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Supplementary Note 
 

Description of the 50 SNP-to-gene (S2G) strategies used in this study 

We considered 50 S2G strategies; in each case we first considered raw linking values 𝐴𝐴𝑘𝑘,𝑗𝑗,𝑔𝑔, which we next 

converted into linking scores 𝜓𝜓𝑘𝑘,𝑗𝑗,𝑔𝑔: 

Exon: for each gene, the list of each exons was extracted from the GENCODE database1. We added 20bp flanking 

windows between the exons to include splice regions.  

Promoter: for each gene, we selected the list of TSSs of different transcripts from the Ensembl dataset, added a 

+/-1kb regions around them, intersected with promoter annotations from the baseline model2 (including promoters 

from refs.3–5) and from Roadmap6, and removed regions overlapping exons or splice regions. 

Gene body: for each gene, we selected the minimum starting position and maximum ending position across 

Ensembl, GENCODE, and RefSeq databases. 

Gene±100kb: for each gene, we added a +/- 100kb window around its gene body. 

Closest TSS and Closest ith TSS (20 strategies): for each SNP, we defined its closest, second closest, and up to 

20th closest TSS based on physical distance with the TSSs of different transcripts from the Ensembl dataset. 

Distance constrained closest TSS (7 strategies): we only linked SNPs for which closest TSS was less than 1kb 

away, between 1kb and 5kb away, between 5kb and 10kb away, between 10kb and 50kb away, between 50kb and 

100kb away, between 100kb and 500kb away, and between 500kb and 1,000kb away. 

GTEx cis-eQTL: we used GTEx v8 significant variant-gene associations for each of the 54 cell-types (17,382 

samples in total), kept the minimum variant-gene association P value when a variant was link to a gene in multiple 

cell-types, and used -log10 of this P value as raw linking value.  

GTEx blood/immune cis-eQTL: same as GTEx cis-eQTL, but by restricting eQTLs from three blood/immune 

cell-types (i.e. whole blood, spleen and EBV-transformed lymphocytes). 

GTEx fine-mapped cis-eQTL: we fine-mapped the GTEx v8 cis-eQTLs of each gene in each tissue as in ref.7, 

selected the SNPs with a causal posterior probability (CPP) ≥0.05, kept the maximum variant-gene CPP when a 

variant was fine-mapped to a gene in multiple tissues, and used corresponding CPP as raw linking value.  

GTEx blood/immune fine-mapped cis-eQTL: same as GTEx fine-mapped cis-eQTL, but by restricting fine-

mapped cis-eQTL from three blood/immune cell-types. 

eQTLGen blood cis-eQTLs: we used eQTLGen statistically significant cis-eQTLs in blood (31,684 individuals), 

and used corresponding -log10 P value as raw linking value.  

eQTLGen fine-mapped blood cis-eQTL: we fine-mapped the eQTLGen cis-eQTLs of each gene in each tissue as 

in ref.7, selected the SNPs with a CPP ≥0.05, and used corresponding CPP as raw linking value.  
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Roadmap enhancer-gene linking: we used linked Roadmap enhancers4,6,8 based on expression-enhancer activity 

correlation across 127 cell-types, kept the maximum correlation when an enhancer was linked to a gene in multiple 

tissues, and used corresponding correlation as raw linking value.  

Roadmap blood/immune enhancer-gene linking: same as Roadmap enhancer-gene linking, but by restricting 

enhancers from 27 blood/immune cell-types. 

EpiMap enhancer-gene linking: we used linked EpiMap enhancers4,9 based on expression-enhancer activity 

correlation across 833 cell-types, kept the maximum correlation when an enhancer was linked to a gene in multiple 

tissues, and used this correlation as raw linking value.  

EpiMap blood/immune enhancer-gene linking: same as EpiMap enhancer-gene linking, but by restricting 

enhancers from 85 blood/immune cell-types. 

Activity-by-Contact (ABC): we used ABC links from ref.10, kept the maximum ABC score across the 167 cell-

types when an enhancer was interacting with a gene in multiple cell-types, and used this score as raw linking 

value. 

ABC blood/immune: same as ABC, but by restricting elements from 69 cell-types with blood/immune tissue/cells. 

Closest TSS (Hi-C): for each SNP, we defined TSS with the highest Hi-C intensity (averaged across 10 cell-

types11) with the TSSs of each gene as in ref.11. We labeled this strategy closest TSS (Hi-C) as it gave similar 

results to the closest TSS strategy based on physical distance (Supplementary Table 5). 

Hi-C distance: we linked each SNP to its surrounding genes using Hi-C intensity (averaged across 10 cell-types11) 

with the TSS of each gene, as in ref.11.  

Jung PCHi-C: we used PCHi-C links from ref.12, kept the minimum interaction P value across the 27 cell-types 

when a genomic region was interacting with a gene in multiple cell-types, and used corresponding -log10 P value 

as raw linking value. 

Javierre PCHi-C blood: we used PCHi-C links from ref.13, kept the maximum CHiCAGO score across the 17 cell-

types when a genomic region was interacting with a gene in multiple cell-types, and used corresponding 

CHiCAGO score as raw linking value. 

Cicero blood/basal: we used the enhancer-promoter links from ref.14 (data obtained through personal request to 

the authors), and used the enhancer-promoter correlation as raw linking value. 

GeneHancer: we used the GeneHancer dataset15 and used their enhancer scores as raw linking values. 

Open Targets: we downloaded Open targets annotations, and weight each annotation as suggested in Open Targets 

Genetic website (i.e. 1.00 for variant effect predictor (VEP), 0.66 for expression and protein QTLs, and 0.33 for 

distance to TSS, PCHi-C, and DHS-promoter and enhancer-TSS interactions); we used these values as raw linking 

values. 
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For Hi-C distance, we created 𝜓𝜓𝑘𝑘,𝑗𝑗,𝑔𝑔linking scores proportional to Hi-C intensities (i.e. 𝜓𝜓𝑘𝑘,𝑗𝑗,𝑔𝑔 = 𝐴𝐴𝑘𝑘,𝑗𝑗,𝑔𝑔/∑ 𝐴𝐴𝑘𝑘,𝑗𝑗,𝑔𝑔𝑔𝑔 ), 

unless the sum of the intensities across genes was below 0.2 (in that case 𝜓𝜓𝑘𝑘,𝑗𝑗,𝑔𝑔 = 𝐴𝐴𝑘𝑘,𝑗𝑗,𝑔𝑔/0.2), in order to have 

∑ 𝜓𝜓𝑘𝑘,𝑗𝑗,𝑔𝑔𝑔𝑔 < 1 for SNPs j in gene deserts. 

 

Lines of evidence to validate our precision metric 

We report three lines of evidence to further validate our precision metric. First, we verified that the estimated 

precision of the Closest TSS strategy (0.34 ± 0.03) is consistent with previous studies (0.34 in ref.16, ~0.50 in 

ref.17, 0.29 in ref.18, 0.35 in ref.19, and 0.27 ± 0.06 in ref.20), and that the estimated recall (h2 coverage times 

precision) of the GTEx fine-mapped cis-eQTL strategy (0.13 ± 0.01) is consistent with the proportion of SNP-

heritability mediated by gene expression in GTEx tissues estimated using a different approach21 (0.11 ± 0.02). 

Second, we verified that estimates of precision (and hence recall) were similar when estimated using the (non-

trait-specific) training critical gene set (used to optimize cS2G; see below) instead of the (trait-specific) validation 

critical gene sets (Supplementary Figure 3). Third, we verified that estimates of precision were similar for most 

S2G strategies when using an independent definition of precision (not relying on critical gene sets or polygenic 

analyses) based on two curated disease-associated lists of 577 linked sentinel SNP-gene pairs with the underlying 

genes validated with high confidence by Open Targets22 and 1,668 linked fine-mapped SNP-gene pairs validated 

using nearby fine-mapped protein-coding variants23 (see subsection below and Supplementary Figure 4). Despite 

the overall concordance, we observed large differences in precision estimates for some S2G strategies (e.g. 

Closest TSS), as the curated SNP-gene pairs were preferentially ascertained for disease-associated SNPs in which 

the target gene was the closest gene: indeed, we observed an unusually high proportion of SNP-gene pairs 

involving genes with a small distance (< 10kb) to its closest TSS (57% and 67% for the two curated lists, vs. h2 

coverage = 34% for the Closest TSS <10kb S2G strategy). Thus, we caution that curated disease-associated lists 

of linked SNP-gene pairs may be non-randomly ascertained, highlighting the potential benefits of polygenic 

analyses for evaluating S2G strategies. 

 

Curated SNP-gene pairs for validation 

We verified that our estimates of precision and recall (based on polygenic analyses of disease SNP-heritability) 

were similar to independent definitions (not relying on critical gene sets or polygenic analyses) based on two 

curated SNP-gene pairs. First, we considered the list of linked sentinel SNP-gene pairs with the underlying genes 

validated with high confidence by Open Targets22 (see Data Availability). We selected SNP-gene-disease triplets 

defined with “high” confidence, selected sentinel SNPs with a minor allele count ≥5 in a 1000 Genomes Project 

European reference panel24, selected genes in our list of 19,995 genes, and kept unique SNP-gene pairs, leading 

to a total of 577 pairs. We note that our number of pairs differs from the 445 pairs mentioned in ref.22, despite 
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having used their latest processed dataset (released on Jan 27, 2020). Second, we used linked fine-mapped SNP-

gene pairs validated using nearby fine-mapped protein-coding variants23. After a similar control quality 

procedure, we retained 1,668 pairs. We estimated precision and recall by analyzing only the SNPs of the SNP-

gene pairs, and by assuming that all SNP-gene pairs that are not on the list are false positives.  

We note that the Open Targets dataset reports sentinel SNPs (rather than causal fine-mapped SNPs), which 

may be linked to different genes than causal SNPs, as we verified in analyses of UK Biobank traits 

(Supplementary Table 16). We also note that these two curated SNP-gene pairs were preferentially ascertained 

for disease-associated SNPs in which the target gene was the closest gene: indeed, we observed an unusually high 

proportion of SNP-gene pairs involving closest TSS genes with a small distance (< 10kb) to the closest TSS (57% 

and 67% for the two curated lists, vs. h2 coverage = 34% for the Closest TSS <10kb S2G strategy). Thus, we 

caution that curated disease-associated lists of linked SNP-gene pairs may be non-randomly ascertained. 

 

Additional experiments assessing the precision and recall of our cS2G strategy 

We performed additional experiments assessing the precision and recall of our cS2G strategy over alternative 

approaches to combine S2G strategies. First, we constructed a new S2G strategy in which we linked all the SNPs 

linked by cS2G (22% of common SNPs) to the gene with closest TSS. This strategy attained only slightly lower 

precision and recall than the cS2G strategy (0.70 vs. 0.75 and 0.31 vs. 0.33, respectively; Supplementary Table 

8); we note that it is possible for two cS2G strategies to have very different SNP-gene links but attain relatively 

similar performance, if both strategies have imperfect SNP-gene links. These results indicate that the most 

important difference between the cS2G and Closest TSS strategies derives from the set of SNPs linked to genes, 

rather than the linking strategy applied to those SNPs (Supplementary Table 8); evaluation of S2G strategies 

defined by linking other sets of functional SNPs to the gene with closest TSS is of potential interest. Second, we 

constructed a combined S2G strategy using only Exon and Promoter, which had the highest weights in our cS2G 

strategy (Supplementary Table 6). This Exon+Promoter strategy achieved a precision of 1.05 (s.e. 0.07) 

(statistically indistinguishable from the Exon (1.00, by definition) and Promoter (0.80, s.e. = 0.16) strategies) and 

recall of 0.16 (s.e. 0.01) (statistically indistinguishable from the sum of recalls attained by Exon (0.10) and 

Promoter (0.05) strategies), which is much lower than the recall of 0.33 (s.e. 0.03) attained by the cS2G strategy 

(Supplementary Table 5). Third, we expanded the set of S2G strategies provided as input when constructing the 

combined S2G strategy by adding the 3 non-functionally informed main S2G strategies from Table 1 (Gene body, 

Gene±100kb and Closest TSS), thus including all 13 main S2G strategies. The resulting combined strategy was 

identical to our primary cS2G combined strategy, indicating that Closest TSS provides no additional information. 

Fourth, we expanded the set of S2G strategies to include all 50 S2G strategies (Supplementary Table 1), not just 

the 13 main S2G strategies. The resulting combined strategy included 8 S2G strategies (Supplementary Table 9), 

attained higher recall (0.39, vs. 0.33 for cS2G), but lower precision (0.60 vs. 0.75). (We note that the estimated 



 6 

precision of this combined strategy using the training critical gene set was equal to 0.84 during the optimization 

process (Supplementary Table 8); the difference between 0.84 and 0.60 can be attributed to higher precision for 

some constituent S2G strategies in the training critical gene set compared to the validation critical gene sets 

(Supplementary Figure 3 and Supplementary Table 5). For this reason (and because a fundamental goal of cS2G 

is to provide functional interpretation of GWAS findings), we recommend the use of the cS2G strategy. Fifth, we 

evaluated the robustness of our results to overlap between the training gene set and the validation gene sets 

(Supplementary Figure 1) by removing all 1,760 genes in the training gene set from the set of all genes analyzed 

in the validation step. We estimated a precision of 0.80 (s.e. = 0.09) for cS2G, which is similar to (and actually 

slightly higher than) what we reported in our primary analysis (precision of 0.75, s.e. = 0.06), validating the 

robustness of our results. Sixth, to assess whether training and validating cS2G using different critical gene sets 

(but the same 63 independent traits) avoids overfitting, we randomly split the set of 63 independent traits in two, 

and performed training using one set of traits (using the training critical gene set) and validation using the other 

set of traits (using the validation critical gene sets). This procedure led to combined S2G strategies with high 

precision (≥0.76, vs. 0.75 for cS2G in the analysis of 63 traits) and recall (≥0.30, vs. 0.33) (Supplementary Table 

10), confirming that our primary cS2G combined strategy avoids traits overfitting. Seventh, we constructed a 

combined S2G strategy by maximizing the recall without constraining precision to be ≥0.75. The resulting 

combined S2G strategy (including its weights, precision and recall) were unchanged; however, we still 

recommend constraining precision to be ≥0.75, as high precision is important for maximizing the utility of 

functional follow-up studies. Eighth, we repeated the experiment of maximizing the recall without constraining 

precision to be ≥0.75 for the relevant secondary analyses (numbered as “Third”, “Fourth”, and “Sixth” above). 

Of these, only the analysis numbered as “Third” yielded a different combined S2G strategy: the precision of 0.75 

(s.e. 0.06) and recall of 0.33 (s.e. 0.03) changed to a precision of 0.34 (s.e. 0.03) and recall of 0.34 (s.e. 0.03). We 

consider this to be an unfavorable result, demonstrating the advantages of constraining the precision to be ≥0.75. 

Finally, we constructed a new combined strategy by optimizing the F1 score (the harmonic mean of precision 

and recall25) instead of optimizing the recall while constraining precision to be ≥0.75. Once again, this strategy 

greatly outperformed the individual strategies (now with respect to the F1 score) in the validation critical gene 

sets (Supplementary Table 11), confirming that our framework is robust to the choice of optimization metric.  

 

Validating the combined S2G strategy using curated lists of disease-associated SNP-gene pairs 

We sought to validate the combined S2G strategy using two curated lists of disease-associated SNP-gene pairs: a 

small curated list reflecting the very limited set of experimentally validated disease-associated SNP-gene pairs26, 

and a larger curated list consisting of disease genes that have been validated with high confidence without strictly 

requiring experimental validation22. We restricted these analyses to SNPs that had a linked gene with cS2G linking 

score >0.5, consistent with our goal of attaining high precision for each individual SNP analyzed in order to 
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maximize the utility of functional follow-up studies. We note that restricting cS2G to these links led to similar 

estimates of aggregate precision and recall in polygenic analyses (Supplementary Table 8). 

 First, we manually curated a list of 17 disease-associated loci (including 12 loci from ref.26) containing 25 

experimentally validated causal SNP-gene pairs (Table 2). 16 of the 25 pairs had a linked gene with cS2G linking 

score >0.5. The cS2G prediction of the target gene matched the experimentally validated gene for 11 of these 16 

loci, yielding a precision of 11/16 = 0.69 (s.e. = 0.12) and a recall of 11/25 = 0.44 (s.e. = 0.10) (Table 2 and 

Supplementary Table 12). The precision was lower than our estimate based on validation critical gene sets (0.75) 

(and lower than the precision of one constituent strategy; 0.78 (s.e. = 0.14) for EpiMap), whereas the recall was 

higher than our estimate based on validation critical gene sets (0.33) (and higher than the recall of any constituent 

strategy); however, these differences were not statistically significant due to the small number of experimentally 

validated SNP-gene pairs (Supplementary Table 13). Interestingly, of the 11 pairs that were correctly linked to 

the experimentally validated gene, 8 pairs were linked by at least two cS2G constituent strategies, including 

rs339331-RFX6 (Prostate cancer27,28; EpiMap and ABC), rs356168-SNCA (Parkinson disease29; EpiMap and 

ABC), rs11257655-CAMK1D (Type 2 diabetes30; GTEx fine-mapped cis-eQTL and EpiMap), and rs61839660-

IL2RA (Inflammatory bowel disease31; ABC and Cicero). However, we failed to identify the well-studied 

rs1421085-IRX5/IRX3 link32, as none of the constituent S2G strategies linked rs1421085 to either IRX5 or IRX3; 

we also failed to identify the well-studied rs12740374-SORT1 link33, as rs12740374 is an exonic SNP for 

CELSR2, outweighing the link to SORT1 by the GTEx fine-mapped cis-eQTL strategy.  

 Second, we analyzed a curated disease-associated list of 577 linked sentinel SNP-gene pairs (for ~300 

diseases and complex traits, partially distinct from the set of 63 traits used to construct the cS2G strategy) with 

the underlying genes validated with high confidence by Open Targets22 (see above). 356 of the 577 SNPs had a 

linked gene with cS2G linking score >0.5. The cS2G prediction of the target gene matched the Open Targets 

prediction for 205 of these 356 SNPs (precision = 58%, recall = 36%); these included SNP-gene links between 

the high-density lipoprotein (HDL) cholesterol sentinel SNP rs4983559 (ref.34) with AKT1 (second closest TSS), 

and the depression sentinel SNP rs915057 (located in an intron of SYN2; ref.35) with ESR2 (second closest TSS) 

(Supplementary Table 14). We observed similar precision when analyzing a different set of 1,668 linked sentinel 

SNP-gene pairs from Weeks et al.23 (Supplementary Table 15). We confirmed the robustness of the precision of 

cS2G for the Open Targets SNP-gene pairs (and the SNP-gene pairs from Weeks et al.) to overlap of the 

underlying traits with the 63 traits used to construct the cS2G strategy, as analyses in which SNP-gene pairs for 

overlapping traits were removed produced similar results (Supplementary Table 15). The discrepancy between 

58% and our estimated precision (0.75) can be explained by the fact that Open Targets reports sentinel SNPs 

(rather than causal fine-mapped SNPs), which may be linked to different genes than causal SNPs, as we verified 

in analyses of UK Biobank traits (Supplementary Table 16). We thus recommend to apply our cS2G strategy to 

confidently fine-mapped SNPs in preference to sentinel SNPs.  
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 In summary, these analyses provide a promising validation of the potential of cS2G to pinpoint causal 

disease genes. 

 

Leveraging the combined S2G strategy to pinpoint disease genes 

We predicted target genes of 9,670 predicted causal SNP-disease pairs with PIP >0.5 from PolyFun analyses 

(7,675 unique SNPs). The SNP-gene-disease triplets predicted by cS2G included 2,163 triplets involving distal 

regulatory fine-mapped SNPs that were not in the gene body (or promoter) of the target gene, of which 532 were 

supported by at least 2 of the functionally informed constituent S2G strategies used by cS2G (Supplementary 

Table 17). We highlight 4 examples (Figure 4), discussed in this Supplementary Note.  

 First, for type 2 diabetes, two SNPs, rs234866 and rs74046911 (r2 = 0.02 (but D’ = 1)), both located in an 

intron of KCNQ1 (initially reported as a candidate target gene36,37), were fine-mapped (PIP = 0.97 and 0.92, 

respectively) and both linked by cS2G to CDKN1C (third closest TSS; cS2G linking scores = 1.00 and 0.96, 

respectively) (Figure 4a). CDKN1C is a gene expressed in pancreas for which a rare coding mutation was 

previously linked to type 2 diabetes38, and has been nominated as a candidate target gene at this locus using 

methylation data39 and CRISPR-Cas9 genome editing40. CDKN1C was implicated by 3 of the functionally 

informed S2G strategies used by cS2G, including EpiMap enhancer-gene linking in endocrine pancreas (for both 

SNPs), identified by LDSC-SEG41 as a critical tissue for type 2 diabetes (see Supplementary Table 15).  

 Second, for asthma, two independent SNPs, rs509399 and rs13099273 (r2 < 0.01), were fine-mapped (PIP 

= 0.96 and 0.58, resp.) and linked by cS2G to the target gene BCL6 (third and sixth closest TSS, resp.; cS2G 

linking scores = 0.96 and 1.00, resp.) (Figure 4b). BCL6 modulates the response of interleukin 4, known to be 

involved in asthma42, and has been linked to asthma in mice43 and humans44, but to our knowledge BCL6 has not 

previously been implicated as an asthma gene using GWAS data. BCL6 was implicated by 3 of the functionally 

informed S2G strategies used by cS2G, including EpiMap enhancer-gene linking in common myeloid progenitor 

CD34+ cells (for rs509399 only), identified by LDSC-SEG41 as a critical cell-type for asthma (P = 1.2 x 10-4; see 

Methods; also see ref.45).  

 Third, for eczema, the SNP rs34290285 was fine-mapped (PIP = 0.99) and linked by cS2G to PDCD1 

(seventh closest TSS; cS2G linking score = 0.73) (Figure 4c). PDCD1 is an immune-inhibitory receptor expressed 

in activated T cells, known to be implicated in Eczema. PDCD1 has previously be linked to skin cancer46 and 

autoimmune diseases47, but to our knowledge PDCD1 has not previously been implicated as an eczema gene 

using GWAS data. PDCD1 was implicated by the 2 blood-informed S2G strategies used by cS2G (eQTLGen 

fine-mapped blood cis-eQTL and Cicero blood/basal). Two others functionally informed S2G strategies (GTEx 

fine-mapped cis-eQTL and EpiMap) linked rs34290285 to different genes (GAL3ST2 and D2HGDH, 

respectively) with lower cS2G linking scores (0.21 and 0.05, respectively), highlighting the benefits of 

aggregating evidence from multiple S2G strategies to infer biological mechanisms.  
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 Fourth, for HDL cholesterol, the SNP rs9604045 was fine-mapped (PIP = 0.99) and linked by cS2G to 

LAMP1 (closest TSS, although CUL4A is the closest gene; cS2G linking score = 0.97) (Figure 4d). While 

deficiency of lysosome associated membrane proteins (LAMP1 and LAMP2) has been connected to cholesterol 

accumulation in mice48,49, to our knowledge LAMP1 has not previously been implicated as an HDL gene using 

GWAS data. LAMP1 was implicated by 3 of the functionally informed S2G strategies used by cS2G (GTEx fine-

mapped cis-eQTL, eQTLGen fine-mapped blood cis-eQTL, and ABC). However, none of the S2G strategies 

implicating LAMP1 involved a plausible critical tissue/cell-type for HDL cholesterol (e.g. liver, identified by 

LDSC-SEG41; Supplementary Table 15), despite the availability of S2G links for liver in GTeX and ABC. This 

result highlights both the benefit of aggregating S2G links across multiple cell-types to infer SNP-gene pairs, and 

the challenge of identifying the causal cell-type of action. 

 We extended our analyses to 222,842 potentially causal SNP-disease pairs with PIP>0.05 (instead of 

PIP>0.50) from functionally informed fine-mapping of 49 UK Biobank diseases/traits50,51. Restricting to SNPs 

that had a linked gene with cS2G linking score >0.5, we predicted 138,716 potentially causal SNP-gene-disease 

triplets (99,847 unique SNPs, 15,820 unique genes) (see Data Availability). We also analyzed 170,346 SNP-

disease pairs from the NHGRI-EBI GWAS catalog52 (4,688 diseases/traits), with the caveat that these SNPs were 

not fine-mapped and have only a small probability of being causal. Restricting to SNPs that had a linked gene 

with cS2G linking score >0.5, we predicted 78,499 potentially causal SNP-gene-disease triplets (49,313 unique 

SNPs, 13,349 unique genes) (see Data Availability). 

 
Substantial advance of our polygenic framework 

Our framework, using polygenic analyses of disease SNP-heritability, is a substantial advance over previous 

approaches for evaluating S2G strategies using curated lists of disease-associated SNP-gene pairs22,23. In 

particular, curated lists of disease-associated SNP-gene pairs may contain SNPs whose causality has not been 

quantified (e.g. the Open Targets curated list22 uses sentinel SNPs) and may contain ascertainment biases. 

Experimentally validated enhancer-gene pairs11,53,54 provide an in vitro validation in a specific cell type for 

specific types of S2G strategies (i.e. enhancer-gene links), but this validation may not extend to in vivo disease 

contexts, which may involve cell types and cell states that are different from those assayed in validation 

experiments11,21,53–55; in particular, our genome-wide GWAS-based estimates of precision and recall for linking 

disease risk variants to disease genes are not comparable to the CRISPR-based estimates of precision and recall 

in K562 cells in Fig. 3 of ref.11. Furthermore, unlike previous approaches, our framework provides a route to 

optimally combining S2G strategies, greatly improving precision and recall relative to individual strategies 

(Figure 2) as well as previously proposed combined strategies (Supplementary Table 5). 
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Limitations of this work 

We note several limitations of our work. First, our definition of precision assumes that the Exon strategy has a 

precision of 1, but this is an approximation as the link between exonic SNPs and target genes is likely to be 

imprecise in some cases (see rs12740374-SORT1 example33 in Table 2). Second, our estimates of precision had 

large standard errors for S2G strategies linking a limited fraction of SNPs to genes (Supplementary Figure 2 and 

Supplementary Table 5), such that evaluation of these S2G strategies was imprecise; however, for the cS2G 

strategy, estimates of precision (0.75, s.e. 0.06) and recall (0.33, s.e. 0.03) were reasonably precise. Third, we 

restricted each S2G strategy to the gene(s) with the highest linking score, as we observed that this led to slightly 

higher precision (Extended Data Figure 1). This does not reflect biological reality, in which a regulatory element 

may target more than one gene9,10,56; refinements to this choice are a direction for future research. Fourth, we 

included all available tissues and cell types for constituent S2G strategies of cS2G, as we observed that this led 

to higher precision (Extended Data Figure 3), perhaps due to limited biosample size. However, S2G links 

involving disease-critical tissues/cell-types are central to understanding biological mechanisms (Figure 4, 

Supplementary Table 20, Supplementary Note). As larger data sets become available, it may become practical to 

define disease-specific combined S2G strategies that restrict to disease-critical tissues and cell types, furthering 

the goal of pinpointing the causal cell-types of action of SNP-gene-disease triplets; these can be evaluated under 

our framework by meta-analyzing results of disease-specific combined S2G strategies across diseases/traits to 

obtain precise estimates of the precision and recall of a specific approach (Extended Data Figure 3). Fifth, our 

cS2G strategy uses a linear combination of S2G strategies with genome-wide weights, which may not optimize 

performance at a given locus. Exploring ways to optimally use locus-specific information is a promising direction 

of future research. Sixth, our cS2G strategy is derived from functionally informed S2G strategies that are primarily 

based on functional experiments in European-ancestry samples, and our evaluation of cS2G and its constituent 

strategies focused on European-ancestry GWAS, which are currently available in far greater sample sizes than 

GWAS from other populations57,58. Assessing the transferability of cS2G to non-European populations is a critical 

future research direction; we note that previous studies have generally reported high transferability of functional 

enrichments across populations59–62. Seventh, our results on disease omnigenicity are difficult to empirically 

verify; however, the very distinct patterns of disease omnigenicity inferred using the cS2G vs. Closest TSS 

strategies (Figure 5a) strongly support the use of functionally informed S2G strategies in such analyses. Finally, 

our analyses using cS2G (and its constituent S2G strategies1,2,6,7,9–11,14,56,63,64) pertain exclusively to SNP-gene 

pairs in cis, and do not capture trans effects, which may contribute substantially to disease omnigenicity65; in 

particular, this may explain why the disease SNP-heritability linked to genes in cis using the cS2G strategy (h2gene) 

represents only roughly half of total SNP-heritability (h2). 
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Supplementary Table Legends 
 
Supplementary Table 1: Description of the 50 SNP-to-gene (S2G) strategies.  
 
Supplementary Table 2: Overlap proportions and correlations between 34 SNP-to-gene (S2G) strategies. 
(a) For each strategy (row), we report the proportion of SNP-gene links that overlap with another S2G strategy 
(column) (these values are not symmetric). (b) We report the correlation between the linking scores across 34 
S2G strategies. We omitted 6th closest TSS to 20th closest strategy and Hi-C due to computational constraints. 
Correlations were computed on all SNP-gene links observed by at least one of the 34 SG strategies (i.e. most of 
the observed scores were 0 for the two S2G considered in the correlation computation). We observed low 
concordance between the S2G strategies: the average overlap fraction is 0.14 across the 34 S2G strategies, 0.19 
across the 13 main strategies, and 0.08 across the 10 main functionally informed strategies; similarly, the average 
correlation is 0.10 across the 34 S2G strategies, 0.09 across the 13 main strategies, and 0.05 across the 10 main 
functionally informed strategies.  
 
Supplementary Table 3: List of 63 diseases/traits used to estimate h2 coverage, precision and recall. We 
defined a list of 63 summary statistics with independent association data (labeled as independent traits) by 
excluding genetically correlated traits in overlapping samples by measuring the intercept of cross-trait LD score 
regression66, as previously described2; for traits with summary statistics computed from UK Biobank data, we 
also excluded traits with a squared genetic correlation67 greater than 0.1 (similar to the squared phenotypic 
correlation threshold used in ref.68). The 63 datasets included six traits that were duplicated in two different 
datasets (genetic correlation of at least 0.9). Thus, we analyzed 57 independent diseases and complex traits. Traits 
were prioritized using the z-score for nonzero SNP-heritability computed using S- LDSC with the baseline-LD 
model (minimum of 6, as in ref.69). We also considered the 11 autoimmune diseases and blood cell traits, as in 
refs.7,70. 
 
Supplementary Table 4: Estimates of h2 enrichment and gene enrichment for the validation and training 
critical gene sets for 50 S2G strategies. We report the h2 enrichment, gene enrichment, and corresponding 
standard errors, meta-analyzed across 63 traits, for 50 S2G strategies, for both the (trait-specific) validation critical 
gene sets and the training critical gene set. h2 enrichment is defined as the proportion of common variant 
heritability linked to the critical gene set, divided by the proportion of common SNPs linked to the critical gene 
set. Gene enrichment is defined as the fraction of common variant heritability linked to the critical gene set and 
to all genes, divided by the fraction of common SNPs linked to the critical gene set and to all genes. We also 
report estimates for validation critical gene sets constructed using default PoPS score (i.e. creating gene-level 
association statistics using gene body S2G strategy, rather than using Exon and Promoter S2G strategies); results 
were similar to the default validation critical gene sets. 
 
Supplementary Table 5: Estimates of h2 coverage, precision and recall for the validation and training 
critical gene sets for 50 S2G strategies and the cS2G strategy. We report the h2 coverage, precision and recall, 
and corresponding standard errors, meta-analyzed across 63 traits, for 50 S2G strategies and the combined cS2G 
strategy, for both the (trait-specific) validation critical gene sets and the training critical gene set.  
 
Supplementary Table 6: Weights of constituent S2G strategies in the combined cS2G strategy. We report 
the weights of each constituent S2G strategy in the combined cS2G strategy. We allowed weights to have a 
maximum value of 100, to prioritize S2G strategies with higher precision in the case where two S2G strategies 
link the same SNP to different genes. For example, if a SNP is linked to gene A through the Exon S2G strategy 
(weight = 100), and to gene B through the Cicero S2G strategy (weight = 1), then the cS2G linking score is 
100/101 for gene A (stronger evidence from Exon), and 1/101 for gene B. We note that weights of 10 and 0.1 for 
Exon and Cicero (rather than 100 and 1), would have assigned the same linking scores in the case of the SNP 
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described above, but would have assigned lower linking scores to SNPs that are linked to genes only through 
Cicero. 
 
Supplementary Table 7: Overlap of SNP-gene links between the constituent strategies of cS2G. For each 
constituent strategy of cS2G (row), we report the proportion of SNP-gene links that overlap with another S2G 
strategy (column) (these values are not symmetric). For example, 4.6% of links from the GTEx fine-mapped cis-
eQTL strategy are also in the Exon strategy, and 17.6% of links from the Exon strategy are also in the GTEx fine-
mapped cis-eQTL strategy. All the numbers are restricted to links involving common SNPs. 
 
Supplementary Table 8: Estimates of h2 coverage, precision and recall for 4 different combined S2G 
strategies. We report the h2 coverage, precision and recall, and corresponding standard errors, meta-analyzed 
across 63 traits, for 5 combined cS2G strategies. First, we considered our cS2G strategy. Second, we considered 
a combined S2G strategy where we linked all the SNPs linked by the cS2G (22% of common SNPs) to the gene 
with the closest TSS (ClosestTSS-cS2GSNPs). Third, we considered a combined S2G strategy maximizing 
recall (with precision > 0.75) when including all 50 S2G strategies (see Supplementary Table 9 for the 8 
selected S2G strategies) (cS2G – 50 S2G). Fourth, we considered a combined S2G strategy where we restricted 
the SNPs linked by the cS2G strategy that had a linked gene with cS2G linking score >0.5 (99% of all linked 
SNPs and 82% of all SNP-gene pairs) (cS2G-score>0.50). Fifth, we considered a combined S2G strategy with 
the same 7 S2G strategies than cS2G, but give them the exact same weight (i.e. 1) (cS2G – same weights). We 
report values estimated using both validation and training critical gene sets. For cS2G and cS2G – 50 S2G, we 
also report values estimated during the optimization algorithm using training critical gene sets. We note that the 
precision of the combined S2G strategies in the training critical gene set tend to be large (>0.85), which is very 
likely due to higher precision for some constituent S2G strategies in the training critical gene set compared to 
the validation critical gene set (such as promoter, Closest TSS (1kb-5kb), or GTEx fine-mapped cis-eQTL; see 
Supplementary Table 5). We sought to further investigate the reduction in precision of ClosestTSS-cS2GSNPs 
vs. cS2G. We estimated the reduction in precision of ClosestTSS-cS2GSNPs as "proportion of h2 coverage 
explained by cS2G SNPs not linked to Closest TSS by cS2G" * ("precision of cS2G for cS2G SNPs not linked 
to Closest TSS by cS2G" – "precision of Closest TSS for cS2G SNPs not linked to Closest TSS by cS2G”) = 
0.33 * (0.64 – 0.55) = 0.03, consistent with the observed reduction of 0.05. 
 
Supplementary Table 9: Combined S2G strategy obtained when including all 50 S2G strategies. We report 
the selected S2G strategies and their corresponding weights that maximize recall (with precision > 0.75) when 
including all 50 S2G strategies. The resulting combined strategy included 8 S2G strategies: 4 that were included 
in our primary cS2G strategy (Exon, Promoter, eQTLGen blood fine-mapped cis-eQTL, GTEx fine-mapped cis-
eQTL), as well as EpiMap and ABC restricted to blood and immune cell-types and tissues, Closest TSS (1-5kb), 
and GTEx all cis-eQTL.  
 
Supplementary Table 10: Combined S2G strategies using different diseases/traits for training and 
validation. We split the set of 63 diseases/traits in 2 (1st half and 2nd half), built a combined S2G strategy using 
each of those (cS2G - 1st half, and cS2G - 2nd half, respectively), and report their h2 coverage, precision and 
recall, and corresponding standard errors, meta-analyzed across each set of diseases/traits. cS2G - 1st half includes 
all the constituent S2G strategies of cS2G except EpiMap. cS2G - 2nd half includes all the constituent S2G 
strategies of cS2G except ABC and Cicero blood/basal. In all scenarios we observed that the combined strategies 
(cS2G - 1st half and cS2G - 2nd half) have a high precision (>0.76) and recall (>0.30). Note that in all scenarios, 
precision and recall were higher when using the training critical gene set than when using the validation critical 
gene set. 
 
Supplementary Table 11: F1 scores of 50 S2G strategies and the combined strategy obtained when 
maximizing the F1 score. We report the F1 score, the harmonic mean of precision and recall25, for the 50 S2G 
strategies and a combined strategy maximizing the F1 score in the training critical gene set (cS2G-F1). cS2G-F1 
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contains 5 out of 7 S2G strategies of cS2G (all but EpiMap and ABC). F1 scores were computed based on 
precision and recall estimated on the validation critical gene sets, and meta-analyzed across 63 traits. Strategies 
are ranked based on their F1 score. We observed that cS2G-F1 optimizes the F1 score over the 50 SG strategies, 
showing that our framework is robust to the quantity to maximize. For comparison purposes, we also report the 
F1 score of the cS2G strategy and observed that cS2G F1 score is slightly higher than cS2G-F1 F1 score. This 
result may be due to precision and recall heterogeneity across the training and validation critical gene sets, as 
cS2G-F1 maximizes the F1 score over cS2G during the optimization procedure (0.49 vs. 0.47 for cS2G). 
 
Supplementary Table 12: Validation of combined S2G (cS2G) strategy using experimentally validated 
SNP-gene pairs. We manually curated a list of 17 disease-associated loci (including 12 loci from ref.26) 
containing 25 experimentally validated causal SNP-gene pairs. For each experimentally validated causal SNP-
gene pairs, we report the cS2G predictions: predicted gene with cS2G linking score > 0.5 (if applicable), 
corresponding cS2G linking score, and constituent S2G annotation(s), as well as the gene with the closest TSS. 
Predicted genes that match the experimentally validated gene are denoted in bold font. Experimental validation 
is detailed in column “Functional experiment”. Of the 25 pairs, 16 are annotated with cS2G linking score >0.5, 
of which 11 are accurately linked to the validated causal gene. We thus estimated precision as 11/16 = 0.69 (s.e. 
= 0.12), and recall as 11/25 = 0.44 (s.e. = 0.10). This is a lower precision and higher recall than our estimates 
based on validation critical gene sets (0.75 for precision, 0.33 for recall), but the differences were not statistically 
significant due to the small number of experimentally validated SNP-gene pairs. We disclose that the causal SNP 
rs1421085 was not annotated with cS2G linking score >0.5, as it was linked to 2 genes (FTO and RPGRIP1L) 
each with a score of 0.5, and we decided to prioritize SNPs linked to a gene with cS2G linking score >0.5 (if we 
had instead used cS2G linking score ≥0.5 as our threshold, the impact on results would be minimal, with precision 
= 11/17 = 0.65 instead of 0.69). We note that it is also possible to compute precision and recall across the 17 loci 
(instead of across the 25 SNPs). Of the 17 loci, 14 had at least one causal SNP annotated with cS2G linking score 
>0.5, of which 10 had a least one causal SNP accurately linked to the validated causal gene. For the MYB locus, 
one SNP was accurately linked to MYB, and one was inaccurately linked to another gene. By assigning a precision 
of 0.5 at this locus, we estimated am locus-based precision of 9.5/14 = 0.68 (s.e. = 0.12) and recall of 9.5/17 = 
0.56 (s.e. = 0.12). GTEx: GTEx fine-mapped cis-eQTL; eQTLGen: eQTLGen blood fine-mapped cis-eQTL; 
EpiMap: EpiMap enhancer-gene linking; ABC: Activity-By-Contact; Cicero: Cicero blood/basal. 
 
Supplementary Table 13: Precision and recall of cS2G and its constituent strategies for 25 experimentally 
validated SNP-gene pairs. We report the precision and recall (and corresponding binomial standard errors) of 
cS2G, its constituent strategies, and the Closest TSS strategy for 25 experimentally validated causal SNP-gene 
pairs. We observed that cS2G obtained the 2nd best precision and the best recall when compared to its constituent 
strategies, but differences were not statistically significant due to the small number of experimentally validated 
SNP-gene pairs. In addition, none of the precision and recall values were significantly different from the genome-
wide estimates from polygenic analyses. 
 
Supplementary Table 14: cS2G predictions for a curated list of 577 sentinel SNP-gene pairs with genes 
curated with high confidence by Open Targets. For each SNP in this list, we report the genes targeted by cS2G, 
their score, their corresponding annotations, and if the SNP-gene pair has been validated by Open Targets (column 
Validated). We also report the validated target gene if the cS2G lining score was 0. Note that the validated column 
has values different to 1 if multiple genes were assigned for one causal SNP. We warn here that while the causal 
gene has been validated with high confidence, the causal SNP(s) might be less confident as none of the 577 
examples nominated causal SNPs using rigorous fine-mapping and/or functional follow-up, thus impacting the 
precision of the linking strategies. 356 of the 577 causal SNPs had a linked gene with a cS2G linking score >0.5, 
enabling us to predict the target gene. 205 of 356 predicted genes matched the Open Targets gene (precision = 
205/356 = 0.58; we note that this precision definition, restricted to links with a cS2G linking score >0.5, is 
different from the one used in Extended Data Figure 3, which weights links by their cS2G linking score), and 205 
of 577 causal SNP-gene-disease triplets were correctly identified (recall = 205/577 = 0.36) (see also Extended 
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Data Figure 3). Of these 205 triplets, 178 involved the gene with closest TSS, and 88 (resp. 20) involved variants 
in exons (resp. promoters), illustrating that curated SNP-gene-disease triplets that can be validated using 
functionally informed S2G strategies are preferentially ascertained for triplets in which the target gene is the gene 
with the closest TSS and/or implicated by a high-confidence S2G strategy. Of the 97 SNP-gene-disease triplets 
involving distal regulatory variants (defined here as not lying in exons or promoters), only 31 were functionally 
supported by at least 2 of the 5 remaining functionally informed S2G strategies. 
 
Supplementary Table 15: Precision and recall of cS2G in the Open Targets and Weeks et al. curated 
datasets. We report precision and recall of cS2G in the Open Targets and Weeks et al. curated datasets when 
considering all SNP-gene pairs and when manually removing all pairs for obtained from diseases/traits with a 
name identical or similar to the names of our 63 diseases/traits. We determined that results were little changed in 
both datasets. We note that although our manual curation step to remove SNP-gene pairs that overlap our 63 
diseases/traits is likely to be incomplete, and some overlapping or genetically correlated traits may remain, the 
fact that results were not sensitive to a substantial removal of overlapping diseases/traits strongly supports the 
overall robustness of our results. 
 
Supplementary Table 16: Sentinel SNPs are linked to different genes than causal SNPs in analyses of fine-
mapped UK Biobank traits. We found 114 SNP-gene-trait triplets with the underlying genes validated with high 
confidence by Open Targets22 and with available fine-mapping results in our analyses of 49 UK Biobank traits. 
For each triplet, we report the sentinel SNP, gene and trait defined by the Open Target list (4 first columns), the 
trait ID in our UK Biobank analyses (5th column), if the SNP-gene pair was validated by cS2G (6th column), and 
the posterior inclusion probability (PIP) in our fine-mapping analyses (7th column). 58/114 pairs were validated 
using cS2G (precision = 51%). The mean and median PIP of the 58 validated pairs were 0.260 and 0.045, 
respectively, against 0.055 and 0.004 for 56 unvalidated pairs (P Wilcoxon test = 1.6 x 10-3). The precision is 
93% (resp. 71%) when restricted to the 14 (resp. 41) triplets with PIP >0.50 (resp. >0.05). These results highlight 
that sentinel SNPs that are fine-mapped are more likely to be linked to the accurate target gene using cS2G, and 
potentially explain the discrepancy between the precision estimated using 577 Open Targets pairs (58%) and our 
estimated precision (75%).  
 
Supplementary Table 17: Causal SNP-gene-disease triplets predicted by application of cS2G strategy to 
9,670 fine-mapped SNP-disease pairs.  We report cS2G predictions for 9,670 predicted causal SNP-trait pairs 
with a posterior inclusion probability (PIP) > 0.50 from functionally informed fine-mapping of 49 UK Biobank 
diseases/traits50,51. Using cS2G linking scores >0.5, we predicted 7,111 causal SNP-gene-disease triplets (see 
column “In 7111”) and report their corresponding confidence score. We also predicted 2,163 triplets involving 
distal regulatory fine-mapped SNPs that were not in the gene body (or promoter) of the target gene (see column 
“In 2163”), of which 532 were supported by at least 2 of the functionally informed constituent S2G strategies 
used by cS2G (see column “In 532”). We report the cS2G linking score as well as the score before normalization 
(column cS2G score*). We also report for each SNP-gene pair the annotations of the 7 constituent S2G strategies. 
Fine-mapped SNPs that were not linked to genes with cS2G have a value NA for all the columns “Gene”, “cS2G 
score*”, “cS2G score”, and “cS2G triplet confidence score”. SNP-gene pairs with a cS2G score <0.5 have value 
NA for the column “cS2G triplet confidence score”. 
 
Supplementary Table 18: cS2G strategy predicts more correct SNP-gene-disease triplets than other S2G 
strategies. We report for the 13 main S2G strategies, the Exon + Promoter strategy, and the cS2G strategy the 
number of inferred SNP-gene-disease triplets from 9,670 predicted causal SNP-trait pairs with a posterior 
inclusion probability (PIP) > 0.50 from functionally informed fine-mapping of 49 UK Biobank diseases/traits50,51. 
For each strategy, we report the number of unique SNPs and genes in all the triplets, the mean PIP across all the 
triplets, the mean confidence score across all the triplets, and the number of correct SNP-gene-disease triplets 
(obtained by multiplying the number of inferred triplets by the mean confidence score). We observed that the 
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cS2G links at least 1.6 times more unique genes and predict at least 2.0 times more correct SNP-gene-disease 
triplets than any of the other 10 functionally informed S2G strategies.  
  
Supplementary Table 19: Number of unique fine-mapped SNPs linked to each of the 3,401 unique genes in 
the 7,111 predicted SNP-gene-disease triplets. In many instances, multiple causal SNPs were linked to the same 
gene. For example, 119 genes were each linked to at least 5 fine-mapped SNPs, illustrating that a single gene can 
be causal for different diseases/traits using different causal SNP-gene links. 
 
Supplementary Table 20: Cell-types identified by the functionally informed S2G strategies used by cS2G 
in the 4 examples of high-confidence SNP-gene-disease triplets identified by cS2G. For the 6 SNPs involved 
in the 4 examples of Figure 5, we report all the cell-types identified by the functionally informed S2G strategies 
used by cS2G, their linking score, and their P value in LDSC-SEG analyses. Results are ordered by LDSC-SEG 
P value significance.  
 
Supplementary Table 21: List of 49 UK Biobank diseases/traits used to empirically assess the omnigenic 
model. We used the set of 49 traits and 16 independent traits as in ref. 51 (also same as in the fine-mapping 
analyses). We report the sample size used to estimate posterior mean squared causal effect sizes of genome-wide 
SNPs (N=337K British UK Biobank samples), and the sample size used to compute the summary statistics on 
European-ancestry UK Biobank samples that were distinct from the N=337K British UK Biobank samples 
(N=122K) for S-LDSC analyses. 
 
Supplementary Table 22: Numerical results of assessment of disease omnigenicity using cS2G. We report 
the proportion of SNP-heritability (h2) and the proportion of SNP-heritability linked to genes (h2gene) explained 
by the top 100, 200, 500, 1,000, 2,000, 5,000, 10,000 and all (19,995) genes using different linking strategies 
(cS2G and Closest TSS) (see Figure 5a). The standard error of the proportion of h2gene explained by the X top 
genes was computed as the standard error of the proportion of h2 explained by the X top genes divided by h2gene 
(viewing the denominator h2gene as a constant); we believe this to be a reasonable approximation, as the numerator 
has greater uncertainty than the denominator (except when including all genes), and the errors are correlated such 
that this approximation is conservative. We note that a ratio of meta-analyzed values (meta-analyzed proportion 
of SNP-heritability explained by X top genes divided by meta-analyzed proportion of SNP-heritability explained 
by all genes) is more robust than a meta-analyzed value of ratios (meta-analyzing the proportion of SNP-
heritability explained by X top genes divided by the proportion of SNP-heritability explained by all genes). For 
X<19,995, we note that values greater than 1 are outside the biologically plausible 0-1 range, but allowing point 
estimates outside the biologically plausible 0-1 range is necessary to ensure unbiasedness. The top genes were 
defined using posterior mean squared causal effect sizes estimated on N=337K British UK Biobank samples, and 
reported proportions were estimated using S-LDSC on the N=122K samples and meta-analyzed across 16 
independent traits. For the cS2G, we also report the proportion of SNP-heritability linked to genes (h2gene) 
estimated using posterior mean squared causal effect sizes estimated on the N=337K samples; we observed that 
from 200 genes, h2gene S-LDSC estimates (based on N=122K samples) were not significantly different from the 
estimates directly based on the N=337K samples, implying minimal effects of winner’s curse for a small number 
of genes. 
 
Supplementary Table 23: SNP-heritability explained by top genes with the highest per-gene heritabilities 
for each disease/trait. For each of the 49 traits, we report the proportion of SNP-heritability (h2) and the 
proportion of SNP-heritability linked to genes (h2gene) explained by the top 100, 200, 500, 1,000, 2,000, 5,000, 
10,000 and all (19,995) genes using the cS2G strategy. The standard error of the proportion of h2gene explained by 
the X top genes was computed as the standard error of the proportion of h2 explained by the X top genes divided 
by h2gene (viewing the denominator h2gene as a constant); we believe this to be a reasonable approximation, as the 
numerator has greater uncertainty than the denominator (except when including all genes), and the errors are 
correlated such that this approximation is conservative. We note that a ratio of meta-analyzed values (meta-
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analyzed proportion of SNP-heritability explained by X top genes divided by meta-analyzed proportion of SNP-
heritability explained by all genes) is more robust than a meta-analyzed value of ratios (meta-analyzing the 
proportion of SNP-heritability explained by X top genes divided by the proportion of SNP-heritability explained 
by all genes). For X<19,995, we note that values greater than 1 are outside the biologically plausible 0-1 range, 
but allowing point estimates outside the biologically plausible 0-1 range is necessary to ensure unbiasedness. 
 
Supplementary Table 24: Estimates of the effective number of causal genes. For each of the 49 traits, we 
report its effective number of causal SNPs (Me) and causal genes (Ge) (see Figure 5b), its effective number of 
causal genes explained by common variants (Ge,common) and low-frequency variants (Ge,low-frequency) (see Figure 5c), 
its correlation between per-gene heritability explained by common and low-frequency variants across all the genes 
(r20K), its correlation between per-gene heritability explained by common and low-frequency variants restricted 
to genes in the top 200 (i.e. 1%) of per-gene heritability explained by common and low-frequency variants (rtop200), 
and the shared number of genes in the top 200 (i.e. 1%) of per-gene heritability explained by common and low-
frequency variants (sharedtop200). We also report the median values across 16 independent traits. 
 
Supplementary Table 25: Top genes contributing to both common and low-frequency variant heritability 
linked to genes. Across all 49 traits, we report the 19 triplets (13 unique genes) where the gene is in the top 3 
genes contributing to the common and low-frequency variant heritability linked to genes (h2gene,common and 
h2gene,low-freq, respectively). We note that our results include CDKN1C for type 2 diabetes, further validating 
CDKN1C as the causal gene at this locus.  
 
Supplementary Table 26: SNP-gene links for all datasets used to create S2G strategies. We report the SNP-
gene links for all datasets used to create S2G strategies. 
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Supplementary Figures 
 

 

 
 
 
 
 
 
 
 

 
Supplementary Figure 1: Overlap between the training gene set and the validation gene sets. We report the 
distribution of the overlap between the training gene set (which does not vary across disease/traits) and the 
validation gene sets (which does vary across diseases/traits) across the 63 diseases/traits analyzed. It has a mean 
of 20% (vs. 10% expected by chance), mean of 20%, standard deviation of 4.1%, and range from 13%-28%. 
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Supplementary Figure 2: Accuracy (with standard error) of individual S2G strategies and combined S2G 
(cS2G) strategy. We report the precision and recall of the 13 main S2G strategies from Table 1 and the cS2G 
strategy (estimated using trait-specific validation critical gene sets and meta-analyzed across 63 independent 
traits). Reported results are identical to Figure 2, except that they include error bars representing 95% confidence 
intervals around meta-analyzed values. Our estimates of precision have large standard errors for S2G strategies 
linking a limited fraction of SNPs to genes; however, for the cS2G strategy, estimates of precision (0.75, s.e. 0.06) 
and recall (0.33, s.e. 0.03) were reasonably precise. 
  



 19 

 

 

 

 

 
Supplementary Figure 3: Precision and recall in training and validation critical gene sets. We compared 
precision (a) and recall (b) estimated in our (non-trait-specifics) training critical gene set and (trait-specific) 
validation critical gene sets. Correlation (cor) and regression coefficient (slope) were computed either using the 
13 highlighted independent S2G strategies (see Methods) (results in black), or using all 50 S2G strategies (results 
in grey). We observed high correlations and slopes for both precision and recall. GTEx: GTEx cis-eQTL; GTEx 
fine-mapped: GTEx fine-mapped cis-eQTL; eQTLGen fine-mapped: eQTLGen fine-mapped blood cis-eQTL; 
Roadmap: Roadmap enhancer-gene linking; EpiMap: EpiMap enhancer-gene linking; ABC: Activity-By-Contact 
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Supplementary Figure 4: Comparison of precision and recall estimates to independent definitions based 
on two curated disease-associated lists of SNP-gene pairs. We compared our estimates of precision and recall 
to independent definition of precision (i.e. not relying on critical gene sets or polygenic analyses) based on 577 
linked sentinel SNP-gene pairs validated with high confidence by Open Targets22 (a, b) and 1,668 linked fine-
mapped SNP-gene pairs validated using nearby fine-mapped protein-coding variants23 (c, d). Correlation (cor) 
and regression coefficient (slope) were computed either using the 13 highlighted independent S2G strategies (see 
Methods) and the cS2G strategy (results in black), or using all 50 S2G and cS2G strategies (results in grey). We 
observed high correlations and slopes for both precision and recall. (Note that since recall is the product of h2 
coverage and precision, differences in recall basically inherit the differences in precision) Despite the overall 
concordance, we observed large differences in precision and recall estimates for some S2G strategies (e.g. Exon, 
Closest TSS), as the curated causal SNP-gene pairs were preferentially ascertained for causal SNPs in which the 
target gene were the closest one: indeed, we observed an unusually high proportion of pairs involving genes with 
a short distance (< 10kb) to its closest TSS (57%/67% using both curated lists, vs h2 coverage = 34% for the 
Closest TSS <10kb S2G strategy). Thus, we caution that curated disease-associated lists of linked SNP-gene pairs 
may be non-randomly ascertained, highlighting the potential benefits of polygenic analyses for evaluating S2G 
strategies. GTEx: GTEx cis-eQTL; GTEx fine-mapped: GTEx fine-mapped cis-eQTL; eQTLGen fine-mapped: 
eQTLGen fine-mapped blood cis-eQTL; Roadmap: Roadmap enhancer-gene linking; EpiMap: EpiMap enhancer-
gene linking; ABC: Activity-By-Contact.  
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Supplementary Figure 5: Distribution of the distance to the gene TSS for all cS2G links involving common 
SNPs. We report the distribution of the distance to the gene TSS for all cS2G links (left), for links with the gene 
that is the closest TSS (middle), and for links with the gene that is not the closest TSS (right). The mean distance 
to the gene TSS for all cS2G links was 96kb (mean of 24kb for the 57% of linked SNPs linked to the gene with 
closest TSS, mean of 192kb for the 43% of linked SNPs not linked to the gene with closest TSS).   
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Supplementary Figure 6: SNP-heritability linked to genes expressed in disease-critical cell-types. We report 
the proportion of SNP-heritability linked to all genes (a; similar than Figure 5a) and linked to genes expressed in 
disease-critical cell-types (b,c,d) explained by genes with the top per-gene h2. We restricted these analyses to 7 
of the 16 independent traits that were analyzed in ref.71 (Chronotype, Diastolic blood pressure, Eczema, Forced 
Vital Capacity, Mean Platelet Volume, Monocyte Count, and #Children) and plotted the median values. Disease-
critical cell-types were selected as in ref.71 and were glutamatergic for Chronotype, pericyte for Diastolic blood 
pressure, T-cells for Eczema, smooth muscle for Forced Vital Capacity, megakaryocytes for Mean Platelet 
Volume, monocytes for Monocyte Count, and GABAergic for #Children. We selected genes expressed in disease-
critical cell-types based on the proportion of cells expressed in the cell-types. We selected 50% of the genes with 
the highest fraction of cells expressed (b), 25% of the genes (c), and 10% of the genes (d). Vertical grey lines 
indicate 10% and 25% of the genes selected in the analyses and were plotted for comparison purposes. Grey curve 
in (a) indicates results computed on the 16 independent traits (as in Figure 5a) and are similar to the ones computed 
on the restricted 7 traits. Overall, restricting analyses from Figure 5a to genes expressed in disease-critical cell-
types had little impact on the proportion of retained SNP-heritability linked to genes explained by the top 10% of 
retained genes 
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Supplementary Figure 7: Proportion of heritability linked to genes when using a restricted set of N=49K 
validation samples that were unrelated to the N=337K training samples. The figure is analogous to Figure 
5a, except that a restricted set of validation samples is used. We report the proportion of SNP-heritability linked 
to genes (h2gene) explained by genes ranked by top per-gene h2, as inferred using three approaches. Grey shading 
denotes 95% confidence intervals for cS2G-validation and Closest TSS-validation around meta-analyzed values. 
We forced the s.e. of the proportion of h2gene explained by all genes to be 0 (see Methods). We note that values 
greater than 1 are outside the biologically plausible 0-1 range, but allowing point estimates outside the biologically 
plausible 0-1 range is necessary to ensure unbiasedness. These proportions were inferred using three approaches, 
including two approaches using S-LDSC from an N=49K non-British European-ancestry UK Biobank validation 
sample not related to the N=337K training sample. Grey shading denotes 95% confidence intervals for cS2G-
validation and Closest TSS-validation. Results were meta-analyzed across 16 independent UK Biobank traits. We 
observed very similar results for cS2G when using the N=49K validation samples and the N=122K validation 
samples used in main analyses: the top 200 (resp. top 2,000) genes explained 52±7% (resp. 99±9%) of the disease 
heritability linked to genes in cis using the cS2G strategy (h2gene, which captures 55±4% of h2) when using the 
N=49K validation samples, versus 52±6% (resp. 96±8%) of the disease heritability linked to genes in cis using 
the cS2G strategy (h2gene, which captures 53±3% of h2) when using the N=122K validation samples. For the 
Closest TSS strategy, the top 1,000 (resp. top 10,000) genes to explain 49±3% (resp. 86±2%) of h2gene when using 
the N=49K validation samples, versus 48±2% (resp. 85±2%) of h2gene when using the N=122K validation samples. 
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Supplementary Figure 8: Results of using cS2G vs. ±100kb windows to define SNP annotations in analyses of differentially 
expressed genes that are enriched for disease SNP-heritability. We compared LDSC-SEG41 results with the default strategy 
of linking SNPs to a gene set using a Gene body ± 100kb approach (LDSC-SEG-100kb; x axis) to an alternative approach 
leveraging our cS2G strategy (LDSC-SEG-cS2G; y axis). For each of the 63 independent traits, we selected the differentially 
expressed gene set (out of 205), with the smallest LDSC regression coefficient P value (traits with the same gene set selected by 
LDSC-SEG-100kb and LDSC-SEG-cS2G were represented by a filled dot). We reported the per-standardized-annotation effect 
sizes 𝜏𝜏* (a), the per-standardized-annotation effect sizes 𝜏𝜏* two-sided P value (b), the SNP-heritability enrichment (c), and the 
proportion of SNPs (d) for each 63 trait-gene set pairs. We consistently observed higher 𝜏𝜏* and SNP-heritability enrichment for 
LDSC-SEG-cS2G (a,c). LDSC-SEG-cS2G also produces slightly more significant P values than LDSC-SEG-100kb (b), despite 
the fact of losing statistical power by creating SNP annotations with an average of 7 times less SNPs than the default approach 
(d). For 37 out of 63 traits, we obtained more significant P values with LDSC-SEG-cS2G; 10 traits have a significant P value 
(<0.05/205) with LDSC-SEG-cS2G but not with LDSC-SEG-100kb, and 5 traits have a significant P value with LDSC-SEG-
100kb but not with LDSC-SEG-cS2G. In further analyses, we considered a joint model with best gene set SNP annotations from 
LDSC-SEG-100kb and LDSC-SEG-cS2G (LDSC-SEG-100kb+cS2G). We reported the joint per-standardized-annotation effect 
sizes 𝜏𝜏* of the two gene set SNP annotations (e), and corresponding two-sided P value (f). We observed that once conditioned to 
the cS2G gene set SNP annotation, the 100kb gene set SNP annotation was rarely significant (P <0.05/205 in 8/63 traits, against 
27/63 with cS2G), suggesting that cS2G captures most of the information in a gene body ± 100kb. 
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Supplementary Figure 9: Comparison of SNP-heritability enrichment estimates of SNP annotations 
derived from enriched gene sets using different SNP-heritability models. We report the SNP-heritability 
enrichment of SNP annotations intersecting S2G strategies with constrained genes (left) or all genes (right), 
estimated by S-LDSC either using the baseline-LD model (and the focal S2G-derived SNP annotation, plus the 
corresponding S2G-derived SNP annotation for all genes if different) (x axis), or using a model with all baseline-
LD SNP annotations and 80 S2G-derived SNP annotations (50 S2G-derived SNP annotations constructed by 
restricting SNPs linked to genes of the critical gene set, and 30 S2G-derived SNP annotations constructed by 
restricting SNPs linked to all genes (see Methods); baseline-S2G model) (y axis). Correlation (cor) and regression 
coefficient (slope) were computed using either the 13 highlighted independent S2G strategies (see Methods) 
(results in black), or using all 50 S2G strategies (results in grey). We observed that SNP-heritability enrichment 
estimates of SNP annotations intersecting S2G strategies with constrained genes were nearly two times higher 
when using the baseline-LD model than when using the baseline-S2G model. We thus recommend that future S-
LDSC SNP-heritability enrichment analyses of gene sets should carefully consider the set of SNP annotations 
included in the model. We hypothesize that the biases observed under the baseline-LD model are due to tagging 
effects of unmodeled S2G links; in this case, these biases would not lead to false-positive enriched gene sets. 
GTEx: GTEx cis-eQTL; GTEx fine-mapped: GTEx fine-mapped cis-eQTL; eQTLGen fine-mapped: eQTLGen 
fine-mapped blood cis-eQTL; Roadmap: Roadmap enhancer-gene linking; EpiMap: EpiMap enhancer-gene 
linking; ABC: Activity-By-Contact. 
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Supplementary Figure 10: Estimates of precision using 17,871 protein-coding genes instead of 19,995 
protein-coding and non-protein-coding genes. We compared our default estimates of precision using 19,995 
protein-coding and non-protein-coding genes to an estimate restricting analyses to 17,871 protein-coding genes. 
Correlation (cor) and regression coefficient (slope) were computed either using the 13 highlighted independent 
S2G strategies (see Methods) and the cS2G strategy (results in black), or using all 50 S2G strategies (results in 
grey). We observed nearly identical estimates. We note that we also used cS2G to estimate that 1.30% of the 
SNPs linked to non-protein-coding genes (2,124 out of 19,995 genes) explain 1.55 ± 0.18% of SNP-heritability, 
justifying their inclusion even if they are not enriched in SNP-heritability (two-sided P = 0.71). GTEx: GTEx cis-
eQTL; GTEx fine-mapped: GTEx fine-mapped cis-eQTL; eQTLGen fine-mapped: eQTLGen fine-mapped blood 
cis-eQTL; Roadmap: Roadmap enhancer-gene linking; EpiMap: EpiMap enhancer-gene linking; ABC: Activity-
By-Contact. 
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Supplementary Figure 11: Unadjusted vs. adjusted per-gene heritability estimates. We report unadjusted 
per-gene heritability and adjusted per-gene heritability estimates across 16 independent UK Biobank traits. 
Adjusting per-gene heritability impacted estimates of only a small number of genes. 
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