28	26
SW198619-2	S1702	Reverse Transcription	Didanosine	28	20
SW219101-1	S4016	Sodium Channel	Ouabain	2	21
SW219113-1	S4290	Sodium Channel	Digoxin	2	21
511210110-1	07200		Bigonin	2	<u> </u>
					234

SW196688-3 SW220143-1 SW196719-3 SW219770-1 SW220114-1	S4080 S2524 S4023 S1256 S2118	Sodium.Channel Sodium.Channel Sodium.Channel Sodium.Channel Sodium.Channel	Triamterene Phenytoin sodium Procaine HCI Rufinamide Ibutilide Fumarate Amiloride hydrochloride	7 7 12 15 15	20 11 30 11 14
SW196333-5 SW197468-3 SW203757-	S2560 S1391	Sodium.Channel Sodium.Channel	dihydrate Oxcarbazepine	20 20	11 14
2 SW197486-	S2525	Sodium.Channel	Phenytoin	20	1
3 SW196805-	S3024	Sodium.Channel	Lamotrigine	21	30
4 SW196878-	S1614	Sodium.Channel	Riluzole Procainamide	23	9
3 SW197338-	S4294	Sodium.Channel	HCI	23	23
3 SW220141-	S1828	Sodium.Channel	Proparacaine HCI	23	22
1 SW196964-	S1693	Sodium.Channel	Carbamazepine	23	11
3 SW198832-	S2500	Sodium.Channel	Propafenone HCI	24	24
2 SW196475-	S3064	Sodium.Channel	Ambroxol HCI	24	14
3 SW220277-	S4038	Sodium.Channel	Dibucaine HCI	28	12
1	S2785	Sodium.Channel	A-803467 Voreloxin (SNS-	28	4
SW219924-1	S7518	Topoisomerase	595)	4	19
SW203763-2	S1342	Topoisomerase	Genistein	6	28
SW196414-3	S1288	Topoisomerase	Camptothecin	10	19
SW196745-6	S1889	Topoisomerase	Mitoxantrone	10	9
SW219079-1	S1393	Topoisomerase	Pirarubicin	10	19
SW2100701	\$7261	Topoisomerase	Beta-Lanachone	10	27
SW219421-1	S1228	Topoisomerase	Idarubicin HCI Doxorubicin	11	4
SW219441-1	S1208	Topoisomerase	(Adriamycin)	11	20
SW219442-1	S1223	Topoisomerase	Èpirubicin HCl	11	9
SW197554-3	S1465	Topoisomerase	Moxifloxacin HCI	13	26
SW/219048-1	S1225	Topoisomerase	Etoposide	13	19
SW2100401	S1108	Topoisomeraso	Irinotecan	13	10
SW196774-3	S3181	Topoisomerase	Flumequine Pefloxacin	15	11
SW197608-4	S4119	Topoisomerase	Mesylate Dihydrate Irinotecan HCI	16	26
SW197790-4	S2217	Topoisomerase	Trihydrate	16	28
SW219056-1	S3603	Topoisomerase	Betulinic acid	18	30
SW197557-5	S1231	Topoisomerase	Topotecan HCI	19	19
SW219948-1	S4908	Topoisomerase	SN-38 10- Hydroxycamptothe	19	28
SW220215 1	SJ1JJ	Topoisomoraço	cin	10	10
000220010-1	02420	ropoisonierase	UIT	10	235

SW219946-1	S1367	Topoisomerase	Amonafide Brivanih (BMS-	27	19
SW219896-1	S1084	VEGER	540215)	1	17
0112100001	01004	VEGIT	Vandetanib		.,
SW218092-2	S1046	VEGER	(7D6474)	3	2
SW218116-2	S1003	VEGER	Linifanib (ABT-869)	10	19
SW220084-1	S7258	VEGER	SKI B1002	12	20
SW219259-1	S1164	VEGER	Lenvatinib (F7080)	13	23
011210200 1	Grior		Brivanib Alaninate	10	20
SW219897-1	S1138	VEGER	(BMS-582664)	13	1
011210001 1	01100		Vatalanib (PTK787)	10	·
SW198937-2	S1101	VEGER	2HCI	15	29
011100001 2	OTIOT		Nintedanib (BIBE	10	20
SW218301-2	S1010	VEGER	1120)	18	8
SW219500-1	S2896	VEGER	ZM 323881 HCI	10	4
0112100001	02000	VEGIT	Semaxanih	10	-
SW/219791-1	S2845	VEGER	(SU5416)	19	8
000210701-1	02040	VEGIN	Motesanib	10	0
			Dinhosnhate		
SW/218300-2	S1032	VEGER	(AMG-706)	22	8
SW/220296-1	S2221	VEGER	Anatinib	24	4
SW/219944-1	S2842	VEGER	SAR131675	26	17
SW/219943-1	S2897	VEGER	ZM 306416	20	17
SW/219464-1	S1005		Axitinih	1	21
SW218156-2	S1363	VEGER KIT PDGER	Ki8751	5	21
0112101002	01000		Regoratenib (BAY	Ũ	21
SW218097-2	S1178	VEGER KIT PDGER	73-4506)	11	29
011210001 2	01110		Pazonanih HCl		20
SW218082-2	S1035	VEGER KIT PDGER	(GW786034 HCl)	13	28
0112100022	0.000		Cediranib	10	20
SW219261-1	S1017	VEGER KIT PDGER	(AZD2171)	18	18
	••••		Dovitinib (TKI-258:		
SW219787-1	S1018	VEGER KIT PDGER	CHIR-258)	18	6
SW218082-3	S3012	VEGER KIT PDGER	Pazopanib	19	28
SW219794-1	S1220	VEGER KIT PDGER	OSI-930	19	4
SW219407-1	S1042	VEGER KIT PDGER	Sunitinib Malate	25	2
	••••		Dovitinib (TKI-258)		-
SW219787-2	S2769	VEGFR.KIT.PDGFR	Dilactic Acid	25	21
SW219262-1	S1557	VEGFR.KIT.PDGFR	KRN 633	28	8
SW220176-1	S2231	VEGFR.KIT.PDGFR	Telatinib	29	5
SW219364-1	S1207	VEGFR.KIT.PDGFR	Tivozanib (AV-951)	30	17

Supplementary Table 3: SNF-Euclidean APC hypergeometric test p-values.

Hypergeometric test p-values for Selleck target classes in SNF-Euclidean APC clusters. Bonferroni-corrected alpha = 0.0006

	Cluster	-log10 p-	
Class	Number	value	Significant?
P450	1	4.25605576	TRUE
ATM.ATR	1	5.04517835	TRUE
Hist.Receptor	4	2.2897748	FALSE
COX	6	1.91982167	FALSE
RAAS	6	2.13377808	FALSE
Hist.Receptor	6	3.43010914	TRUE
AdrR.agonist	6	4.02855491	TRUE
Hist.Receptor	9	1.95941317	FALSE
Hist.Receptor	10	1.75917031	FALSE
RAAS	10	3.45658465	TRUE
Reverse.Transcriptase	10	4.49051096	TRUE
Hist.Receptor	13	2.69927303	FALSE
AChR.antagonist	13	3.0056789	FALSE
PDE	14	2.68768419	FALSE
K.Channel	14	3.62607173	TRUE
Adr.Receptor.antagonist	15	2.5148078	FALSE
PI3K	17	3.14300227	FALSE
COX	19	3.3097259	TRUE
HDAC	20	1.79545626	FALSE
K.Channel	20	3.29865781	TRUE
DNA.RNA.Synthesis	25	6.20147175	TRUE
AChR.antagonist	26	2.84683694	FALSE
RAAS	26	3.21292655	FALSE
COX	26	4.02855491	TRUE
PI3K	27	3.05651353	FALSE
JAK	39	3.71566364	TRUE
CDK	42	8.86025664	TRUE
PDE	43	3.48380466	TRUE
DNA.RNA.Synthesis	45	3.1743779	FALSE
Aurora.Kinase	45	3.63343507	TRUE
Reverse.Transcriptase	45	4.11305913	TRUE
VEGFR.KIT.PDGFR	45	5.79439169	TRUE
MEK	46	4.4173404	TRUE
RAF	48	5.61784122	TRUE
HSP	48	15.6575773	TRUE

PLK	49	4.77132139	TRUE
HDAC	49	15.6575773	TRUE
Hist.Receptor	64	2.05864879	FALSE
AChR.antagonist	64	2.35315313	FALSE
Adr.Receptor.agonist	64	2.40247918	FALSE
COX	64	2.40247918	FALSE
Dopamine.Receptor.antagonist	65	4.92012054	TRUE
Topoisomerase	66	3.41531571	TRUE
PI3K	67	2.13035048	FALSE
Topoisomerase	67	2.7625374	FALSE
Bcl-2	67	4.0269807	TRUE
Hist.Receptor	68	1.95941317	FALSE
COX	68	2.30034797	FALSE
VEGFR	71	4.97183704	TRUE
HMG-CoA.Reductase	73	5.67048662	TRUE
Src	74	6.64992842	TRUE
Epigenetic.Reader.Domain	76	14.3111371	TRUE
Hist.Receptor	77	2.13035048	FALSE
Adr.Receptor.antagonist	77	2.4761153	FALSE
AChR.antagonist	80	2.88696492	FALSE
Hist.Receptor	81	2.42654657	FALSE
ER.PR_antagonist	81	4.78604926	TRUE
RAF	82	5.49803799	TRUE
MEK	82	7.51565297	TRUE
HDAC	83	9.41983968	TRUE
AChR.antagonist	86	2.21944195	FALSE
Adr.Receptor.antagonist	86	2.26828361	FALSE
5HTR.agonist	86	4.58709819	TRUE
p38.MAPK	87	4.82954492	TRUE
STAT	88	4.17883559	TRUE
ABL	88	4.8251888	TRUE
Topoisomerase	88	5.04851238	TRUE
RAF	90	4.14395889	TRUE
ATPase	90	6.73816904	TRUE
ABL	91	4.37914804	TRUE
Adr.Receptor.antagonist	93	3.50631673	TRUE
ER.PR_agonist	97	4.67738131	TRUE
EGFR.ERBB	98	4.44183346	TRUE
DNA.RNA.Synthesis	99	3.4727626	TRUE
PI3K	100	3.20179911	FALSE
Wnt.beta-catenin	100	3.70337698	TRUE

IGFR	100	3.85458471	TRUE
Ca.Channel	100	4.37616146	TRUE
mTOR	100	14.7784985	TRUE
Microtubule.Associated	101	7.23326999	TRUE
MEK	102	9.30487308	TRUE
Topoisomerase	103	2.97361122	FALSE
Sodium.Channel	103	3.04111994	FALSE
lkB.IKK	103	4.24542125	TRUE
JAK	103	4.3690592	TRUE
CDK	103	5.68016436	TRUE
Proteasome	103	15.9545898	TRUE
MET	105	4.9666167	TRUE
PDGFR	105	5.29514851	TRUE
PARP	106	4.70583723	TRUE
PDE	107	2.84249965	FALSE
Histone.Methyltransferase	108	4.59476586	TRUE
Aurora.Kinase	109	5.95513653	TRUE
p38.MAPK	110	5.06645713	TRUE
JAK	111	3.48380466	TRUE
EGFR	111	3.87285091	TRUE
MET.VEGFR	111	5.21210644	TRUE
ABL	111	6.22196478	TRUE
DNA.RNA.Synthesis	115	4.31493643	TRUE
RAAS	117	2.86452526	FALSE
Sodium.Channel	117	2.99566445	FALSE
DNA.RNA.Synthesis	117	3.9787859	TRUE
Kinesin	118	6.76986956	TRUE
Topoisomerase	119	5.95198865	TRUE
PLK	122	4.83449691	TRUE
STAT	122	5.0753188	TRUE
Microtubule.Associated	122	9.48944986	TRUE
EGFR	123	4.39394247	TRUE
PI3K	123	4.88317226	TRUE
mTOR	123	10.0294242	TRUE
RAAS	124	2.77899116	FALSE
5HTR.antagonist	124	2.84249965	FALSE
5HTR.antagonist	127	2.48838075	FALSE
Adr.Receptor.agonist	127	3.3097259	TRUE
GluR.antagonist	127	5.7801431	TRUE

Supplementary Table 4: Target class enrichment in APC clusters. APC clusters that are enriched with a single class from the Selleck library and the NPFs that are associated with those clusters.

Class	Cluster number	Number of NPFs	NPF IDs
HSP	48	0	
HDAC	49	3	SW218953 through SW218955
Epigenetic.Reader.Domain	76	0	-
mTOR	100	1	SW218859
Proteasome	103	1	SW218864
mTOR	123	0	

Name	Class	Compound	MW
SW218140-2	PLK	Volasertib (BI 6727)	618.81
SW218130-2	HDAC	Mocetinostat (MGCD0103)	396.44
SW199536-4	HDAC	Vorinostat (SAHA, MK0683)	264.3
SW218954-1	NPF	RLUS-2173D	NA
SW218953-1	NPF	RLUS-2173C	NA
SW218266-2	HDAC	PCI-24781 (Abexinostat)	397.42
SW218187-2	JAK	TG101348 (SAR302503)	524.68
SW219379-1	HDAC	M344	307.39
SW219369-1	HDAC	Panobinostat (LBH589)	349.43
SW219316-1	PLK	Ro3280	543.61
SW218955-1	NPF	RLUS-2173E	NA
SW219469-1	HDAC	Givinostat (ITF2357)	475.97
SW219445-1	HDAC	Belinostat (PXD101)	318.35
SW219429-1	HDAC	Pracinostat (SB939)	358.48
SW219385-1	HDAC	LAQ824 (Dacinostat)	379.46
SW219796-1	HDAC	Quisinostat (JNJ-26481585)	394.48
SW219772-1	HDAC	AR-42	312.36
SW219675-1	HDAC	Resminostat	349.4
SW219664-1	HDAC	Trichostatin A (TSA)	302.4
SW220090-1	HDAC	Nexturastat A	341.4
SW219934-1	HDAC	CUDC-101	434.49
SW219824-1	HDAC	Scriptaid	326.35

Supplementary Table 5: Cluster #49 members. NPFs and Selleck compounds that are present in the APC cluster #49, which is enriched in HDAC inhibitors.

Supplementary Table 6: Differential expression of top 20 genes in the Nanostring metabolism panel.

Differential expression is shown as log2 fold change. P-values are Benjamini-Yekutieli adjusted. *Rawdata-Nanostringmetabolismpanel included as separate attachment.

	Differentia	Expression	- Top20									
	Log2 fold	std error (Lower con	Jpper cor L	inear fold	ower con	Upper con F	² -value	3Y.p.value	method	Gene.sets r	probe.ID
THBS1-mRNA	-0.248	0.0123	-0.272	-0.224	0.842	0.828	0.856	3.76E-08	0.000132	loglinear	Myc, PI3K	NM_003246.2:3465
CD63-mRNA	-0.124	0.016	-0.155	-0.0921	0.918	0.898	0.938	5.72E-05	0.0663	loglinear	Lysosomal Degradation	NM_001780.4:350
SCD-mRNA	0.212	0.0276	0.158	0.266	1.16	1.12	1.2	5.83E-05	0.0663	loglinear	AMPK, Fatty Acid Synthesis	NM_005063.4:2025
PRKAG2-mRNA	-0.125	0.0168	-0.158	-0.0917	0.917	0.897	0.938	7.55E-05	0.0663	loglinear	AMPK, Autophagy, Fatty Acid Oxidation, Mitocho	NM_016203.3:1895
SQSTM1-mRNA	-0.0961	0.0144	-0.124	-0.0679	0.936	0.917	0.954	0.000155	0.103	loglinear	Cytokine & Chemokine Signaling	NM_003900.3:1445
CCND1-mRNA	-0.135	0.0206	-0.175	-0.0947	0.911	0.886	0.936	0.000177	0.103	loglinear	AMPK, Cell Cycle, Cytokine & Chemokine Signalin	NM_053056.2:690
HMOX1-mRNA	-0.363	0.0572	-0.475	-0.251	0.777	0.719	0.84	0.000222	0.111	loglinear	Cytokine & Chemokine Signaling, KEAP1NRF2 Pat	NM_002133.2:781
GAPDH-mRNA	-0.0641	0.0108	-0.0853	-0.043	0.957	0.943	0.971	0.000344	0.151	loglinear	Glycolysis I	NM_001256799.1:386
CTPS1-mRNA	-0.141	0.0261	-0.192	-0.0901	0.907	0.875	0.939	0.000633	0.247	loglinear	Nucleotide Synthesis	NM_001301237.1:580
MYC-mRNA	-0.117	0.0242	-0.164	-0.0692	0.922	0.892	0.953	0.00132	0.464	loglinear	Cell Cycle, Cytokine & Chemokine Signaling, MAP 1	NM_002467.3:1610
CAD-mRNA	-0.135	0.0292	-0.193	-0.078	0.911	0.875	0.947	0.00169	0.499	loglinear	Amino Acid Synthesis, Myc, Nucleotide Synthesis	NM_004341.3:2380
ASNS-mRNA	-0.159	0.0345	-0.226	-0.091	0.896	0.855	0.939	0.00177	0.499	loglinear	Amino Acid Synthesis, Glutamine Metabolism	NM_183356.2:1644
ZNF43-mRNA	-0.235	0.0516	-0.336	-0.133	0.85	0.792	0.912	0.00189	0.499	loglinear	Transcriptional Regulation	NM_003423.2:3835
NT5E-mRNA	-0.134	0.0305	-0.194	-0.0743	0.911	0.874	0.95	0.00231	0.499	loglinear	Nucleotide Synthesis, Vitamin & Cofactor Metab	NM_002526.2:1214
ALDOA-mRNA	-0.0631	0.0145	-0.0915	-0.0347	0.957	0.939	0.976	0.00241	0.499	loglinear	Glycolysis, Pentose Phosphate Pathway	NM_184041.2:1455
TXNRD1-mRNA	-0.102	0.0236	-0.148	-0.0561	0.932	0.902	0.962	0.00247	0.499	loglinear	p53 Pathway N	NM_001093771.1:1009
RPLPO-mRNA	-0.0481	0.0111	-0.0699	-0.0263	0.967	0.953	0.982	0.00251	0.499	loglinear	Cytokine & Chemokine Signaling	NM_001002.3:250
COX4I1-mRNA	-0.0529	0.0125	-0.0774	-0.0285	0.964	0.948	0.98	0.00282	0.499	loglinear	Mitochondrial Respiration, p53 Pathway	NM_001318797.1:50
WDR45-mRNA	-0.2	0.0473	-0.293	-0.108	0.87	0.816	0.928	0.00283	0.499	loglinear	Autophagy I	NM_007075.3:1390
ATF4-mRNA	-0.0885	0.0209	-0.129	-0.0476	0.941	0.914	0.968	0.00284	0.499	loglinear	MAPK, PI3K, Transcriptional Regulation	NM_001675.2:1151

References

- 1 Jensen, P. R., Gontang, E., Mafnas, C., Mincer, T. J. & Fenical, W. Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. *Environ. Microbiol.* **7**, 1039-1048, doi:10.1111/j.1462-2920.2005.00785.x (2005).
- 2 Hong, K. *et al.* Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. *Mar. Drugs* **7**, 24-44, doi:10.3390/md7010024 (2009).
- 3 Woehrmann, M. H. *et al.* Large-scale cytological profiling for functional analysis of bioactive compounds. *Mol. Biosyst.* **9**, 2604-2617, doi:10.1039/c3mb70245f (2013).
- 4 Potts, M. B. *et al.* Using functional signature ontology (FUSION) to identify mechanisms of action for natural products. *Sci. Signal.* **6**, ra90, doi:10.1126/scisignal.2004657 (2013).
- 5 Wang, B. *et al.* Similarity network fusion for aggregating data types on a genomic scale. *Nat. Methods.* **11**, 333-337, doi:10.1038/nmeth.2810 (2014).
- 6 Kim, H. S. *et al.* Systematic identification of molecular subtype-selective vulnerabilities in non-small-cell lung cancer. *Cell* **155**, 552-566, doi:10.1016/j.cell.2013.09.041 (2013).
- 7 Kurita, K. L., Glassey, E. & Linington, R. G. Integration of high-content screening and untargeted metabolomics for comprehensive functional annotation of natural product libraries. *Proc. Natl. Acad. Sci. USA* **112**, 11999-12004, doi:10.1073/pnas.1507743112 (2015).