Exploring the Cocrystal Landscape of Posaconazole by Combining High-throughput Screening Experimentation with Computational Chemistry

Matteo Guidetti^a, Rolf Hilfiker^a, Martin Kuentz^b, Annette Bauer-Brandl^c, Fritz Blatter^a*

^aSolvias AG, Solid-State Development Department, Römerpark 2, CH- 4303 Kaiseraugst, Switzerland

^bUniversity of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharma Technology, CH- 4132 Muttenz, Switzerland

^cDepartment of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark

*Email: fritz.blatter@solvias.com

Supporting Information

Table of Contents

1	Cocrystal Screening	5
1.1	COSMOquick Screening	5
2	Posaconazole	12
2.1	DSC	12
2.2	Raman Spectrum	12
2.3	Powder X-ray Diffraction Patterns	13
		1

2.4	Proton Nuclear Magnetic resonance (¹ H-NMR)	14
3	Posaconazole – Ferulic Acid Hydrate Cocrystal (PSZ-FER-H2O)	15
3.1	TG-FTIR	15
3.2	Raman Spectrum	16
3.3	Powder X-ray Diffraction Patterns	16
3.4	Proton Nuclear Magnetic Resonance (1H-NMR)	17
4	Posaconazole – Maleic Acid Cocrystal (PSZ-MLE)	18
4.1	DSC	18
4.2	TG-FTIR	18
4.3	Raman Spectrum	19
4.4	Powder X-ray Diffraction Patterns	19
4.5	Proton Nuclear Magnetic Resonance (1H-NMR)	20
5	Posaconazole – L-Malic Acid Cocrystal (PSZ-MLA)	21
5.1	DSC	21
5.2	TG-FTIR	21
5.3	Raman Spectrum	22
5.4	Powder X-ray Diffraction Patterns	22
5.5	Proton Nuclear Magnetic Resonance (¹ H-NMR)	23
6	Posaconazole – Citric Acid Cocrystal (PSZ-CIT)	24
6.1	DSC	24
6.2	TG-FTIR	24
6.3	Raman Spectrum	25
6.4	Powder X-ray Diffraction Patterns	25
6.5	Proton Nuclear Magnetic Resonance (¹ H-NMR)	26
7	Posaconazole – 1-Hydroxy-2-naphthoic Acid Cocrystal (PSZ-XIN)	27
7.1	DSC	27
7.2	TG-FTIR	27
7.3	Raman Spectrum	28
7.4	Powder X-ray Diffraction Patterns	28
7.5	Proton Nuclear Magnetic Resonance (¹ H-NMR)	29
8	Posaconazole – Gentisic Acid Cocrystal (PSZ-GEN)	30
8.1	DSC	30
8.2	TG-FTIR	30
8.3	Raman Spectrum	31
8.4	Powder X-ray Diffraction Patterns	31
8.5	Proton Nuclear Magnetic Resonance (1H-NMR)	32
9	Posaconazole – Salicylic Acid Cocrystal (PSZ-SAL)	33

9.1	DSC	33
9.2	TG-FTIR	33
9.3	Raman Spectrum	34
9.4	Powder X-ray Diffraction Pattern	34
9.5	Proton Nuclear Magnetic Resonance (1H-NMR)	35
10	Posaconazole – 4-Aminobenzoic Acid Cocrystal (PSZ-ABA)	36
10.1	DSC	36
10.2	TG-FTIR	36
10.3	Raman Spectrum	37
10.4	Powder X-ray Diffraction Patterns	37
10.5	Proton Nuclear Magnetic Resonance (1H-NMR)	38
11	Posaconazole – L-Lactic Acid Cocrystal (PSZ-LLA)	39
11.1	DSC	39
11.2	TG-FTIR	39
11.3	Raman Spectrum	40
11.4	Powder X-ray Diffraction Patterns	40
11.5	Proton Nuclear Magnetic Resonance (¹ H-NMR)	41
12	Posaconazole – Adipic Acid Hydrate Cocrystal (PSZ-ADI-H2O)	41
12.1	DSC	40
12.2	TG-FTIR	41
12.3	Raman Spectrum	42
12.4	Powder X-ray Diffraction Patterns	43
12.5	Proton Nuclear Magnetic Resonance (¹ H-NMR)	43
13	Posaconazole – Succinic Acid Hydrate Cocrystal (PSZ-SUC-H2O)	44
13.1	TG-FTIR	44
13.2	Raman Spectrum	45
13.3	Powder X-ray Diffraction Patterns	45
13.4	Proton Nuclear Magnetic Resonance (¹ H-NMR)	46
14	Posaconazole – Fumaric Acid THF Solvate Cocrystal (PSZ-FUM-THF)	46
14.1	TG-FTIR	46
14.2	Raman Spectrum	47
14.3	Powder X-ray Diffraction Patterns	48
14.4	Proton Nuclear Magnetic Resonance (¹ H-NMR)	48
15	Posaconazole – Fumaric Acid Hydrate Cocrystal (PSZ-FUM-H2O)	49
15.1	TG-FTIR	49
15.2	Raman Spectrum	50
15.3	Powder X-ray Diffraction Patterns	50

15.4	Proton Nuclear Magnetic Resonance (¹ H-NMR)	51
16	Posaconazole – 3,4-Dihydroxybenzoic Acid Hydrate Cocrystal(PSZ-D	HB-H2O)52
16.1	TG-FTIR	52
16.2	Raman Spectrum	53
16.3	Powder X-ray Diffraction Patterns	53
16.4	Proton Nuclear Magnetic Resonance (1H-NMR)	54
17	Posaconazole-Oxalic Acid complex	55
17.1.1	Powder X-ray Diffraction patterns	55
18	Computational Tools Comparison	55
18.1	Hydrogen Bond Propensity	55
18.2	Molceular Complmentarity	57

1 Cocrystal screening

1.1 COSMOquick screening

Table S1. COSMOquick coformer screening performed on a list of 140 compounds. For each coformer the number of rotatable bonds, the F_{screen} function and the mixing enthalpy (ΔH_{mix}) are computed. Coformers are ranked according to the F_{screen} values. The 28 coformers employed in the experimental screening are highlighted in green. The 28 candidates were selected in order to span the whole range of screening function value, comprising in this way top-, middle- and low-ranked coformers. The selection was devised in order to test the prediction ability of COSMOquick, determining if the top-ranked compounds provide more experimental cocrystals compared to the low-ranked ones.

Coformer	number rotatable bonds	F _{screen}	coformer ranking	ΔH _{mix} (kcal/mol)
1,5-Naphthalenedisulfonic acid	4.0	0.24	1	-8.43
Oxalic acid	3.0	1.48	2	-6.68
Myricetin	7.0	1.83	3	-8.38
Gallic acid	5.0	2.61	4	-6.58
Benzenesulfonic acid	2.0	3.56	5	-4.09
3,4-Dihydroxybenzoic acid	4.0	3.58	6	-5.09
Naphthalene-2-sulfonic acid	2.0	3.61	7	-4.04
Toluenesulfonic acid	2.0	3.69	8	-3.96
Gentisic acid	4.0	3.84	9	-4.84
Fumaric acid	4.0	4.05	10	-4.63
DL-Tartaric acid	7.0	4.08	11	-6.12
L-Tartaric acid	7.0	4.08	12	-6.12
Cyclamic acid	3.0	4.22	13	-3.94
Maleic acid	4.0	4.47	14	-4.2
Trans-Aconitic acid	7.0	4.63	15	-5.57
1-Hydroxy-2-naphthoic acid	3.0	4.71	16	-3.46
Pamoic acid	8.0	4.81	17	-5.9
Methyl gallate	5.0	4.87	18	-4.31

2-Oxoglutaric acid	6.0	5.14	19	-4.55
3-Hydroxy-2-naphthoic acid	3.0	5.18	20	-2.98
Salicylic acid	3.0	5.2	21	-2.97
L-Malic acid	6.0	5.3	22	-4.39
Ethyl gallate	6.0	5.37	23	-4.32
Orotic acid	2.0	5.68	24	-1.98
5-Methylanthranilic acid	3.0	5.71	25	-2.45
Citric acid	9.0	5.72	26	-5.51
Benzoic acid	2.0	5.73	27	-1.92
Succinic acid	5.0	5.74	28	-3.44
4-Aminosalicylic acid	4.0	5.82	29	-2.85
Propyl gallate	7.0	5.9	30	-4.3
Saccharin	0.0	6.13	31	-1.02
Vanillic acid	4.0	6.14	32	-2.54
Piperazine	0.0	6.27	33	-0.87
DL-Mandelic acid	4.0	6.28	34	-2.39
Methyl paraben	3.0	6.33	35	-1.84
Malonic acid	4.0	6.35	36	-2.32
N-Hydroxy-succinimide	1.0	6.4	37	-0.74
Glycolic acid	3.0	6.43	38	-1.73
L-Lactic acid	3.0	6.46	39	-1.71
4-Aminobenzoic acid	3.0	6.48	40	-1.68
Acetylsalicylic acid	4.0	6.71	41	-1.96
Nicotinic acid	2.0	6.75	42	-0.9
Methyl phenyl sulfoxide	1.0	6.77	43	-0.37
Benzylamine	2.0	6.8	44	-0.85
Ascorbic acid	6.0	6.85	45	-2.84
Naphthalene-2-sulfonamide	2.0	6.92	46	-0.73
Ferulic acid	5.0	6.94	47	-2.25
Glutaric acid	6.0	6.96	48	-2.74
Phenylacrylic acid	3.0	6.96	49	-1.2

Beta-Alanine	4.0	6.97	50	-1.7
Sorbic acid	3.0	6.98	51	-1.18
Abietic acid	3.0	6.99	52	-1.17
Glucuronic acid	6.0	7.08	53	-2.62
Maltol	1.0	7.1	54	-0.04
L-Pyroglutamic acid	2.0	7.13	55	-0.53
p-Toluenesulfonamide	2.0	7.14	56	-0.51
2,4-Diamino-6-hydroxyPyrimidine	3.0	7.14	57	-1.02
Caffeine	0.0	7.16	58	0.02
Imidazole	0.0	7.17	59	0.02
3-Aminobenzyl alcohol	3.0	7.25	60	-0.91
Uric Acid	0.0	7.29	61	0.15
Thymine	0.0	7.31	62	0.17
Adenine	1.0	7.33	63	0.18
L-Aspartic acid	6.0	7.36	64	-2.34
L-Carnitine	4.0	7.36	65	-1.32
Uracil	0.0	7.41	66	0.27
Guanine	1.0	7.42	67	0.28
Acedoben	4.0	7.43	68	-1.24
Syringic acid	5.0	7.45	69	-1.74
Ethylmaltol	2.0	7.6	70	-0.05
Adipic acid	7.0	7.61	71	-2.59
Cytosine	1.0	7.62	72	0.48
Vanillin	3.0	7.63	73	-0.54
Propionic acid	2.0	7.66	74	0.01
L-Proline	2.0	7.71	75	0.06
Caproic acid	5.0	7.76	76	-1.43
2-Morpholinoethanol	3.0	7.79	77	-0.37
D-Ribose	4.0	7.8	78	-0.88
Eugenol	4.0	7.88	79	-0.8
Nicotinamide	2.0	7.88	80	0.23

L-Menthol	2.0	7.91	81	0.26
Urea	2.0	7.97	82	0.32
Pyridoxine	5.0	7.97	83	-1.21
L-4-Hydroxyproline	3.0	7.99	84	-0.17
Thymidine	4.0	8.0	85	-0.67
N-Acetylglycine	4.0	8.13	86	-0.54
L-Cysteine	3.0	8.19	87	0.03
Hippuric acid	5.0	8.25	88	-0.93
Quinic acid	6.0	8.3	89	-1.39
Tyramine	4.0	8.45	90	-0.22
L-Alanine	3.0	8.46	91	0.29
Glycine	3.0	8.6	92	0.44
D-Serine	5.0	8.76	93	-0.43
L-Serine	5.0	8.76	94	-0.43
L-Tyrosine	6.0	8.78	95	-0.91
L-Phenylglycine	4.0	8.83	96	0.16
Caprylic acid	7.0	8.84	97	-1.36
L-Valine	4.0	8.88	98	0.2
D-Galactose	6.0	8.92	99	-0.78
L-Tryptophan	5.0	8.98	100	-0.21
Creatine	5.0	9.16	101	-0.03
L-Phenylalanine	5.0	9.31	102	0.12
L-Leucine	5.0	9.35	103	0.17
L-Isoleucine	5.0	9.37	104	0.18
L-Histidine	5.0	9.37	105	0.18
myo-Inositol	6.0	9.42	106	-0.28
L-Glutamic acid	7.0	9.46	107	-0.75
L-Asparagine	6.0	9.53	108	-0.16
Galactaric acid	11.0	9.75	109	-2.49
Diethanolamine	6.0	9.77	110	0.08
L-Methionine	6.0	9.81	111	0.11

Sebacic acid	11.0	9.82	112	-2.43
D-Xylose	8.0	9.94	113	-0.78
D-Glucose	10.0	9.94	114	-1.8
D-Mannose	10.0	9.94	115	-1.8
Capric acid	9.0	9.94	116	-1.28
L-Lysine	6.0	9.95	117	0.26
Tromethamine	6.0	9.97	118	0.28
meso-Erythritol	7.0	10.0	119	-0.2
Undecylenic acid	10.0	10.34	120	-1.39
D-Gluconic acid	11.0	10.38	121	-1.87
L-Glutamine	7.0	10.43	122	0.22
Riboflavin	9.0	10.86	123	-0.36
L-Arabitol	9.0	11.05	124	-0.17
Xylitol	9.0	11.05	125	-0.17
Triethanolamine	9.0	11.15	126	-0.07
L-Arginine	9.0	11.38	127	0.16
D-Citrulline	9.0	11.72	128	0.5
L-Citrulline	9.0	11.72	129	0.5
D-Panthenol	10.0	11.73	130	0.0
D-Mannitol	11.0	11.8	131	-0.44
Sorbitol	11.0	11.8	132	-0.44
Gluceptate	13.0	12.07	133	-1.19
Lactose	12.0	12.18	134	-0.57
D-Maltose	12.0	12.18	135	-0.57
Aspartame	11.0	12.36	136	0.12
Meglumine	11.0	12.43	137	0.18
Sucrose	13.0	12.55	138	-0.72
Lactobionic acid	17.0	13.17	139	-2.13
Stearic acid				
	17.0	14.32	140	-0.98
Maltitol	17.0 17.0	14.32 15.28	140 141	-0.98 -0.03

Table S2. List of the 28 coformers employed in PSZ cocrystal screening ranked according toCOSMOquick F_{screen} function values. Acidic coformers are highlighted in orange, neutralcoformers are highlighted in green.

Coformer	Abbreviation	MW (g/mol)	COSMOquick ranking	F _{screen}	ΔH _{mix} (Kcal/mol)
Oxalic acid	OXA	90.04	2	1.48	-6.68
3,4-Dihydroxybenzoic acid	DHB	154.12	6	3.58	-5.09
Gentisic acid	GEN	154.12	9	3.84	-4.84
Fumaric acid	FUM	116.07	10	4.05	-4.63
DL-Tartaric acid	TAR	150.09	11	4.08	-6.12
L-Tartaric acid	LTA	150.09	12	4.08	-6.12
Maleic acid	MLE	116.07	14	4.05	-4.20
trans-Aconitic acid	ACA	174.11	15	4.63	-5.57
1-Hydroxy-2-naphtoic acid	XIN	188.18	16	4.71	-3.46
Salicylic acid	SAL	138.12	21	5.20	-2.97
L-Malic acid	MLA	134.09	22	5.30	-4.39
Citric acid	СІТ	192.12	26	5.72	-5.51
Benzoic acid	BNZ	122.12	27	5.73	-1.92
Succinic acid	SUC	118.09	28	5.74	-3.44
Vanillic acid	VAN	168.15	32	6.14	-2.54
L-Lactic acid	LLA	90.08	39	6.46	-1.71
4-aminobenzoic acid	ABA	137.14	40	6.48	-1.68
Nicotinic acid	NIC	123.11	42	6.75	-0.90
Ferulic acid	FER	194.18	47	6.94	-2.25
Maltol	MLL	126.11	54	7.10	-0.04

Adipic acid	ADI	146.14	71	7.61	-2.59
Vanillin	VLN	152.15	73	7.63	-0.54
L-Proline	PRO	115.13	75	7.71	0.06
Nicotinamide	NCT	122.13	80	7.88	0.23
Urea	URE	60.06	82	7.97	0.32
Pyridoxine	PYD	169.18	83	7.97	-1.21
Xylitol	XLT	152.15	125	11.05	-0.17
D-Mannitol	MNT	182.17	131	11.80	-0.44

	1	2	3	4	5	6	7	8	9	10	11	12
^	D07	PSZ	PSZ	D07	PSZ	PSZ	D07	PSZ	PSZ	DC7	PSZ	PSZ
^	P52	MLA	MNT	P52	MLA	MNT	P52	MLA	MNT	P52	MLA	MNT
R	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ
Ъ	ADI	NIC	NCT	ADI	NIC	NCT	ADI	NIC	NCT	ADI	NIC	NCT
~	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ
C	BNZ	OXA	PRO	BNZ	OXA	PRO	BNZ	OXA	PRO	BNZ	OXA	PRO
_	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ
U	CIT	SUC	PYD	CIT	SUC	PYD	СІТ	SUC	PYD	СІТ	SUC	PYD
=	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ
-	FUM	TAR	URE	FUM	TAR	URE	FUM	TAR	URE	FUM	TAR	URE
-	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ
г	GEN	LTA	VLN	GEN	LTA	VLN	GEN	LTA	VLN	GEN	LTA	VLN
~	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ
G	LLA	VAN	XLT	LLA	VAN	XLT	LLA	VAN	XLT	LLA	VAN	XLT
	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ	PSZ
п	MLE	MLL	ACA	MLE	MLL	ACA	MLE	MLL	ACA	MLE	MLL	ACA
		Ethanol			Acetonitrile		E	Ethyl acetat	e		THF:H2O	

Figure S1. Layout of the 96-wells microtiter plate employed in the HTS of PSZ; the solvent employed in the slurry equilibration step is reported in red. Posaconazole was employed as control in wells A1, A4, A7 and A10.

2 Posaconazole

2.1 DSC

Figure S2. DSC thermogram of PSZ Form I, collected with a heating rate of 10 K/min. Posaconazole Form I was obtained by slurry equilibration of the purchased compound in ethanol for two days.

2.2 Raman Spectrum

Figure S3. FT-Raman spectrum of PSZ form I and the purchased posaconazole, confirming the increased amorphicity of the latter.

Figure S4. PXRD patterns of purchased posaconazole (blue, top) and PSZ Form I (green, bottom).

Figure S5. Proton NMR spectrum of purchased posaconazole collected in deuterated DMSO.

3 Posaconazole – Ferulic Acid Hydrate Cocrystal (PSZ-FER-H2O)

TG /% 104 -102 Mass Change: -0.92 % 100 Mass Change: -0.06 % 98 96 94 92 [1] [1] a10061.dt2 ΤG 90 200 Temperature /°C 50 100 150 250 300

3.1 TG-FTIR

Figure S7. Comparison of the IR spectrum of the gas released at 70°C (blue) with the reference spectrum of H_2O (red).

3.2 Raman Spectrum

Figure S8. FT-Raman spectra of PSZ Form I, trans-ferulic acid and PSZ-FER-H2O.

3.3 Powder X-ray Diffraction Patterns

Figure S9. PXRD patterns of PSZ Form I, trans-ferulic acid and PSZ-FER-H2O.

3.4 **Proton Nuclear Magnetic Resonance (**¹**H-NMR)**

Figure S10. Proton NMR spectra of PSZ-FER-H2O and PSZ in deuterated DMSO; chemical shifts reported in ppm. The peaks of the coformer are highlighted in yellow.

Posaconazole – Maleic Acid Cocrystal (PSZ-MLE) 4

4.1 DSC

Comment: P21-3007a; Tzero hermetic; 3min. N2 (- <0.01%)

Figure S11. DSC thermogram of PSZ-MLE, collected with a heating rate of 10 K/min.

4.2 **TG-FTIR**

Figure S12. TG-FTIR thermogram of PSZ-MLE

Figure S13. FT-Raman spectra of PSZ Form I, Maleic acid and PSZ-MLE.

Figure S14. PXRD patterns of PSZ Form I, Maleic acid and PSZ-MLE.

4.5 Proton Nuclear Magnetic Resonance (¹H-NMR)

Figure S15. Proton NMR spectra of PSZ-MLE and PSZ in deuterated DMSO; chemical shifts reported in ppm. The peaks of the coformer are highlighted in yellow.

5 Posaconazole – L-Malic Acid Cocrystal (PSZ-MLA)

5.1 DSC

Figure S16. DSC thermogram of PSZ-MLA, collected with a heating rate of 10 K/min.

5.2 TG-FTIR

Figure S17. TG-FTIR thermogram of PSZ-MLA, collected with a heating rate of 10 K/min.

Figure S18. FT-Raman spectra of PSZ Form I, L-malic acid and PSZ-MLA.

5.4 Powder X-ray Diffraction Patterns

Figure S19. PXRD patterns of PSZ Form I, L-malic acid and PSZ-MLA.

5.5 Proton Nuclear Magnetic Resonance (¹H-NMR)

Figure S20. Proton NMR spectra of PSZ-MLA and PSZ in deuterated DMSO; chemical shifts reported in ppm. The peaks of the coformer are highlighted in yellow.

6 Posaconazole – Citric Acid Cocrystal (PSZ-CIT)

6.1 DSC

Figure S21. DSC thermogram of PSZ-CIT, collected with a heating rate of 10 K/min.

6.2 TG-FTIR

Figure S22. TG-FTIR thermogram of PSZ-CIT, collected with a heating rate of 10 K/min.

Figure S23. FT-Raman spectra of PSZ Form I, citric acid and PSZ-CIT.

6.4 Powder X-ray Diffraction Patterns

Figure S24. PXRD patterns of PSZ Form I, citric acid and PSZ-CIT.

Figure S25. Proton NMR spectra of PSZ-CIT and PSZ collected in deuterated DMSO; chemical shifts reported in ppm. The peaks of the coformer are highlighted in yellow.

7 Posaconazole – 1-Hydroxy-2-Naphthoic Acid Cocrystal (PSZ-XIN)

7.1 DSC

Figure S26. DSC thermogram of PSZ-XIN, collected with a heating rate of 10 K/min.

7.2 TG-FTIR

Figure S27. TG-FTIR thermogram of PSZ-XIN, collected with a heating rate of 10 K/min.

Figure S28. FT-Raman spectra of PSZ form I, 1-hydroxy-2-naphthoic acid and PSZ-XIN.

Figure S29. PXRD patterns of PSZ Form I, 1-hydroxy-2-naphthoic acid and PSZ-XIN.

7.5 Proton Nuclear Magnetic Resonance (¹H-NMR)

Figure S30. Proton NMR spectra of PSZ-XIN and PSZ collected in deuterated DMSO; chemical shifts reported in ppm. The peaks of the coformer are highlighted in yellow.

8 Posaconazole – Gentisic Acid Cocrystal (PSZ-GEN)

8.1 DSC

Figure S31. DSC thermogram of PSZ-GEN, collected with a heating rate of 10 K/min.

8.2 TG-FTIR

Figure S32. TG-FTIR thermogram of PSZ-GEN, collected with a heating rate of 10 K/min.

8.3 Raman Spectrum

Figure S33. FT-Raman spectra of PSZ Form I, gentisic acid and PSZ-GEN.

8.4 Powder X-ray Diffraction Patterns

Figure S34. PXRD patterns of PSZ Form I, gentisic acid and PSZ-GEN.

8.5 **Proton Nuclear Magnetic Resonance (**¹**H-NMR)**

Figure S35. Proton NMR spectra of PSZ-GEN and PSZ collected in deuterated DMSO; chemical shifts reported in ppm. The peaks of the coformer are highlighted in yellow.

9 Posaconazole – Salicylic Acid Cocrystal (PSZ-SAL)

9.1 DSC

Figure S36. DSC thermogram of PSZ-SAL, collected with a heating rate of 10 K/min.

9.2 TG-FTIR

Figure S37. TG-FTIR thermogram of PSZ-SAL, collected with a heating rate of 10 K/min.

9.3 Raman Spectrum

Figure S38. FT-Raman spectra of PSZ Form I, salicylic acid and PSZ-SAL.

9.4 Powder X-ray Diffraction Patterns

Figure S39. PXRD patterns of PSZ Form I, salicylic acid and PSZ-SAL.

9.5 Proton Nuclear Magnetic Resonance (¹H-NMR)

Figure S40. Proton NMR spectra of PSZ-SAL and PSZ collected in deuterated DMSO, chemical shifts reported in ppm. The peaks of the coformer are highlighted in yellow.

10 Posaconazole – 4-Aminobenzoic Acid Cocrystal (PSZ-ABA)

10.1 DSC

Figure S41. DSC thermogram of PSZ-ABA, collected with a heating rate of 10 K/min.

10.2 TG-FTIR

Figure S42. TG-FTIR thermogram of PSZ-ABA, collected with a heating rate of 10 K/min.

Figure S43. FT-Raman spectra of PSZ Form I, 4-aminobenzoic acid and PSZ-ABA.

10.4 Powder X-ray Diffraction Patterns

Figure S44. PXRD patterns of PSZ Form I, 4-aminobenzoic acid and PSZ-ABA.

Figure S45. Proton NMR spectra of PSZ-ABA and PSZ collected in deuterated DMSO; chemical shifts reported in ppm. The peaks of the coformer are highlighted in yellow.

11 Posaconazole – L-Lactic Acid Cocrystal (PSZ-LLA)

11.1 DSC

11.2 TG-FTIR

Figure S47. TG-FTIR thermogram of PSZ-LLA, collected with a heating rate of 10 K/min.

Figure S48. FT-Raman spectra of PSZ Form I and PSZ-LLA.

11.4 Powder X-ray Diffraction Patterns

Figure S49. PXRD patterns of PSZ Form I, L-lactic acid and PSZ-LLA.

Figure S50. Proton NMR spectra of PSZ-LLA and PSZ collected in deuterated DMSO; chemical shifts reported in ppm. The peaks of the coformer are highlighted in yellow.

12 Posaconazole – Adipic Acid Hydrate Cocrystal (PSZ-ADI-H2O)

12.1 TG-FTIR

Figure S51. TG-FTIR thermogram of PSZ-ADI-H2O, collected with a heating rate of 10 K/min.

Figure S52. Comparison of the IR spectrum of the gas released at 25° C (red) with the spectrum of H₂O (blue).

12.2 Raman Spectrum

Figure S53. FT-Raman spectra of PSZ Form I, adipic acid and PSZ-ADI-H2O.

Figure S54. PXRD patterns of PSZ Form I, adipic acid and PSZ-ADI-H2O.

12.4 Proton Nuclear Magnetic Resonance (¹H-NMR)

Figure S55. Proton NMR spectra of PSZ-ADI-H2O and PSZ collected in deuterated DMSO; chemical shifts reported in ppm. The peaks of the coformer are highlighted in yellow.

13 Posaconazole – Succinic Acid Hydrate Cocrystal (PSZ-SUC-H2O)

13.1 TG-FTIR

Figure S56. TG-FTIR thermogram of PSZ-SUC-H2O, collected with a heating rate of 10 K/min.

Figure S57. Comparison of the IR spectrum of the gas released at 100°C (red) with the spectrum of H_2O (blue).

13.2 Raman Spectrum

Figure S58. FT-Raman spectra of PSZ Form I, succinic acid and PSZ-SUC-H2O.

Figure S59. PXRD patterns of PSZ Form I, succinic acid and PSZ-SUC-H2O.

13.4 Proton Nuclear Magnetic Resonance (¹H-NMR)

Figure S60. Proton NMR spectra of PSZ-SUC-H2O and PSZ collected in deuterated DMSO; chemical shifts reported in ppm. The peaks of the coformer are highlighted in yellow.

14 Posaconazole – Fumaric Acid THF Solvate Cocrystal (PSZ-FUM-THF)

14.1 TG-FTIR

Figure S61. TG-FTIR thermogram of PSZ-FUM-THF, collected with a heating rate of 10 K/min.

Figure S62. Comparison of the IR spectrum of the gas released at 100°C (red) with the spectrum of THF (blue).

14.2 Raman Spectrum

Figure S63. FT-Raman spectra of PSZ Form I, fumaric acid and PSZ-FUM-THF.

Figure S64. PXRD patterns of PSZ Form I, fumaric acid and PSZ-FUM-THF.

Figure S65. Proton NMR spectra of PSZ-FUM-THF and PSZ collected in deuterated DMSO; chemical shifts reported in ppm. The peaks of the coformer are highlighted in yellow, while the peaks of THF are highlighted in blue.

15.1 TG-FTIR

Figure S67. Comparison of the IR spectrum of the gas released at 100° C (red) with the spectrum of H₂O and acetonitrile.

15.2 Raman Spectrum

Figure S68. FT-Raman spectra of PSZ Form I, fumaric acid and PSZ-FUM-H2O.

15.3 Powder X-ray Diffraction Patterns

Figure S69. PXRD patterns of PSZ Form I, fumaric acid and PSZ-FUM-H2O.

15.4 Proton Nuclear Magnetic Resonance (¹H-NMR)

Figure S70. Proton NMR spectra of PSZ-FUM-H2O and PSZ collected in deuterated DMSO; chemical shifts reported in ppm. The peaks of the coformer are highlighted in yellow.

16 Posaconazole – 3,4-Dihydroxybenzoic Acid Hydrate Cocrystal (PSZ-DHB-H2O)

16.1 TG-FTIR

Figure S71. TG-FTIR thermogram of PSZ-DHB-H2O, collected with a heating rate of 10 K/min.

Figure S72. Comparison of the IR spectrum of the gas released at 90°C (red) with the spectrum of H_2O (blue).

Figure S73. FT-Raman spectra of PSZ Form I, 3,4-dihydroxybenzoic acid and PSZ-DHB-H2O.

16.3 Powder X-ray Diffraction Patterns

Figure S74. PXRD patterns of PSZ Form I, 3,4-dihydroxybenzoic acid and PSZ-DHB-H2O.

16.4 **Proton Nuclear Magnetic Resonance (**¹H-NMR)

Figure S75. Proton NMR spectra of PSZ-DHB-H2O and PSZ collected in deuterated DMSO; chemical shifts reported in ppm. The peaks of the coformer are highlighted in yellow.

17 Posaconazole-Oxalic acid Complex

17.1.1 Powder X-ray Diffraction pattern

Figure S76. Experimental PXRD patterns of Posaconazole (PSZ Form I), oxalic acid dihydrate and the new solid form (POSZ-OXA) obtained with LAG and RC experiments.

18 Computational Tools Comparison

18.1 Hydrogen Bond Propensity

Table S3. HBP coformer ranking according to multicomponent score, area under ROC reported for the fitted model and comparison with the experimental results. Positive cocrystallization results are reported in green (v) while negative results are reported in blue (x).

		HBP prediction	on	Experimental
Coformer	HBP	multi-component	Area under the	
	ranking	score	ROC curve	cocrystal
Maltol	1	0.127	0.815	X
3,4-Dihydroxybenzoic	0	0.440	0.000	
acid	2	0.119	0.833	V
4-Aminobenzoic acid	3	0.116	0.870	V
Salicylic acid	4	0.108	0.833	v

Vanillic acid	5	0.082	0.837	X
Pyridoxine	6	0.079	0.789	x
Ferulic acid	7	0.076	0.837	v
1-Hydroxy-2-naphtoic	8	0.075	0.833	V
acid	0	0.075	0.000	•
Vanillin	9	0.071	0.834	x
Nicotinamide	10	0.060	0.837	x
Xylitol	11	0.053	0.834	x
D-Mannitol	12	0.050	0.835	x
trans-Aconitic acid	13	0.050	0.864	x
Maleic acid	14	0.043	0.865	v
Fumaric acid	15	0.042	0.864	v
Adipic acid	16	0.040	0.865	v
L-Proline	17	0.039	0.859	x
Succinic acid	18	0.036	0.865	v
Nicotinic acid	19	0.032	0.866	x
L-Lactic acid	20	0.027	0.864	v
L-Malic acid	21	0.016	0.864	v
Gentisic acid	22	0.012	0.871	v
Urea	23	0.012	0.894	x
DL-Tartaric acid	24	0.009	0.863	x
L-Tartaric acid	25	0.009	0.863	x
Citric acid	26	0.007	0.833	v
Benzoic acid	27	-0.022	0.875	x
Oxalic acid	28	-0.156	0.865	x

18.2 Molceular Complmentarity

Table S4. MC coformer ranking based on calculated complementarity score, hit rate percentage and comparison with experimental results. Positive cocrystallization results are reported in green (v) while negative results are reported in blue (x).

Coformer	MC ranking	Complementarity score	Hit rate (%)	Experimental cocrystal		
Ferulic acid	1	2.98	30	v		
Adipic acid	2	3.11	10	v		
1-Hydroxy-2-naphthoic	2	2 20	0	М		
acid	5	5.52	0	V		
4-Aminobenzoic acid	4	3.42	0	v		
Benzoic acid	5	3.49	0	x		
3,4-dihydroxybenzoic	6	3 56	0	Y		
acid	0	3.50	0	v		
Nicotinamide	7	3.60	0	x		
Nicotinic acid	8	3.69	0	x		
Fumaric acid	9	3.80	0	v		
Vanillin	10	3.84	0	x		
Salicylic acid	11	3.88	0	v		
Succinic acid	12	3.91	10	v		
Maleic acid	13	4.04	0	v		
Malic acid	14	4.16	0	v		
Gentisic acid	15	4.18	0	v		
Citric acid	16	4.20	0	v		
Pyridoxine	17	4.28	0	x		
Vanillic acid	18	4.41	0	x		
Xylitol	19	4.55	0	x		
L-proline	20	4.55	0	x		

Maltol	21	4.67	0	x
Mannitol	22	4.89	0	x
trans-Aconitic acid	23	4.98	0	x
L-lactic acid	24	5.56	0	v
Oxalic acid	25	5.58	0	x
DL-tartaric acid	26	5.71	0	x
L-tartaric acid	27	5.71	0	x
Urea	28	6.16	0	x

Table S5. Result of molecular complementarity analysis. For each posaconazole conformation the molecular descriptors that fail the complementarity criterion with the coformer are reported: M/L (red), S (blue), S/L (black), FNO (green), D (violet).

		Posaconazole Conformations												
Coformer	1	2	3	4	5	6	7	8	9	10				
Salicylic acid	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S				
4-aminobenzoic acid	S	S	S	S	M/L, S	M/L, S	M/L, S	M/L, S	S	S, D				
trans-aconitic acid	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S, D				
Xinafoic acid	S	M/L, S	S	S	M/L, S	M/L, S	M/L, S	M/L, S	S	M/L, S, D				
3,4-dihydroxybenzoic	0		0	0					0					
acid	5	IVI/L, S	5	5	WI/L, 5	M/L, S	M/L, 5	W/L, S	5	IVI/L, S				
gentisic acid	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S				
Maleic acid	S	S	S	S	M/L, S	M/L, S	M/L, S	M/L, S	S	S				
Malic acid	FNO	S, FNO	S/L, FNO	S, FNO	M/L, FNO	M/L, S,	M/L, S, FNO	M/L, S,	FNO	S, FNO				
Oxalic acid	M/L, S, FNO	M/L, S,	M/L, S, FNO	M/L, S,	M/L, S, FNO	M/L, S,	M/L, S, FNO	M/L, S,	M/L, S,	M/L, S,				
Pyridoxine	M/L	M/L, S	M/L, S/L	M/L, S	M/L	M/L, S	M/L, S/L	M/L, S	M/L	M/L, S, D				
Vanillin	M/L, S	M/L, S	M/L	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S				
Ferulic acid		S		S	M/L, S	M/L, S	M/L	M/L, S		S				

Coformar		Posaconazole Conformations												
Colormer	1	2	3	4	5	6	7	8	9	10				
Xylitol	S/L	S/L	S/L	S/L	M/L, S/L	M/L, S/L	M/L, S/L	M/L, S,	S/L	S/L				
Maltol	M/L, S	M/L, S	M/L	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	<mark>M/L, S</mark> , D				
Vanillic acid	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S				
Nicotinic acid	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	<mark>M/L, S</mark> , D				
L-lactic acid	M/L, S/L	M/L, S/L	M/L, S/L	M/L, S/L	M/L, S/L	<mark>M/L, S</mark> , S/L	<mark>M/L</mark> , <mark>S</mark> , S/L	<mark>M/L</mark> , S, S/L	M/L, S/L	<mark>M/L, S</mark> , S/L				
L-proline	M/L, S/L	M/L, S/L	M/L, S/L	M/L, S/L	M/L, S/L	M/L, S/L	M/L, S/L	M/L, S, S/I	M/L, S/L	M/L, S/L, D				
	<mark>M/L</mark> , S/L,	M/L, S/L,	<mark>M/L</mark> , S/L,	M/L, S/L,	M/L, S/L,	M/L, S/L,	<mark>M/L</mark> , S/L,	M/L, S/L,	<mark>M/L</mark> , S/L,	M/L, S/L,				
L-tartaric acid	FNO	FNO	FNO	FNO	FNO	FNO	FNO	FNO	FNO	FNO				
Adipic acid	S	S		S	S	S	S	S	S	S, S/L				
Benzoic acid	S	M/L, S	S	S	M/L, S	M/L, S	M/L, S	M/L, S	S	<mark>M/L, S</mark> , S/L				
Citric acid	S/L, FNO	S/L, FNO	S/L, FNO	S/L, FNO	M/L, S/L,	M/L, FNO	M/L, S/L,	M/L, S/L,	S/L, FNO	M/L, D,				
Fumaric acid	S	S	S	S	S	S	S	S	S	S				
Mannitol	M/L, S/L	M/L, S/L	M/L, S/L	M/L, S/L	M/L, S/L	M/L, S/L	M/L, S/L	M/L, S/L	M/L, S/L	M/L, S/L				
Nicotinamide	S	M/L, S	S	S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S	M/L, S				
Succinic acid	S	S		S	S	S	S	S	S	<mark>S</mark> , S/L				

Coformer		Posaconazole Conformations											
	1	2	3	4	5	6	7	8	9	10			
Urea	M/L, S, S/L, FNO	M/L, S, FNO	M/L, S, S/L, FNO	M/L, S/L, FNO	M/L, S, S/L, FNO	M/L, S, FNO	M/L, S, S/L, FNO	M/L, S/L, FNO	M/L, S, FNO	M/L, S, D, FNO			

Table S6. MC coformer ranking based on average complementarity score. The complementarity score is calculated for each posaconazole conformation and is averaged on the ten conformations in the last column.

				Po	osaconazol	e Conform	ations				Average
Coformer	1	2	3	4	5	6	7	8	9	10	C _{score}
Ferulic acid	2.79	2.79	2.56	2.92	3.18	3.25	3.07	3.18	2.65	3.36	2.98
Adipic acid	2.47	3.12	2.89	2.62	2.96	3.58	3.40	3.40	2.97	3.69	3.11
Xinafoic acid	2.69	3.33	3.10	2.83	3.17	3.79	3.61	3.61	3.19	3.90	3.32
4-Aminobenzoic acid	2.79	3.43	3.20	2.93	3.28	3.89	3.71	3.71	3.29	4.00	3.42
Benzoic acid	2.85	3.50	3.26	2.99	3.34	3.95	3.77	3.77	3.35	4.07	3.49
3,4-dihydroxybenzoic	0.05	o 44	0.04	0.00	0.04	0.00	0.70	0.70		4.04	0.50
acid	3.25	3.44	3.21	3.38	3.64	3.90	3.72	3.72	3.30	4.01	3.56
Nicotinamide	3.14	3.55	3.32	3.28	3.53	4.01	3.84	3.83	3.41	4.12	3.60
Nicotinic acid	3.06	3.70	3.47	3.20	3.54	4.16	3.98	3.98	3.56	4.28	3.69

Coformar				Po	osaconazol	e Conform	ations				Average
Coformer	1	2	3	4	5	6	7	8	9	10	C _{score}
Ferulic acid	2.79	2.79	2.56	2.92	3.18	3.25	3.07	3.18	2.65	3.36	2.98
Fumaric acid	3.39	3.73	3.50	3.52	3.78	4.19	4.01	4.01	3.59	4.30	3.80
Vanillin	3.51	3.73	3.50	3.63	3.90	4.20	4.02	4.01	3.59	4.31	3.84
Salicylic acid	3.45	3.82	3.58	3.58	3.83	4.27	4.09	4.09	3.66	4.39	3.88
Succinic acid	3.27	3.92	3.69	3.42	3.76	4.38	4.20	4.20	3.77	4.49	3.91
Maleic acid	3.98	3.79	3.55	4.10	4.36	4.24	4.06	4.36	3.64	4.36	4.04
Malic acid	3.91	4.03	3.79	4.03	4.29	4.48	4.31	4.30	3.88	4.60	4.16
Gentisic acid	3.82	4.08	3.85	3.94	4.20	4.54	4.36	4.36	3.94	4.66	4.18
Citric acid	3.58	4.21	3.98	3.71	4.05	4.67	4.49	4.49	4.07	4.78	4.20
Pyridoxine	3.65	4.29	4.06	3.79	4.13	4.75	4.57	4.57	4.14	4.86	4.28
Vanillic acid	4.00	4.34	4.11	4.13	4.39	4.80	4.62	4.62	4.20	4.91	4.41
Xylitol	4.66	4.34	4.10	4.79	5.05	4.86	4.45	5.05	4.28	3.89	4.55
L-proline	3.92	4.56	4.33	4.06	4.40	5.02	4.84	4.84	4.41	5.13	4.55
Maltol	4.06	4.68	4.45	4.18	4.52	5.14	4.96	4.95	4.53	5.25	4.67
Mannitol	4.89	4.56	4.33	5.01	5.28	5.09	4.83	5.28	4.51	5.11	4.89

		Posaconazole Conformations										
Coformer	1	2	3	4	5	6	7	8	9	10	C _{score}	
Ferulic acid	2.79	2.79	2.56	2.92	3.18	3.25	3.07	3.18	2.65	3.36	2.98	
trans-Aconitic acid	4.35	4.99	4.76	4.49	4.83	5.45	5.27	5.27	4.84	5.56	4.98	
L-Lactic acid	5.13	5.49	5.26	5.27	5.52	5.95	5.77	5.77	5.34	6.06	5.56	
Oxalic acid	5.17	5.51	5.28	5.30	5.55	5.97	5.79	5.79	5.36	6.08	5.58	
L-Tartaric acid	5.46	5.58	5.34	5.58	5.84	6.03	5.85	5.85	5.43	6.15	5.71	
Urea	5.53	6.17	5.94	5.67	6.01	6.63	6.45	6.45	6.02	6.74	6.16	