Chem Catalysis checklists

Revision 1.1, Last updated: November 08, 2021

- » Chem Catalysis has compiled these checklists to foster improved rigor and reproducibility in research and increased clarity and transparency in data reporting.
- » Authors are encouraged to include the completed checklists as supplemental information at the time of submission. The checklists will be included in the supplemental information of published articles.
- » Rather than check off all items on the list, authors should mark only those items that apply to their article.

The following checklists are relevant for this manuscript:

	General catalysis checklist
	Please note: the general catalysis checklist should be completed for all submissions, including those with biocatalysts, electrochemistry, and photocatalysts
	Biocatalysis checklist
\ge	Electrochemistry checklist
	Photocatalysis checklist

Sustainability remarks

"Principles of green chemistry" have been considered in designing and conducting the research

For more information, please see <u>https://www.acs.org/content/acs/en/greenchemistry/principles/12-principles-of-green-chemistry.html</u>.

I verify that, to the best of my knowledge, this form is completed accurately in agreement with all co-authors

Submitting author name:

General catalysis checklist

Revision 1.1, Last updated: November 08, 2021

Catalyst synthesis

- igtarrow Novel methods are provided in full detail
- Chemical vendor provided if catalyst was purchased

Catalyst and new materials characterization

- Elemental analysis
- NMR spectroscopy
- High-resolution mass spectrometry (HRMS)
- Infrared spectroscopy
- Crystallography
- Phase and crystallinity
- Morphology
- \bigotimes Chemical composition of the catalyst

Catalyzed reaction

- Reaction conditions and complete experimental procedure provided
- Size and type of reactor (e.g., flow, batch, semi-batch)
- Operating temperature
- X Operating pressure
- X Solvent

Catalytic activity

- Reaction kinetics
- Turnover frequency
- X Turnover number

Catalyst stability assessment

Long-term stability test, including test conditions

- Recyclability test
- Catalyst identity, loading, or purity were assessed post reaction (e.g. SEM, TEM, XRD, ICP, etc; details provided)

- Comprehensive literature references are included if the synthesis has been previously reported
- Thickness analysis for two-dimensional materials
 Particle size and size distribution
 Characterization and analysis of pore size
 Exposed facets and orientation
 Defect structure
 Analysis of edge or vertex sites
 Analysis of valence state
 - Data are available in a repository
- Catalyst loading (mass and/or concentration and reaction volume)
- X Atmosphere
- X Mass balance
- $ig extsf{X}$ Reactant concentration at the beginning of reaction
- Mass and/or heat transfer and mixing effects

Product selectivity

- _____ Space-time yield
- \boxtimes Kinetics of deactivation

Control and benchmarking experiments

- \bigotimes Reaction without catalyst
- Reaction without additives
 - Benchmarking table or figure (either other catalysts investigated in this study or previous literature reports with references)

Product or compound characterization Identity

\bigotimes Integrated ¹ H and ¹³ C NMR spectra provided	\bigotimes Isolated yields
igtiarrow Multiplicity and coupling constants provided in-text	High-field ¹ H NMR spectra
\bigotimes Other NMR experimentation provided	1D proton-decoupled ¹³ C NMR spectra
High resolution mass spectral data	Combustion elemental analysis
Infrared (IR) absorption spectroscopy	Quantitative GC or HPLC analytical data
🔀 UV-vis spectroscopy	Electrophoretic analytical data
Chiral chromatography (GC and/or HPLC)	Sequence (biomacromolecules)
X-ray diffraction (powder and/or single crystal)	Dispersity (polymers)

Purity

Quantification and statistical analysis

The paper reports statistical analysis	
There is a statement as to what (if any) methods were used to determine if the data met the assumptions of the statistical approach	The statistical parameters (e.g., exact value of <i>n</i> samples, standard error of the mean, standard deviation) are reported in the paper

Computational analysis

X Calculations were conducted	Data and code are available in a repository
\bigotimes Software details, including version number	\bigotimes Convergence criteria of the force and energy
Details of all basis sets and exchange-correlation functionals or wave function methods	Definitions of computed physical quantities and description of all corrections to electronic energies
Force-field parameters	Ensemble
Temperature and/or pressure (if non-standard conditions)	k-point and supercell size
Coordinates, calculated energies, and lowest frequency of all stationary points	Simulation cell details (if periodic calculations) or details if using molecular dynamics or Monte Carlo
Intrinsic reaction coordinate to confirm transition states	Pseudopotential

Other

The <u>biocatalysis checklist</u> is relevant for this work	\bigotimes The <u>electrochemistry checklist</u> is relevant for this work
The photocatalysis checklist is relevant for this work	
Other information is relevant for the general catalysis or ge (if so, please provide details below)	eneral characterization reported in this manuscript

Biocatalysis checklist

Revision 1.1, Last updated: November 08, 2021

General conditions

The General Catalysis checklist has been completed

Catalyst identity

The name from the IUBMB Enzyme List to identify the enzyme is provided	The full protein sequence and the appropriate NCBI GenBank or UniProt accession code is provided
The NCBI Taxonomy ID is provided	Gene identifiers
A naturally occurring variant	Expression modules (i.e., regulatory sequences)
The localization within the cell	Plasmids used for expression
Any post-translational modification are detailed	Mutations within the gene or protein sequence (and an indication of whether the sequences are wild-type, synthetic and/or evolved)
Preparation	
Novel methods are provided in full	Artificial modification
Metalloenzyme	Enzyme or protein purity
Comprehensive literature references are included if the synthesis has been previously reported	
Storage and Propagation conditions	
Storage solution	Enzyme or protein concentration
Storage temperature	Details regarding thawing procedure
Atmosphere if not air	Propogation medium
pH (if stored in solution)	Propogation temperature

-] Buffer and concentrations (including counter-ion)
- Metal salt(s) and concentrations

Statement about observed loss of activity under any of the preceeding conditions

Antibiotic resistances

Assay conditions

Substrate identity, purity, and concentrations	Coupled assay components
Buffer and concentrations	Assay temperature, pressure, medium, and pH
Metal salt(s) and concentrations	Atmosphere if not air
Total ionic strength of assay mixture	Culture vessel (e.g., flask, bioreactor, microtiter plate)
Enzyme or protein concentration	Measured reaction provided as stoichiometrically balanced equation

Activity/Performance

Activity/Ferrormance	
Measurements of initial rates of the reaction	Turnover number
Specific substrate consumption rate $q_{\rm S}$ (in mol/g _{CDW} /h)	Specific product formation rate q_{P} (in mol/g _{CDW} /h)
\square Volumetric productivity $ extsf{Q}_{_{P}}$ (in kg/L/h or mol/L/hr)	Enzyme activity expressed as k_{cat} (in s ⁻¹ or min ⁻¹) or international unit (1 IU = 1 µmol min ⁻¹); katal (mol/s) may alternatively be used as a unit of activity (conversion factor 1 unit = 16.67 nkat)
Proportionality between initial velocity and enzyme concentration	
Methodology	
Assay method	Reaction equilibrium constant
Type of assay	Pathway intermediates
Reaction-stopping procedure	By-products
Direction of the assay	Analytic methods for the detection of metabolites
Reactant determined	If applicable: molecular cloning techniques
Concentrations of free metal cations	If applicable: recombinant DNA delivery techniques
Kinetic or physiological parameters	
k_{cat} (in s ⁻¹ or min ⁻¹)	$\Box K_{m}$ units or concentration necessary (e.g., mM)
	k_{cat}/K_{m} as concentration per time (e.g., mM ⁻¹ s ⁻¹)
\Box S _{0.5} as concentration (e.g., mM)	Model used to determine the parameters
\Box High-substrate inhibition, if observed, with K_i value	\Box Growth rate μ (in h ⁻¹) or doubling time t _D in h)
$\hfill\square$ Biomass yield on carbon substrate $Y_{_{X\!/\!S}}$ (either $g_{_{CDW}}\!/g$ or $g_{_{CDW}}\!/mol)$	Hill coefficient, saturation ratio (RS), or other coefficients of cooperativity
Substrate toxicity (minimum inhibitory concentration - MIC in g/L or mol/L)	(By-)product toxicity (minimum inhibitory concentration - MIC in g/L or mol/L)
<i>If applicable</i> : tolerance to solvent concentrations (minimum inhibitory concentration - MIC in g/L or mol/L)	

Inhibition or activation data

Time dependence and reversibility	Inhibition (K _i units necessary)
-----------------------------------	---

Other

Other information is relevant for the biocatalysis reported in this manuscript (if so, please provide details below)

Electrochemistry checklist

Revision 1.1, Last updated: November 08, 2021

General conditions

X The <u>General Catalysis checklist</u> has been completed

Reaction conditions provided

Cell type (H-cell, gas-diffusion type, etc.)	Currents
Cell, electrode, and membrane material	Dependence of current on scan or stir rate
🔀 Electrode geometric area (cm²)	\bigotimes Treatment or polishing of the electrode
🔀 Scan rate for cyclic voltammograms	pH for aqueous solutions (start, during reaction, end)
🔀 Reactants	X Electrolyte
Three-electrode or two-electrode configuration (half-cell or full cell, respectively)	Mass transfer conditions (rotation rate for rotating disc electrode; stir bar, flow rate in flow cells)
Bias potential and, for three-cell configuration, the reference electrode used	
Data reported	
Vendor information, photographs, and/or schemes of any custom apparatus	Polarization plot (cell voltage versus current or current density)
Normalized electrochemical surface area activity	\square Electrochemically active surface area (ECSA, A/cm $^2_{\rm ECSA}$)
Electrochemical impedance spectroscopy (EIS)	Stability test conditions
Mass activity	X Current densities
Specific activity	Faradaic efficiency
Mass balance	Overpotential (including clear information about how the thermodynamic potential was determined, estimated, or calculated)

Other

Other information is relevant for the electrochemistry reported in this manuscript (if so, please provide details below)

Photocatalysis checklist

Revision 1.1, Last updated: November 08, 2021

General conditions

The <u>General Catalysis checklist</u> has been completed

Reaction conditions provided Vendor information, photographs, and/or schemes of Total optical power impinging on the sample if liquid any custom apparatus and reaction setup $(mW \cdot mL^{-1})$ Photocatalyst loading Source and wavelength of light used for illumination Substrate concentration Wavelength distribution of light Sacrificial donor Hole or electron scavengers Other additives Optical irradiance at the sample (mW·cm⁻²) Reaction vessel size, material, and thickness of glassware **Data reported** Quantum yields Apparent quantum yields or photonic efficiencies Photocatalytic efficiencies **Control experiments conducted** Reaction without catalyst Stern-Volmer or other quenching experiments Reaction without light (on/off test and reaction conducted completely in the dark)

Other

Other information is relevant for the photocatalysis reported in this manuscript (if so, please provide details below)