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I. TRANSFORMED PERMEABILITY TENSORS OF THE CLOAK, CONCEN-

TRATOR AND ROTATOR

In this section, we give the brief analysis about the transformed permeability tensors of

the cloak, concentrator and rotator in flow field. We will see all these three tensors can be

written in the same form of Sdiag(kr, kθ)S
−1.

Without loss of the generality, as shown in Fig.S1, assume the two dimensional space

in the polar coordinate system (r, θ) is divided by a shell-shaped metamaterial into three

regions: region I (r < a), the area inside the metamaterial; region II (a < r < b), the

metamaterail shell itself; region III (r > b), the area outside the metamaterial. According

to the transformation mapping theory, to achieve the cloaking effect, the corresponding

coordinate transformation is:  r′ = a+ r(b− a)/b,

θ′ = θ,
(1)

Under such a transformation, the domain equation (Eq.(1) in the main text) remains form

invariant while the permeability tensor becomes k = k0T = k0JJ
T/ det(J), where k0 is the

background’s permeability and

J = ∂(r′, θ′)/∂(r, θ) =


∂r′

∂r

∂r′

∂θ

∂θ′

∂r

∂θ′

∂θ

 , (2)

is the Jacobian matrix. In fact, for the cloak transformation, three steps are involved:

First, the cartesian coordinate system are transformed into the polar system; Next, fol-

lowing the transformation in Eq. (1), the circle region within r < b are mapped in-

to the annulus area a < r < b; Last, the mapped polar coordinates are transformed

back into the cartesian system. This compound coordinate transformation is expressed

as: (x, y)→ (r, θ)→ (r′, θ′)→ (x′, y′). The corresponding Jacobian matrix is written as:

Jxx′ = JxrJrr′Jr′x′

= R(θ)diag(1, r)diag(
b− a
b

, 1)diag(1, 1/r′)R(θ)

= R(θ)diag(
b− a
b

, r/r′)R(θ)

, (3)
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where R(θ) is the rotation matrix and

Jxr = ∂(x, y)/∂(r, θ)

Jrr′ = ∂(r, θ)/∂(r′, θ′)

Jr′x′ = ∂(r′, θ′)/∂(x′, y′)

. (4)

In consideration of R(θ)−1 = R(θ)T, the transformed matrix T can be calculated as:

T = J−Txx′ J
−1
xx′ det(Jxx′)

= R(θ)−Tdiag(
b− a
b

, r′/r)R(θ)

R(θ)−1diag(
b− a
b

, r′/r)R(θ)−1
rb

r′(b− a)

= R(θ)diag(
r′ − a
r′

,
r′

r′ − a
)R(θ)−1

= R(θ)diag(kr, kθ)R(θ)−1

, (5)

which is conform to the form Sdiag(kr, kθ)S
−1.

To concentrate the flow inside the metamaterial without disturbing the outside, a virtual

radius a < c < b must be introduced, and the coordinate transformation is given as:
r′ =

a

c
r, (0 ≤ r ≤ c)

r′ =
b− a
b− c

r +
a− c
b− c

b, (c ≤ r ≤ b)

θ′ = θ.

(6)

Similar to the cloak case, we can derive T for the concentrator:

T = J−Txx′ J
−1
xx′ det(Jxx′)

= R(θ)diag(kr, kθ)R(θ)−1
, (7)

where 
kr = 1, kθ = 1 (0 ≤ r ≤ c)

kr =
r′ + b(c− a)/(b− c)

r′
, kθ =

r′

r′ + b(c− a)/(b− c)
(c ≤ r ≤ b)

(8)

Apparently, the permeability tensor of the concentrator is also in the form of

Sdiag(kr, kθ)S
−1.

The coordinate transformation for the rotator is:
r′ = r

θ′ = θ + θ0
f(b)− f(r)

f(b)− f(a)
.

(9)
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Here f() can be any continuous function. For simplicity, we set f(x) = x. Then the

transformation is simplified to θ′ = θ + θ0(b− r)/(b− a). The transformation matrix reads:

T = J−Txx′ J
−1
xx′ det(Jxx′)

= R(θ)

 1 −t

−t 1 + t2

R(θ)−1
, (10)

where t = θ0/(b − a). It should be noted that the matrix between the rotation matrices is

symmetric, so that it can be further diagonolized as 1 −t

−t 1 + t2

 = P

 1

2

(
2 + t2 − t

√
4 + t2

)
0

0
1

2

(
2 + t2 + t

√
4 + t2

)
P−1, (11)

where

P =


t+
√

4 + t2

2
√

1 + (t+
√

4 + t2)/4

t−
√

4 + t2

2
√

1 + (t−
√

4 + t2)/4
1√

1 + (t+
√

4 + t2)/4

1√
1 + (t−

√
4 + t2)/4

 . (12)

Therefore, the permeability tensor of the rotator can also be written as Sdiag(kr, kθ)S
−1,

where S = R(θ)P . In the polar coordinate system the three metamaterials’ permeability

tensor are given below:

kcloak = k0

 r′ − a
r′

0

0
r′

r′ − a

 (a < r < b),

kconcen = k0

 r′ + b(c− a)/(b− c)
r′

0

0
r′

r′ + b(c− a)/(b− c)

 (c < r < b),

krot = k0P

 1

2

(
2 + t2 − t

√
4 + t2

)
0

0
1

2

(
2 + t2 + t

√
4 + t2

)
P−1 (a < r < b),

(13)

II. THE DOMAIN EQUATION FOR COMPRESSED OR EXTENDED SPACE

According to the last section, the cloaking, concentrating and rotating effects are essential-

ly the compression, extension and rotation operations on the original space without changing
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the determinant of the original permeability tensor. In fact, the diagonal transformed tensor

of the cloak and concentrator induced by compression and extension, respectively, can be

further reduced to diag(n2, 1/n2), where n is a constant independent of r and θ. |n| < 1 for

compression, and |n| > 1 for extension [1, 2].

Next, we will see how the compression and extension operation manipulate the internal

flow’s rate. The Darcy’s pressure equation [3, 4] given in the main text reads:

−~∇ · k · ~∇P = 0. (14)

Under the coordinate transformation, the above equation changes to

− 1√
|g|
∂u(k

√
|g|guv∂vP ) = 0, (15)

where guv is the metric tensor, g = det(guv), and as g is a diagonal matrix, guv = g−1uv . For

two dimensional polar coordinate system,

guv =

 1 0

0 r2

 , (16)

and g = r2. Taking the k = diag(n2, 1/n2) into the Eq. (15), we have

~∇ · k · ~∇P

=
1√
|g|
∂u(k

√
|g|guv∂vP ) =

1

r
∂u(krg

uv∂vP )

=
1

r
∂r(n

2rgrr∂rP ) +
1

r
∂θ(

r

n2
gθθ∂θP )

=
1

r
∂r(n

2r∂rP ) +
1

r
∂θ(

r

n2
∂θP )

= n2∂
2P

∂r2
+
n2

r

∂P

∂r
+

1

n2r2
∂2P

∂θ2
= 0.

(17)

III. HOW COMPRESSION AND EXTENSION OPERATIONS MANIPULATE

THE INTERNAL FLOW’S MAGNITUDE?

We demonstrate how compression and extension operations manipulate the internal flow’s

magnitude: because kj = diag(kr,j, kθ,j) with kr,j and kθ,j being constants independent of r,

θ, we can write Eq. (14) in the polar coordinate system as(see section III in SI for details):

∂2P

∂r2
+

1

r

∂P

∂r
+
kθ,j
kr,j

∂2P

r2∂θ2
= 0. (18)
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Suppose that the flow goes from the left to the right with a pressure difference P0 across a

distance L. There are impermeable walls at the top and bottom boundaries of the porous

medium. In Darcy’s law, although the no-slip boundary condition causes a correction and

cannot be strictly satisfied, in most practical situations this correction is small [10, 11].

In some commercial finite elemental analysis software such as COMSOL, the impermeable

walls are always set to satisfy the no-slip boundary condition. Thus, this approximation is

also adopted in our analysis. L is the dimension of the system in the flow direction along x

axis and P0/L is the pressure gradient in background. Considering the symmetry relation

of P (r, θ) = P (r,−θ), the general solution of Eq. (18) in three regions can be expressed as:

Pj =
∞∑
n=1

[
Aj2n−1r

(2n−1)
√
kθ,j/kr,j +Bj

2n−1r
−(2n−1)

√
kθ,j/kr,j

]
cos(2n− 1)θ, (19)

The pressure in the far field r → ∞ needs to match the background pressure −P0

L
r cos θ.

As a result, we only need to consider the n = 1 case. At the origin r = 0, P1 should be finite

thus B1
1 = 0. Thus we obtain the solutions in different regions as:

P1 = A1
1r cos θ,

P2 =
[
A2

1r
√
kθ,2/kr,2 +B2

1r
−
√
kθ,2/kr,2

]
cos θ,

P3 = [A3
1r +B3

1r
−1] cos θ,

(20)

With the boundary conditions of continuous pressure and radial velocity at the interface of

different regions:

P1|r=a = P2|r=a,

P2|r=b = P3|r=b,

kr,1
∂P1

∂r
|r=a = kr,2

∂P2

∂r
|r=a,

kr,2
∂P2

∂r
|r=b = kr,3

∂P3

∂r
|r=b,

(21)

all the pre-factors can be solved and the exact pressure distributions can be derived:

P1 = −P0

L

(a
b

)h−1
r cos θ,

P2 = −P0

L

(r
b

)h−1
r cos θ,

P3 = −P0

L
r cos θ,

(22)

where P1, P2, P3 are the pressure distributions in regions I, II, III, h =
√
kθ,2/kr,2. According

to these pressure solutions, in regions I and III we obtain constant velocity along the x axis:

vx,j = k0dPj/dx = constant. Thus, the ratio between the internal and external flow’s

velocities is vx,1/vx,3 = (a/b)h−1, which is determined by the parameters a, b and h.
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When h = 1, P1, P2 and P3 have the same expression and the shell is completely transpar-

ent with respect to the background flow: the entire system can be regarded as a homogenous

and isotropic porous medium. When h < 1, vx,1/vx,3 = (b/a)1−h > 1 and the velocity of the

internal flow is greater than that of the external flow. When h > 1, vx,1/vx,3 = (a/b)h−1 < 1

and the internal flow is smaller than the outer flow. Besides the magnitude, the rotation

matrix R adds another degree of freedom in manipulating the internal flow’s direction.

Therefore, by designing a proper shell permeability k2 with an effective permeability ke,2

matched to the background permeability k0, we can control both the magnitude and the

direction of the internal flow while making no disturbance to the external flow.

IV. ONE POSSIBLE APPLICATION EXAMPLE OF THE METAMATERIAL DE-

VICE

What are possible applications of our device? We demonstrate one potential application

in its effective control on bacterial biofilm growth [5–8]. To some extent, bacteria can be

considered as a simplified model system for many complex living matters, and an effective

control over bacteria growth provides direct evidence of possible application in the control of

living matter. As shown in Fig.S1(a), we manufacture cloak (left), concentrator (right) and

an intermediate structure (middle) inside a background porous medium. They are placed

side by side so that the bacteria inside them can grow at the same time and with identical

bacteria batch, nutrient condition, temperature, etc. We flow bacteria-carrying fluid from

the left inlet to the right outlet with a constant rate of 0.003ml/min and at the temperature of

25◦C. After 15 hours, we compare the biofilm formation indicated by green GFP fluorescence

at the center of the three devices, as shown in Fig.S1(b-d). Apparently, the cloak on the left

exhibits the largest amount of biofilm while the concentrator on the right shows the least,

because the near static environment in cloak facilitates bacteria growth while the strong

flow in concentrator flushes the bacteria away. This is quantitatively proved by the total

fluorescent intensity shown in Fig.S1(e). Therefore, our device can continuously tune the

biofilm growth quantity by tuning the aligning angle β in every other layer (β = 0◦, 9◦, 18◦

in these three situations).

Besides the quantity, we can also tune the direction of biofilm growth, as shown in

Fig.S1(f-j). By manufacturing two different rotators side by side in Fig.S1(f), we realize
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the growth of biofilm in opposite directions, as shown clearly in Fig.S1(h) and Fig.S1(i).

Moreover, we further prove very little disturbance from the device to the background: two

background locations, one far away from and the other close to the rotators, are shown in

Fig.S1(g) and Fig.S1(j) and their biofilm growth are identical. This proves unambiguously

the little disturbance to the background both far from and close to the device, and the same

behavior also appears for cloak and concentrator in Fig.S1(a). Therefore, our device can

tune the bacteria growth in both quantity and direction: in case a fast-growing speed is

preferred in living matter such as self-healing, the cloak configuration can be chosen; while

when a slow-growing speed is preferred such as unclogging, the concentrator configuration

can be chosen. With such a continuous tuning ability, our device could fit different needs of

living matter control.

One direct application is to build a parallel platform for bacteria or cell culture under

various flow conditions, which commonly occur in natural environments. Because of little

disturbance to background, devices do not interfere with each other and many of them can

combine into one large integrated system, as shown in Fig.S1(k). Thus, each individual

device could behave as an independent sub-unit for bacterial (or cell) culture and their

combination covers various flow conditions: this integrated system thus becomes a high-

efficiency parallel testing and growing platform. Moreover, if each sub-unit couples to its

own heating element, both flow and temperature can be adjusted, and an integrated system

with two free parameters could be achieved. Therefore, our device could find potential

application in the biological area of bacterial or cell culture.

V. THE LEGENDS OF THE SUPPLEMENTARY MOVIES

Movie-1: The flow field in the microfluidic device of the cloak, concentrator and rotator.

Movie-2: The tuning of velocity magnitude and direction in the 3D-printed device.

Movie-3: The flow field in the 3D-printed device of the cloak, concentrator and rotator.
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FIG. 1: a, the microfluidic device consists three configurations achieved by rotating the angle

β = 0◦, 9◦, 18◦ in every other layer, which corresponds to cloak (left), concentrator (right), and

an intermediate structure (middle). b-d, the biofilm densities characterized by green fluorescence

protein intensity in regions 1, 2, 3 of the device in a. e, total fluorescence intensity of regions 1,

2, 3. f, two opposite rotators with α = 5◦ and −5◦ in every layer. g-j, the biofilm densities in

regions 4, 5, 6, 7 in f. Red arrows indicate flow directions. k, multiple devices combine to form an

integrated large system. 10


