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Supplementary Information Text 

SI Materials and Methods 

Treatment protocols 

For non-M3 AML, young patients (< 60 years) were given standard intensive “3+7” IA-based 

regimens as initial induction, which contained idarubicin/daunorubicin (10–12/45–60 mg/m2, 

D1–3) and cytarabine (100 mg/m2, D1–7). When CR was achieved, 4 cycles of high-dose 

cytarabine (HDAC, 2g/m2 q12h×6, D1–3) were delivered as consolidation. Elderly patients (≥ 

60 years) were evaluated by the treating physician. Fit patients received reduced IA/DA-based 

induction chemotherapy comprising idarubicin (6 mg/m2 D1–3) and cytarabine (100 mg/m2, D1–

7), and reduced the consolidation to 2 cycles of HDAC (2 g/m2 q12h×6, D1–3). While unfit 

patients were assigned to other less intensive therapies, e.g., demethylation agents at the 

discretion of the physician. 

For patients with acute promyelocytic leukemia (APL), the combination of All-trans retinoic acid 

(ATRA) and Arsenic trioxide (ATO) with or without chemotherapy was administered based on 

Sanz risk stratification. 

Nucleic acid extraction and next generation sequencing 

Bone marrow (BM) mononuclear cells were isolated by Ficoll density gradient centrifugation, 

from which genomic DNA and total RNA were extracted by using the AllPrep DNA/RNA Mini 

Kit (Qiagen) or TRIzol reagent (Invitrogen) according to the manufacturer’s instructions. The 

quality and quantity of DNA/RNA were respectively evaluated by the Agilent 2100 Bioanalyzer 

system (Agilent Technologies) and Qubit (Life Technologies) before library preparation. For 

samples from SIH (n = 442), RNA sequencing (RNA-Seq) libraries were constructed using the 

KAPA RNA HyperPrep kit (Roche), followed by sequencing on the NovaSeq 6000 platform 

(Illumina) per manufacturer’s protocol. Libraries for whole exome sequencing (WES) were 

constructed using SeqCap EZ Human Exome v3.0 kit (Roche) and were sequenced on the 

NovaSeq 6000 platform (Illumina). Hybrid capture-based targeted exome sequencing (TES) 

was performed on the consensus coding sequence of 100 genes involved in acute leukemia. 

Library enrichment for TES was carried out using the NadPrep EZ DNA Library Preparation Kit 

(Nanodigmbio), and sequencing was performed on a NextSeq 550 platform (Illumina). For 

samples from JIH (n = 110), RNA-seq libraries were prepared through using the TruSeq RNA 

Sample Preparation Kit (Illumina), and were sequenced on the HiSeq 2500 platform (Illumina). 

Targeted sequencing of the entire coding sequences of 88 gene targets in myeloid neoplasms 

was performed with a custom amplicon-based targeted enrichment assay (Agilent). TES 

libraries were prepared using the TruSeq DNA Sample Preparation Kit (Illumina), and 

sequencing was performed using the MiSeq instrument (Illumina). Finally, for samples from ZIH 

(n = 103), libraries for RNA-Seq were prepared utilizing the KAPA RNA HyperPrep Kit with 

RiboErase (Roche), and were sequenced on a NovaSeq 6000 platform (Illumina). TES was 

performed using a KAPA Library Amplification Kit (Roche), with a NimbleGen kit (Roche) used 
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to capture the target region. Then the hybridized captured samples were subjected to 

sequencing on the NovaSeq 6000 system (Illumina). 

A subset of RNA-seq data used in this study have been published by us (1) and another 

research group from SIH (2), which is denoted in Dataset S1. Relevant raw RNA-Seq data have 

been deposited to the Gene Expression Omnibus (GEO) database with the accession number 

GSE172057 and GSE201492, respectively. 

Gene expression quantification and consensus clustering 

For alignment-based gene expression quantification methods, the raw reads of RNA-Seq were 

aligned to the human hg38 reference genome by using STAR (v2.7.9a) (3) two-pass mode and 

the gene model of GENECODE v38. The Featurecounts (v2.0.1) (4) and Htseq subprogram 

htseq-count (v0.11.3) (5) were used to generate the transcript or gene counts table using the 

aligned BAM files, while two genome alignment-free methods including salmon (v1.2.1) (6) and 

kallisto (v0.46.2) (7) were used to quantify the transcript read counts using the raw FASTQ files. 

The DESeq2 (v1.28.0) (8) was utilized to conduct the internal normalization and to generate 

the gene expression matrix with variance-stabilizing transformation based on the count table 

files, which were also converted to Transcripts Per Kilobase Million (TPM), another popular and 

normalized gene expression matrix format. 

In the unsupervised clustering pre-process steps, the principal component analysis was 

conducted to check the potential batch effect in the normalized expression matrix by using the 

gmodels (v2.18.1) function ‘fast.prcomp’. Then, the identified batch effect was adjusted by using 

the ComBat function in the R sva package (v3.40.0) (9), which uses empirical Bayes 

frameworks for adjusting data batch effect. To avoid potential mask of gender factors, we 

filtered all genes in the gender-related X and Y chromosomes. As one of the extra gene filters, 

we used the ‘adjust_matrix’ function in the cola (10) R package, a framework conducting 

consensus clustering, for removing rows with low variance. 

The R package ComplexHeatmap (11) was used to carry out the unsupervised clustering based 

on the ward.D method and ‘1-cor(t(x)))/2’ distance measure. First, we conducted the 

unsupervised clustering based on top 2000 variance protein-coding genes. Potential unstable-

related gene clusters were identified and removed. Then, gradient top variance of protein-

coding genes was respectively selected to perform unsupervised clustering. The correlation 

between WHO classification and defined subgroups were used to determine the clustered gene 

set for conducting consensus clustering. Finally, the top variance of protein-coding genes (n = 

859) was included in the hierarchical and consensus clustering, which were generated from the 

STAR hg38 alignments using the Featurecounts as the reads counter with batch effect 

adjusting. The cola package was used to conduct the sampling of patients and features. Totally, 

twenty top-genes/clustering methods were used to calculate the label-probability of patients 

and stability of defined gene expression subgroups based on the preselect gene sets. 

The gene enrichment analysis (GSEA) of gene expression profiling (GEP)-defined subgroups 

was conduct by the Broad GSEA command-line program (v4.3.0) (12). The 17-gene leukemia 
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stem cells (LSCs) signature was utilized to assess the stemness score in each GEP-defined 

subgroup (13), and the immune infiltration with specific cell type abundance in each subgroup 

was determined by CIBERSORTx (14). An emerging AML prognostic score (APS) was also 

included in the comparison of parameters in multivariate regression models (15). Both LSC17 

and APS scores were generated using log2 (TPM +1) gene expression measure and the 

original coefficients. Gene co-expression networks were constructed based on Weighted Gene 

Co-Expression Network Analysis (WGCNA) algorithm (v.1.70-3) (16) following the official 

standard workflow. Unsigned mode and the Pearson correlation were used to get nodes and 

edges of unscaled networks. Core networks were visualized in Cytoscape (v3.9.1) (17) based 

on 0.05 threshold subset of ‘exportNetworkToCytoscape’ function output. 

Arrest stage analysis of AML patients 

In order to resolve the cell arrest stage of each molecular subgroups in AML, we performed 

quantitative computations based on the single-sample GSEA (ssGSEA) algorithm and 

published gene sets (18). The ssGSEA analysis was implemented in the GSVA tool (v1.42.0) 

and the scores were normalized using the absolute difference between the minimum and 

maximum values. The gene set of cellular arrest stages (top 30 signature genes per types) was 

extracted from single-cell dataset of normal bone marrow and AML patient to characterize the 

three major developmental stages (HSPC-like, GMP-like, and monocyte-like) (18). Meanwhile, 

diffusion map (19), the uniform manifold approximation and projection (UMAP, 

http://github.com/lmcinnes/umap) and hierarchical clustering algorithms were used for 

dimensionality reduction visualization showing the quantitative scores and developmental 

branches. 

Establishment and validation of predictive models for GEP-defined subgroups 

The automatic machine learning (AutoML) technique, Autogluon (v0.4.2) 

(https://arxiv.org/abs/2003.06505), was used to establish a pool of prediction models for 

recognizing gene expression subgroups in AML. The prediction accuracy was evaluated in the 

10-fold internal test datasets. The data sampling with replacement were performed using the 

‘createDataPartition’ in caret R package (v6.0-88), which split 90% of samples as the training 

dataset and 10% as the internal test dataset. To further validate the reliability of the GEP-

defined gene expression subgroups, we applied the prediction models using the same gene 

sets (overlap only) or all protein-coding genes on the TCGA LAML and Beat AML cohort. The 

gene expression counts of TCGA LAML and Beat AML cohort were downloaded from public 

database. It was normalized followed the same process (DESeq2 VST and TPM). The TPM-

based consistently predicted patients of TCGA LAML and Beat AML cohort were included for 

down-stream survival/drug resistant analysis. The Rtsne (v0.15) 

(https://github.com/jkrijthe/Rtsne) method and DESeq2 VST data matrix were used to conduct 

dimensionality reduction for visualization of predicted GEP-defined subgroups via using the t-

distributed Stochastic Neighbor Embedding (t-SNE) algorithm and the features of unsupervised 
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clustering. The labels of two (TCGA-AB-2830, TCGA-AB-2939) and eight Beat samples 

(BA2044R, BA2660R, BA2760R, BA2816R, BA2866R, BA2955R, and BA3149R) were 

adjusted according to the outliers of groups, which were partially validated by fusion genes 

status. 

Identification of fusion genes and tandem duplications 

Fusion genes were detected by RNA-Seq, karyotyping, and/or fluorescence in situ hybridization 

(FISH). Results from TES/WES and Sanger sequencing were established as the gold-standard 

positive reference of FLT3-ITD/KMT2A-PTD, and for FLT3-ITD only variant allele frequency 

(VAF) ≥ 5% at the DNA level was considered. Four computational methods including 

Fusioncatcher (v1.20) (20), STAR-Fusion (v1.9.0) (21), and two recently described Arriba 

(v2.0.0) (22) and CICERO (v0.3.0) (23) were used to detect fusions from RNA-Seq data. Apart 

from the Arriba and CICERO, three newly published RNA-Seq-based pipelines, HAMLET 

(v1.0.1) (24), KM (v2.0.2) (25), and RNAmut (v1.1) (26) were used to identify the FLT3-

ITD/KMT2A-PTD. Novel gene fusions and inconsistent FLT3-ITD/KMT2A-PTD events were 

validated by RT-PCR/Sanger sequencing. 

Calling and annotation of small sequence variants from RNA-Seq 

Raw sequence reads of RNA-Seq were aligned to human hg19 reference genome by using 

STAR (v2.7.9a) (3) two-pass mode. The Genome Analysis Toolkit (GATK, v4.1.7.0) (27) was 

used to mark the duplication reads in aligned BAM files. Samtools (v1.7) (28) was applied to 

generate the MD tag in the marked duplications in BAM files. The MD field is designed for the 

small sequence variants calling without mapping to the reference. Rnaindel (v2.2.2) (29) was 

used to detect Indels in the processed BAM files, which with marked duplications were then 

processed by following GATK pre-processing steps: SplitNCigarReads, BaseRecalibrator, and 

ApplyBQSR. The GATK HaplotypeCaller (v4.1.7.0), GATK UnifiedGenoTyper (v3.8.0), Lofreq 

(v2.1.2) (30), Freebayes (v.1.3.2) (arXiv:1207.3907v2), and Varscan2 (v2.4.4) (31) were used 

to detect SNVs and/or Indels. The generated VCF files were annotated and converted to MAF 

format files by using the VEP (v100) (32) and vcf2maf (v1.6.18) 

(https://github.com/ckandoth/vcf2maf), which contained numerous basic annotation information, 

such as the variant allele frequency (VAF), existing sites, population frequency, ClinVar (33), 

and variant effect. Besides, we merged multiple MAF files generated by different methods and 

added the variant caller field annotation (e.g., HaplotypeCaller and Freebayes), in which the 

maximum variant allele frequency was selected. The R package anor 

(https://github.com/clindet/anor) was used to annotate other databases, such as the 1,285 

RNA-Seq calling sets from patients with BCP-ALL, the RNA-editing database including 

DARNED (34), RADAR (35), and REDIportal (36). Besides, the variant sites reported by 

targeted sequencing or WES before and those validated as false-negative events were 

introduced. Finally, the KM and seed sequence match script were used to double-check the 

events that cannot be identified by the genome alignment-based methods. 
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Screen of small sequence variants from RNA-Seq 

A progressive screen strategy for small sequence variants from RNA-Seq was proposed in this 

study. To avoid repeated upstream calling in subsequent analyses, we did not limit the genome 

regions when utilizing the variant calling methods. By intersecting all VCF files with a dynamic 

and targeted genome region, irrelevant genes and regions could be excluded. To build the 

targeted genome region, we selected 32 genes and used the exon with an extra 10 bp length 

at 5’ and 3’ end, which could speed up the annotation of mutations, especially when the original 

results were very large. Variant sites with a population frequency of more than 1% were 

excluded (gnomAD_AF and AF fields), and those involved in 3' UTR, 3' flank, 5' flank, 5' UTR, 

intron, silent, intergenic region (IGR), and splice region translation start site were also filtered. 

The recurrent counts of variant sites in different samples were regarded as an important feature 

of false-positive events, such as single base duplications with significant higher recurrence and 

lower quality scores. Collectively, three different filter modes were used to select the variant list 

for the down-stream check, which included the strict mode: depth ≥ 10, supporting counts ≥ 3, 

and VAF > 0.04, the intermediate mode: depth ≥ 7, supporting counts ≥ 2, and VAF > 0.02, and 

the loose mode: depth ≥ 5, supporting counts ≥ 1, and VAF > 0.01. To facilitate checking the 

variant list, variant calling results were divided into nine categorizes: 1) All sites in genes that 

are top mutant or with clinical significance in AML. 2) Sites that have been reported positive in 

AML. 3) Sites that have been reported positive in leukemia. 4) Genes that have been reported 

as germline origin. 5) Sites that are associated with any clinical significance, such as in ClinVar 

(33). 6) Truncated or damaging sites including the frameshift, nonsense, and splicing variants 

7) Missense variants with damaging scores. 8) Known SNP sites that have not been reported 

as germline or somatic mutations in tumor cohort. 9) Other sites. In the comparison between 

RNA-Seq and DNA-based sequencing data, we labelled and classified all variant sites that 

were reported by DNA-based methods. The variants were simultaneously checked in VCF, 

MAF, and BAM files in order to reduce the false-negative rate. The distribution of the detection 

rate in the combination of different variant calling methods using RNA-Seq data was also 

calculated. 

Variant calling from DNA sequencing 

Paired-end reads were aligned to the hg19 reference genome. SNVs and indels were obtained 

by synthetically utilizing three callers, namely GATK4 Mutect2, VarDict (v1.5.8) (37), and 

MuTect (v1.1.7), with default parameters or authors’ recommendations used. All mutations 

were annotated by snpEff (v4.2) (38) and ANNOVAR. All the functional mutations, including 

missense, nonsense, splicing, and nonstop SNVs, as well as indels were obtained. Homemade 

pipelines were used to filter SNVs and indels detected by the aforementioned software, 

according to the following analysis standards to screen raw variants sites: 1) Mutations that 

were called more than one software. 2) Mutations with VAF of more than 5% and at least 4 

individual mutant reads. 3) A normal control variation database, including B-cell acute 
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lymphoblastic leukemia, T-cell acute lymphoblastic leukemia, diffuse large B-cell lymphoma, 

and natural killer T cell lymphoma was built based on our previous publications. 4) Population 

related variants that were reported in dbSNP (v151) (39) but absent in the catalogue of somatic 

mutations in cancer (COSMIC) (v85) (40) were excluded. 5) Variant frequency in 1000 Genome 

Project, Genome Aggregation Database (gnomAD), NHLBI Exome Sequencing Project 

(ESP6500), and UK10K database (https://www.uk10k.org/) was less than 10-4. The WES calling 

set was obtained from our previously published APL paper (1). 

Drug sensitivity analysis of gene expression subgroups in AML 

The drug screening data of AML patients were accessed from the Beat AML project, which 

covered the different molecular subtypes of AML. First, we predicted the label of gene 

expression subgroups (G1-G8) in patients of the Beat AML cohort based on gene expression 

features that were normalized by TPM transformation. Only the consistent cases in different 

models were retained in the down-stream comparison. The median of area-under-the-curve 

(AUC) values was used as the indicator for predicting inhibitors sensitivity of patients with AML. 

The p-value of drug response was calculated using the Wilcoxon signed-rank test. We also 

generate the combination of different subgroups to reduce the false negative rate. 

Zebrafish breeding  

The zebrafish wild-type Tübingen strain (ZFIN ID: ZDB-GENO-990623-3) used in this study 

was maintained under standard conditions as previously described (41). Embryos were 

maintained in egg water at 28.5 ℃ and 1-phenyl-2-thiourea (PTU; Sigma) was used to prevent 

pigmentation. All animal experimental procedures were performed according to the guidelines 

of the Committee on Animal Care of Shanghai, China, and were approved by the Institutional 

Animal Care and Use Committee (IACUC) of Shanghai Jiao Tong University. 

Plasmid construction, mRNA synthesis and microinjection 

The coding sequences of human CYB5A::DYM, MX1::FAM3B and NUP98::TNRC18 fusion 

genes were synthesized and cloned into an pCS2+ plasmid. Then, mRNAs of these three novel 

fusions were transcribed through mMessage mMachine SP6 Transcription kit (Thermo Fisher 

Scientific; AM1340) and purified by Nucaway Spin Columns (Ambion; 10070). Fusion mRNA 

was injected into 1-cell stage embryos separately at a final concentration of 100-120 ng/uL. 

Whole-mount mRNA in situ hybridization (WISH)  

Probes of myeloid markers lyz, mpx, and lcp1 were transcribed with T7 or T3 polymerase. 

WISH was performed as described previously (42) by using NBT/BCIP Alkaline Phosphatase 

Substrate Kit (Vector Laboratories, SK-5400). Images were captured through Nikon SMZ1500 

microscope. 
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Other visualization and statistical analysis 

The one-dimensional fusion protein diagram was visualized using the ProteinPaint tool 

(https://pecan.stjude.cloud/proteinpaint) (43). The circlize (v0.4.13) (44) was used to draw the 

genomic circle diagram with fusion genes links. The venn (v1.10) 

(https://github.com/dusadrian/venn) and ComplexHeatmap (v2.8.0) (11) function UpSet was 

respectively used to display the interaction between data sets. The ggplot2 (v3.3.5), ggpubr 

(v0.4.0) and the ggstatsplot (v0.8.0) (https://doi.org/10.21105/joss.03167) were used to draw 

basic statistical graphics. The coexistence and mutual exclusion analysis of mutant genes was 

performed using the tool DISCOVER (Discrete Independence Statistic Controlling for 

Observations with Varying Event Rates, v0.9.3) (45), which provides statistical testing with a 

lower false-positive rate.  

Categorical variables were compared by Pearson’s Chi-square or Fisher’s exact test, and 

continuous data by t-test or Wilcoxon rank sum test. The R package survival (v3.2-11) was 

used to construct the Kaplan-Meier (KM) model, and the log-rank test was used to calculate 

estimates of survival probabilities and hazard ratios. Multivariable Cox analysis of overall 

survival (OS) in non-M3 AML patients was applied, with backward elimination used for model 

selection. The survminer (v0.4.9) was used to plot the KM survival curve and draw the forest 

visualization of Cox regression models. Most statistical analyses were performed using the R 

4.0.2 software package. Other descriptions of public datasets, analysis strategies, and 

visualizations are provided in Supplementary Methods. 
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SI Figures 

 

Fig. S1. Graphical abstract of the multi-center AML study. The whole study cohort consists 

of 655 primary AML patients from three centers in China. All patients were subjected to RNA-

Seq, among which, 619 cases (94.5%) harbored both RNA-Seq and TES/WES data. The main 

findings of this study include two aspects. Firstly, we established eight transcriptome-based 

molecular subtypes (G1–G8) with distinct biological and clinical features through enhanced 

consensus clustering. On the other hand, these molecular subgroups demonstrated different 

stages of cell differentiation, including HSPC-like (G5, G7, and G8), GMP-like (G1, G3), and 

monocyte-like (G2, G6) signatures. Through development of prediction models, the eight gene 

expression subgroups could be convincingly reproduced in both Beat AML and TCGA AML 

cohorts, showing different prognostic value and drug sensitivity. The robust transcriptome-

based molecular subtypes hold great potential in clinical application, and may facilitate the 

implement of precision medicine in AML. GMP, granulocyte-monocyte precursor; HSPC, 

hematopoietic stem/progenitor cell-like; RNA-Seq, RNA sequencing; TES, targeted exome 

sequencing; WES, whole exome sequencing. 
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Fig. S2. Flow diagram of the whole study. Flow diagram depicting the relationship of multiple 

datasets, modeling procedures and analytical steps in this study. Discovery cohorts of China 

consist of three centers including SIH (n = 442), JIH (n = 110), and ZIH (n = 103). The uniformly 

screened TCGA LAML and Beat AML patients are included in validation cohorts. Multiple 

preprocess steps, i.e., batch effect adjustment and pre-filters of genes were adopted to reduce 

the impact of bias factors. Meanwhile, the consensus clustering strategy of the cola package 

and the pre-screened features defined the stable gene expression subgroups. A pool of 

AutoML-based prediction models predicts the label of validation cohorts. TPM-based gene 

expression matrix drops fuzzy samples. The DESeq2 VST normalization and its tSNE 

visualization help to further refine the labels. Multidimensional features including genetic 

mutations, clinical prognosis, and differentiation hierarchies are clarified both in discovery and 

validation cohorts. A portion of available Beat AML (n = 138) was included in the drug sensitivity 

analysis step. SIH, Shanghai Institute of Hematology. ZIH, Zhejiang Institute of Hematology. 

JIH, Jiangsu Institute of Hematology. AutoML, automatic machine learning. VST, variance 

stable transformation. tSNE, t-distributed stochastic neighbor embedding. 
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Fig. S3. Genomic landscape of 655 patients with AML in China. (A) Bar plot indicates the 

top-mutant genes of AML. Mutation types are show in different color. Multi-mutations of same 

genes in one patient are merged. (B) Colored table of top mutations. (C, D) Co-occurrence and 

mutually exclusive between molecular subgroups (G1-G8), fusion genes, small sequencing 

variants, and internal tandem duplication (ITD)/partial tandem duplication (PTD). 
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Fig. S4. Genetic mutations and its self-regulation. Gene expression levels of mutated genes 

in AML, with wild-type (WT) and mutant (Mut) genes denoted in gray and red dots, respectively. 
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Fig. S5. Fusion genes detected in this study. (A) The frequency and proportion of validated 

fusion genes in 655 primary AML patients. (B) Circos plot of validated fusion genes, with partner 

genes linked using ribbons. Ribbon width indicates the count of fusion events. (C) Schematic 

of novel and NUP98 fusion transcripts. Structural domains in partner genes and junction points 

in the novel fusions are depicted, and the name of each domain is listed. 
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Fig. S6. Previously reported fusion genes in large AML studies. Reported fusions in the 

TCGA LAML cohort (2013) (Upper) and Beat AML cohort (2018) (Lower). 
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Fig. S7. Fusion genes and its self-regulation. Gene expression levels of the 5’ (x-axis) and 

3’ (y-axis) partner genes involved in fusion genes, and samples positive for corresponding 

fusions are depicted in red dots. 



18 
 

 

Fig. S8. Batch effect removal of multi-center RNA-Seq data. PCA results in protein-coding 

genes, top 5% high variance protein-coding genes, all genes, and top 5% of all genes with the 

largest variance before and after SVA adjust. PCA, principal component analysis; SVA, 

surrogate variable analysis. 
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Fig. S9. Comparison of different clustering methods. Sankey plot shows the comparison 

between consensus clustering and unsupervised hierarchical clustering. 
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Fig. S10. Extracted gene expression features and overlap between gene expression 

subgroups. (A) Scatter plots indicates the top up-regulated and down-regulated genes in AML 

subgroups. Different subgroups of AML are labeled by different colors. The Y-axis indicates 

log2 (fold change) of gene expressions versus rest samples. (B-D) respectively shows the gene 

sets intersections of G1-G4 or G5-G8 versus rest or combined G5-G8/G1-G4 patients. 
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Fig. S11. Other comparison of immune fractions among defined molecular subgroups of 

AML. 
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Fig. S12. UMAP visualization of predicted arrest stages of AML patients. Each point 

represents a patient. Top panel labeled points with defined subgroups. Bottom panel shows the 

scaled scores calculated based on ssGSEA method and sc-RNASeq extracted gene sets.  
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Fig. S13. Hierarchical clustering of signatures related to arrest stages of AML cells. Three 

clusters of gene and patients could be determined (HSPC, GMP, Monocyte or -like). 
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Fig. S14. Comparison of the proportion of CD34+CD38- cells.  Immunophenotypes of 36 

AML cases randomly selected from G1–G8 subgroups. The proportion of CD34+CD38- cells 

was compared among the eight gene expression subgroups.  
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Fig. S15. Representative immunophenotypes detected by flow cytometry.  (A) G1 

(PML::RARA) subgroup exhibits the distinctive immunophenotype of CD34-HLA-DR-

CD117+MPOst+. (B) G3 (RUNX1::RUNX1T1) and G4 (biCEBPA/-like) subgroups show 

CD34+CD38+CD117+MPOst immunophenotype. (C) G2 (CBFB::MYH11) and G6 (HOX-

committed) subgroups present the typical monocytic differentiation phenotype. One 

representative sample from each immunophenotype group is shown. 
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Fig. S16. Hierarchical clustering of differentially expressed genes in G6 to G8 subgroups.  
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Fig. S17. Co-expression and distribution of hallmark genes in defined AML subgroups. 

(A) Correlation heatmap of top de-regulated genes in G1-G8 subgroups of AML. (B) Ridge plots 

shows the gene expression distribution of hallmark genes of G1-G8 subgroups. A higher 

expression of myeloid differentiation markers MPO, LPO, and thyrotropin-releasing hormone 

family gene TRH could be seen in G1 to G4 subgroups. In contrast, the significant 

overexpression of HSPC-related genes PAWR, MYCT1 in G5, embryonic development 

markers such as NKX2-3, WT1, GATA2 and MYCN in G7–G8, and while immunoregulatory 
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factor LILRB4 and metabolic enzyme CES1 in G6 were observed, which was concordant with 

the differentiation stage of each subgroup. 
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Fig. S18. Enriched pathways and correlation between co-expression gene modules in 

eight gene expression subgroups. (A) The color, shape, and size of each point represents 

regulatory status, pathway class, and enrichment significance, respectively. (B) Heatmap 

shows the identified co-expression gene modules and its correlation with OS, EFS and G1–G8 

subgroups. Red and blue indicates the positive and negative correlation trend. Correlation 

coefficient and significance between gene modules and traits are labeled in the box. Selected 

core networks including purple (G5–G8)/lightcyan (G5/G8) and yellow (G6) are shown in 

Fig.S18 and Fig.S19, respectively. Gene sets were obtained from the KEGG, GO, and 

Reactome database. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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Fig. S19. HOX- and G5/G8-related co-expression gene modules. Each node represents a 

gene. Gene module purple and lightcyan are two core networks that could predict poor 

prognosis in AML. Lightcyan is associated with the platelet Ca2+ signaling pathway. 

 



31 
 

 

Fig. S20. Monocyte-related co-expression gene network. The gene module (yellow) can be 

used to predict the resistance to Venetoclax and T-cell inhibitions. 
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Fig. S21. Survival analysis of defined AML subgroups. Top panel respectively shows overall 

survival (OS) and event-free survival (EFS) of AML subgroups. Bottom panel only keep the 

patients that were treated with standard 3+7 chemotherapy. 
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Fig. S22. Functional exploration of novel fusion genes in zebrafish. Three newly identified 

in-frame fusion genes (CYB5A::DYM, MX1::FAM3B in G5, and NUP98::TNRC1 in G6) from 

patients who had a grim prognosis but lacked known strong leukemogenic mutations were 

selected. (A) Significantly increased lyz+, mpx+, and lcp1+ cells in zebrafish embryos injected 

with CYB5A::DYM mRNAs at 3 dpf, and increased lcp1+ cells in NUP98::TNRC18 as compared 

with control zebrafish. (B) WISH assays conducted in 3-dpf zebrafish embryos injected with 

three novel fusions, with uninjected zebrafish embryos being the control. dpf, days 

postfertilization; WISH, whole mount RNA in situ hybridization. 
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Fig. S23.  Use case of gene expression classification: screen of prognostic genes from 

inter- and intra-subgroups. (A) Dot plot shows the gene expression level of HOXA9 and TRH 

between different molecular subtypes including CEBPA mutant status. The gene expression 

level of HOXA9 and TRH are highly similar in G4-biCEBPA and biCEBPA-like clusters, which 

were reversed in other CEBPA mutations. (B–D) Some differentially expressed genes with 

different molecular mutations within G5 and G8. The CD109 was successfully screened in one 

of the emerging prognostic risk scores of AML (15). 
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Fig. S24. The oncogenic landscape of G1-G8 subgroups in the merged TCGA LAML and 

Beat AML cohorts. Each row represents a genomic feature. The clinical annotations are 

shown in the top panel. Each column is a patient. Different types of mutations are labeled with 

different colors. The genomic landscape can validate the classification of G1-G8 enriched 

genomic events including PML::RARA, CBFB::MYH11, RUNX1::RUNX1T1, CEBPA, RUNX1, 

TP53, DNMT3A, and NPM1 mutations. 
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Fig. S25. Validation of differentiation signatures of G1-G8 based on TCGA LAML and 

Beat AML cohorts. The bar plots of normalized enrichment score of TCGA LAML and Beat 

AML cohorts are shown in the top and bottom panels. The distribution pattern of TCGA LAML 

and Beat AML cohorts are trend consistent, i.e., HSPC/-like of G5/G8, GMP/-like of G1/G3 and 

Monocyte/-like of G2 and G6. 
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Fig. S26. LSC17 risk scores in three independent cohorts including China, Beat AML and 

TCGA LAML. The subgroups are ordered by median of LSC17 from low to high. The high 

LSC17 risk scores are strongly associated with G5 and G8 subgroups in three independent 

cohorts, which also confirmed the HSPC/-like gene signatures. 
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SI Tables 

Table S1. Clinical characteristics of newly diagnosed AML patients in the whole cohort and three participating centers. 

Factor Overall (n = 655) SIH (n = 442) JIH (n = 110) ZIH (n = 103) 

Age (year)     

Median (IQR) 48 (34–60) 50 (36–62) 37 (26–45.8) 57 (42.5–65.5) 

Male gender, n (%) 339 (51.8) 225 (50.9) 65 (59.1) 49 (47.6) 

WBC, × 109/L     

    Median (IQR) 12.4 (3.5–44) 9.9 (3–40.5) 35.1 (11.8–63.6) 8.8 (2.7–31.6) 

HGB, g/L     

    Median (IQR) 86 (68–106.5) 86 (67–106) 87 (71–107) 88 (67–104) 

PLT, × 109/L     

    Median (IQR) 40 (23–78) 41 (23–81) 32 (18.5–61.5) 51 (26–78.5) 

Bone marrow blasts, %     

    Median (IQR) 68 (45–84) 68 (45.6–84.5) 69.80 (48–85) 68 (42–80.8) 

WHO category, n (%)     

AML with defining genetic abnormalities     

APL with PML::RARA fusion  56 (8.5) 52 (11.8) 0 (0.0) 4 (3.9) 

AML with RUNX1::RUNX1T1 fusion 53 (8.1) 33 (7.5) 8 (7.3) 12 (11.7) 

AML with CBFB::MYH11 fusion 51 (7.8) 29 (6.6) 15 (13.6) 7 (6.8) 

AML with DEK::NUP214 fusion 2 (0.3) 2 (0.5) 0 (0.0) 0 (0.0) 

AML with BCR::ABL1 fusion 3 (0.5) 0 (0.0) 1 (0.9) 2 (1.9) 

AML with KMT2A rearrangement  40 (6.1) 18 (4.1) 12 (10.9) 10 (9.7) 

AML with MECOM rearrangement 3 (0.5) 2 (0.5) 1 (0.9) 0 (0.0) 

AML with NUP98 rearrangement 18 (2.7) 10 (2.3) 7 (6.4) 1 (1.0) 

AML with NPM1 mutation  120 (18.3) 91 (20.6) 11 (10.0) 18 (17.5) 

(Continued on next page…) 
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Factor Overall (n = 655) SIH (n = 442) JIH (n = 110) ZIH (n = 103) 

AML with CEBPA mutation  99 (15.1) 65 (14.7) 26 (23.6) 8 (7.8) 

    AML, myelodysplasia-related 126 (19.2) 91 (20.6) 13 (11.8) 22 (21.4) 

FAB category, n (%)     

  AML with minimal differentiation 2 (0.3) 0 0 2 (1.9) 

  AML without maturation 33 (5) 7 (1.6) 23 (20.9) 3 (2.9) 

  AML with maturation 136 (20.8) 62 (14.0) 36 (32.7) 38 (36.9) 

  Acute promyelocytic leukemia 56 (8.5) 52 (11.8) 0 (0.0) 4 (3.9) 

  Acute myelomonocytic leukemia 189 (28.9) 164 (37.1) 17 (15.5) 8 (7.8) 

  Acute monoblastic or monocytic leukemia 165 (25.2) 92 (20.8) 28 (25.5) 45 (43.7) 

  Pure erythroid leukemia 1 (0.2) 0 1 (0.9) 0 

  Acute megakaryoblastic leukemia 1 (0.2) 0 1 (0.9) 0 

  AML, undefined 72 (11) 65 (14.7) 4 (3.6) 3 (2.9) 

Karyotype, n (%)     

  Normal karyotype 285 (43.5) 173 (39.1) 60 (54.5) 52 (50.5) 

  Complex karyotype 54 (8.2) 42 (9.5) 4 (3.6) 8 (7.8) 

  Other abnormal karyotype 295 (45) 219 (49.6) 46 (41.9) 30 (29.1) 

  Unknown 21 (3.2) 8 (1.8) 0 13 (12.6) 

ELN risk, n (%)     

  Favorable 225 (34.4) 149 (33.7) 45 (40.9) 31 (30.1) 

  Intermediate 143 (21.8) 88 (19.9) 26 (23.6) 29 (28.2) 

  Adverse 230 (35.1) 152 (34.4) 39 (35.5) 39 (37.9) 

  Unknown 57 (8.7) 53 (12.0) 0 4 (3.9) 

ELN, European LeukmiaNet; HGB, hemoglobin; IQR, interquartile range; NOS, not otherwise specified; PLT platelet; WBC, white blood count. 
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Table S2. Novel fusions identified by RNA–Seq. 

Sample Sex/Age Dx 
BM 
blast 
(%) 

Fusion genes Reading frame Kayotype Gene mutations (VAF) Prognosis 

SIH035 M/72 
A
ML 

46.5 BCAS1::DPM1 out-of-frame 
44~48, X, -Y, -13, -19, -20, 
+dm, M1~M6[cp4]/45, X, -
Y/46, XY 

TP53 p.L93Rfs*29 (48.2%) Dead 

SIH053 M/52 M4 57.5 ST7::CAPZA2 out-of-frame 46, XY 
FLT3-ITD (19.2%); DNMT3A p.R882C 
(42.5%); NPM1 p.W288Cfs*11 (37.6%); 
ZBTB7A p.N153S (38.9%) 

Dead 

SIH128 M/60 M5 75 MX1::FAM3B in-frame 
43~45, XY, -7[cp9]/43~45, 
XY, inv(3)(p21q21), -7, 
[cp7]/46, XY 

DNMT3A p.R544Hfs*30 (42.5%); DNMT3A 
p.R320* (45.4%); IDH2 p.R140Q (44.9%); 
KANSL1 p.K692Qfs*4 (20.7%); KANSL1 
p.K267Sfs*12 (21.8%) 

Dead 

SIH135 F/64 M5 28 
ARHGEF12:: 
RBM39 

in-frame 46, XX 

KMT2A-PTD; PTPN11 p.E76K (21.2%); 
RUNX1 p.F416Lfs*185 (37.4%); U2AF1 
p.Q157R (40.2%); BCOR p.E1611Mfs*8 
(27.4%) 

Relapsed 

SIH172 M/42 M5 48 
RUNX1:: 
MIR99AHG 

out-of-frame 43~45, XY, -18[CP4]/46, XY FLT3 p.D835Y (21%); SETD2 p.P241A (45%) Alive 

SIH181 M/84 M5 72.5 
MAP2K3::FBF
1 

out-of-frame 
36~46, XY, +6, +8, -11, -12, 
-16, -17, +M2~M4[cp7]/46, 
XY 

TP53 p.V203E (43%); FAT1 p.I2236T 
(37.8%); FAT1 p.Y500* (21%); SSTR5 
p.A159V (24%) 

Dead 

SIH202 M/63 
A
ML 

86.5 
RABL6::VPS52
RING1::RABL6 

both in-frame 46, XY KMT2A-PTD Dead 

SIH219 M/66 
A
ML 

38 CYB5A::DYM in-frame 

73~78,XXYY,+add(10q24)x2
,+M1~M7[cp4]/74-
76,XXYY,+add(10q24),+add(
14q32)+M5~M6[cp2]/46,XY 

TP53 p.R248W (81%) Dead 

SIH225 M/54 M4 79.5 
NUP98:: 
TNRC18 

in-frame 47, XY, +8/46, XY[1/25] 
NRAS p.Q61H (21.7%); IDH1 p.R132C 
(42%); SMC1A p.R586Q (83%) 

Dead 

SIH246 F/61 
A
ML 

29.5 ETV6::MYPN out-of-frame ND 
KRAS p.G13D (35%); TP53 p.Y327* (43%); 
TP53 p.S215N (45%) 

Dead 

(Continued on next page…) 
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Sample 
Sex/A
ge 

Dx 
BM 
blast 
(%) 

Fusion genes Reading frame Kayotype Gene mutations (VAF) Prognosis 

SIH280 M/34 M4 26.5 ST7::CAPZA2 out-of-frame 46, XY 
ETV6 p.R369Q (44%); KRAS p.Q61R (25%); 
ASXL1 p.T822fs (47%); U2AF1 p.S34Y (45%) 

No remission 

SIH302 M/68 M4 67.5 
BCORL1::RAB3
3A 

out-of-frame 47, XY, +8/46, XY 

DNMT3A p.R882S (48.6%); TET2 p.K1254fs 
(45.3%); KRAS p.G60V (3.4%); KRAS p.T58I 
(12.2%); RUNX1 p.N448fs (82.8%); U2AF1 
p.S34F (43.6%); BCOR p.S1077fs (91.4%); 
BCORL1 p.V1389fs (8.1%) 

Relapsed 

JIH107 M/16 M4 68 
NUP98::HOXD1
2 

in-frame 46, XY, t(2, 11)(q31; p15) 
EZH2 p.G630R (20%); PTPN11 p.T73I (42%); 
RUNX1 p.L102delinsPPFVL (23%) 

Alive 

SIH381 F/67 M4 21 
TBC1D15:: 
RAB21 

 47, XX, +8/46, XX 
DNMT3A p.I407T (24.1%); IDH2 p.M397V 
(44.3%); CEBPA p.Q311fs (21.25%);CEBPA 
p.E89fs (26.4%);SMC1A p.N40D (27.3%) 

Alive 

SIH441 M/22 M5 93 

SET::NUP214, 
ABL1::VPS39, 
NUP214:: 
ABL1 

all in-frame 
85~92,XXYY[cp7]/ 
46,XY 

BRAF p.Q257R (42.1%); NOTCH1 p.P2512L 
(44.4%); NF1 p.M2569fs (72.7%); RUNX1 
p.G168fs (35.3%); PHF6 p.Y303D (84.5%) 

Alive 

SIH458 M/57 M4 37 
KAT6A:: 
SORBS3 

in-frame 
46, XY, del(8)(p11p21)/46, 
XY 

DNMT3A p.R882C (40.1%); IDH1 p.R132H 
(39.4%) 

Alive 

BM, bone marrow; Dx, diagnosis; ND, not determined; VAF, variant allele frequency 
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Table S3. Clinical and molecular features of the robust gene expression subgroups (G1–G8). 

Factor 
G1  

(n = 57, 8.7%) 
G2 

(n = 57, 8.7%) 
G3 

(n = 54, 8.2%) 

G4 
(n = 116, 
17.7%) 

G5 
(n = 129, 
19.7%) 

G6 
(n = 67, 10.2%) 

G7 
(n = 67, 10.2%) 

G8 
(n = 108, 
16.5%) 

Age (year)         
Median (IQR) 39 (28–48) 42 (32–55) 46 (28.3–55) 43.5 (34–56) 58 (45–66) 48 (31.5–59) 55 (40–63.5) 51 (37.8, 60.8) 

Male gender, n (%) 28 (49.1) 32 (56.1) 27 (50.0) 73 (62.9) 74 (57.4) 36 (53.7) 26 (38.8) 43 (39.8) 
WBC, × 109/L         

Median (IQR) 4.1 (1.6–16.2) 38 (11.9–60.2) 9.5 (4.8–17.1) 12.9 (5.2–41.9) 3.6 (1.6–15.3) 28.2 (4.7–54.8) 31.6 (3.7–79.3) 30.9 (6.8–69.4) 
HGB, g/L         

Median (IQR) 95 (73–117) 85 (77–107) 77.5 (57–93.8) 99 (75.5–117) 75 (60–94.8) 87 (72–110) 81 (67–95) 83 (70.5–103) 
PLT, × 109/L         

Median (IQR) 33 (16–64) 31 (24–57) 26.5 (17.8–39) 24 (13–42) 57.5 (27.3–108) 69 (46.8–111.5) 48 (26–81) 49 (30–86) 
BM blasts, %         

Median (IQR) 87.5 (81–91.5) 
66.8 (55.5–

75.1) 
61.3 (46.3–

76.3) 
63.5 (47–75.3) 44 (28.5–72) 

72.8 (53.8–
84.6) 

82 (50.8–92) 72.3 (47.4–85) 

FAB subtype         
M0 0 0 0 0 1 (0.8) 1 (1.5) 0 0 
M1 0 1 (1.8) 0 16 (13.8) 4 (3.1) 2 (3.0) 8 (11.9) 2 (1.9) 
M2 0 2 (3.5) 39 (72.2) 40 (34.5) 19 (14.7) 2 (3.0) 19 (28.4) 15 (13.9) 
M3 56 (98.2) 0 0 0 0 0 0 0 
M4 0 40 (70.2) 3 (5.6) 42 (36.2) 25 (19.4) 6 (9.0) 28 (41.8) 45 (41.7) 
M5 0 13 (22.8) 8 (14.8) 13 (11.2) 47 (36.4) 49 (73.1) 1 (1.5) 34 (31.5) 
M6 0 0 0 0 0 1 (1.5) 0 0 
M7 0 0 0 0 1 (0.8) 0 0 0 
AML 1 (1.8) 1 (1.8) 4 (7.4) 5 (4.3) 32 (24.8) 6 (9.0) 11 (16.4) 12 (11.1) 

Molecular events, n 
(%) 

        

PML::RARA 56 (98.2) 0 0 0 0 0 0 0 
RUNX1::RUNX1T1 0 0 53 (98.1) 0 0 0 0 0 
CBFB::MYH11 0 52 (91.2) 0 0 0 0 0 0 
KMT2A::MLLT3 0 0 0 0 0 7 (10.4) 1 (1.5) 3 (2.8) 

(Continued on next page…) 
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Factor 
G1  

(n = 57, 8.7%) 
G2 

(n = 57, 8.7%) 
G3 

(n = 54, 8.2%) 

G4 
(n = 116, 
17.7%) 

G5 
(n = 129, 
19.7%) 

G6 
(n = 67, 10.2%) 

G7 
(n = 67, 10.2%) 

G8 
(n = 108, 
16.5%) 

Other KMT2A 
fusions 

0 1 (1.8) 0 0 0 15 (22.4) 0 14 (13.0) 

   NUP98 fusions 0 0 0 0 2 (1.6) 3 (4.5) 9 (13.4) 6 (5.6) 
Biallelic CEBPA 0 0 0 95 (81.9) 1 (0.8) 0 0 0 
Monoallelic CEBPA 0 0 0 2 (1.7) 3 (2.3) 1 (1.5) 5 (7.5) 4 (3.7) 
Monoallelic CEBPA 

with LOH 
0 0 0 8 (6.9) 1 (0.8) 0 0 0 

NPM1 0 1 (1.8) 0 0 2 (1.6) 21 (31.3) 48 (71.6) 49 (45.4) 
FLT3-ITD 9 (15.8) 5 (8.8) 4 (7.4) 7 (6.0) 10 (7.8) 8 (11.9) 29 (43.3) 57 (52.8) 

   KMT2A-PTD 0 0 0 0 11 (8.5) 4 (6.0) 6 (9.0) 15 (13.9) 
DNMT3A+NPM1+ 

FLT3-ITD 
0 0 0 0 0 3 (4.5) 4 (6.0) 24 (22.2) 

   TET2 or IDH2+ 
NPM1+FLT3-ITD 

0 0 0 0 0 0 19 (28.4) 8 (7.4) 

Karyotype, n (%)         
Normal karyotype 1 (1.8) 14 (24.6) 2 (3.7) 74 (63.8) 61 (47.3) 28 (41.8) 45 (67.2) 60 (55.6) 
Complex karyotype 0 0 0 9 (7.8) 24 (18.6) 10 (14.9) 4 (6.0) 7 (6.5) 
Monosomal 

karyotype 
0 0 0 10 (8.6) 26 (20.2) 9 (13.4) 5 (7.5) 5 (4.6) 

   +8 0 3 (5.3) 0 3 (2.6) 13 (10.1) 8 (11.9) 1 (1.5) 4 (3.7) 
-5/5q- 0 0 0 1 (0.9) 7 (5.4) 2 (3.0) 0 1 (0.9) 
-7/7q- 0 0 2 (3.7) 2 (1.7) 18 (14.0) 2 (3.0) 0 1 (0.9) 
-17/abn(17p) 0 0 2 (3.7) 2 (1.7) 10 (7.8) 4 (6.0) 3 (4.5) 2 (1.9) 

    Unknown 0 2 (3.5) 2 (3.7) 1 (0.9) 3 (2.3) 1 (1.5) 3 (4.5) 9 (8.3) 
ELN risk, n (%)         
    Favorable 0 52 (91.2) 49 (90.7) 78 (67.2) 1 (0.8) 12 (17.9) 18 (26.9) 15 (13.9) 
    Intermediate 1 (1.8) 2 (3.5) 0 18 (15.5) 30 (23.3) 18 (26.9) 32 (47.8) 42 (38.9) 
    Adverse 0 3 (5.3) 5 (9.3) 20 (17.2) 97 (75.2) 37 (55.2) 17 (25.4) 51 (47.2) 

Unknown 56 (98.2) 0 0 0 1 (0.8) 0 0 0 

BM, bone marrow; ELN, European LeukmiaNet; HGB, hemoglobin; IQR, interquartile range; NOS, not otherwise specified; PLT platelet; WBC, white blood count. 
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Table S4. Comparison of clinical features of newly diagnosed AML patients incorporated into analysis in the TCGA LAML, Beat AML and our cohort. 

Factor Our cohort (n = 655) TCGA LAML (n = 139) Beat AML (n = 176) P value 

Age (year)     

Median (IQR) 48 (34–60) 55 (41.5–65.5) 59.5 (46–66.3) <0.001 

Male gender, n (%) 339 (51.8) 72 (51.8) 92 (52.3) 0.992 

WBC, × 109/L     

    Median (IQR) 12.4 (3.52–44) 15.1 (4.1–46) 26.6 (6.3–61.1) 0.155 

Bone marrow blasts, %     

    Median (IQR) 68 (45–84) 72 (51.5–85.5) 75 (48–90) 0.043 

WHO category, n (%)     

AML with defining genetic abnormalities    <0.001 

APL with PML::RARA fusion  56 (8.5) 15 (10.8) 10 (5.7)  

AML with RUNX1::RUNX1T1 fusion 53 (8.1) 7 (5.0) 3 (1.7)  

AML with CBFB::MYH11 fusion 51 (7.8) 10 (7.2) 13 (7.4)  

AML with DEK::NUP214 fusion 2 (0.3) 0 (0.0) 0 (0.0)  

AML with BCR::ABL1 fusion 3 (0.5) 3 (2.2) 1 (0.6)  

AML with KMT2A rearrangement  40 (6.1) 7 (5.0) 4 (2.3)  

AML with MECOM rearrangement 3 (0.5) 1 (0.7) 3 (1.7)  

AML with NUP98 rearrangement 18 (2.7) 2 (1.4) 0 (0.0)  

AML with NPM1 mutation  120 (18.3) 34 (24.5) 50 (28.4)  

AML with CEBPA mutation  99 (15.1) 9 (6.5) 10 (5.7)  

    AML, myelodysplasia-related 126 (19.2) 21 (15.1) 43 (24.4)  

ELN risk, n (%)    <0.001 

  Favorable 225 (34.4) 32 (23.0) 80 (45.5)  

  Intermediate 143 (21.8) 66 (47.5) 36 (20.5)  

  Adverse 230 (35.1) 38 (27.3) 60 (34.1)  

  Unknown 57 (8.7) 3 (2.2) 0 (0.0)  

(Continued on next page…)     
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Factor Our cohort (n = 655) TCGA LAML (n = 139) Beat AML (n = 176) P value 

Gene expression subgroups, n (%)    <0.001 

  G1 57 (8.7) 15 (10.8) 10 (5.7)  

  G2 57 (8.7) 10 (7.2) 13 (7.4)  

  G3 54 (8.2) 7 (5.0) 3 (1.7)  

  G4 116 (17.7) 15 (10.8) 13 (7.4)  

  G5 129 (19.7) 44 (31.7) 48 (27.3)  

  G6 67 (10.2) 15 (10.8) 42 (23.9)  

  G7 67 (10.2) 7 (5.0) 19 (10.8)  

  G8 108 (16.5) 26 (18.7) 28 (15.9)  

Median follow-up time (months) 20.2 48.3 48.5 <0.001 

Survival probability (%)    <0.001 

  1-year OS rate 78.1 59.5 60.7  

  2-year OS rate 69.7 50.6 50  

  3-year OS rate 65 42.5 45.9  

ELN, European LeukmiaNet; IQR, interquartile range; OS, overall survival.
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Dataset S1. Clinical information of 655 primary AML. 

Dataset S2. Small sequence variants of AML patients based on TES/WES and RNA-Seq. 

Dataset S3. Pre-screened gene features for unsupervised classification of AML. 

Dataset S4. Cola-based consensus classification of 655 AML patients. 

Dataset S5. Differentially expressed genes in G1-G8. 

Dataset S6. DISCOVER-based test for mutually exclusive and co-occurrence analysis. 

Dataset S7. Enrichment score of AML patients in three differentiation hierarchies. 

Dataset S8. Gene co-expression networks and pathway analyses of 655 AML patients. 

Dataset S9. Predicted label of gene expression subgroups in TCGA LAML and Beat AML cohort. 

Dataset S10. Molecular summary of TCGA LAML and Beat AML (G1-G8). 

Dataset S11. Drug response prediction of gene expression subgroups of AML. 
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