Supporting Information

Subcellular Delivery of Hydrogen Sulfide Using Small Molecule Donors Impacts Organelle Stress

Annie K. Gilbert and Michael D. Pluth*

Department of Chemistry and Biochemistry Materials Science Institute Knight Campus for Accelerating Scientific Impact Institute of Molecular Biology University of Oregon Eugene, OR 97403-1253 United States.

Contact Information:

Michael D. Pluth pluth@uoregon.edu

Table of Contents

Page

1.	Fluorescence imaging of MitoTCM compared to NaSH	S2
2.	Fluorescence imaging of MitoTCM compared to TCM alkyne	S3
3.	Fluorescence imaging of LysoTCM compared to TCM alkyne	S4
4.	Fluorescence imaging of ERTCM compared to TCM alkyne	S5
5.	Fluorescence imaging of GolgiTCM compared to TCM alkyne	S6
6.	Selectivity experiment of localized delivery	S 7
7.	Colocalization negative control experiment	S 8
8.	Monensin Cell Viability Experiment	S9
9.	NMR Spectra	S10

1. Fluorescence imaging of **MitoTCM** compared to NaSH

Figure S1. Fluorescence imaging of H₂S produced by **MitoTCM** compared to NaSH in HeLa cells. Cells were incubated with MitoTracker (50 nM) and (a) vehicle (0.5% DMSO), (b) Mito-HS (5 μ M), (c) Mito-HS (5 μ M) and NaSH (200 nM), (d) Mito-HS (5 μ M) and **MitoTCM** (200 nM). Cells were incubated with MitoTracker and vehicle or Mito-HS for 30 minutes, and then either the vehicle, NaSH or **MitoTCM** for 60 min followed by imaging. Bar scale: 25 μ m.

2. Fluorescence imaging of MitoTCM compared to TCM alkyne

Figure S2. Fluorescence imaging of H₂S produced by **MitoTCM** compared to **TCM alkyne** in HeLa cells. Cells were incubated with MitoTracker (50 nM) and (a) vehicle (0.5% DMSO), (b) Mito-HS (5 μ M), (c) Mito-HS (5 μ M) and **MitoTCM** (200 nM), (d) Mito-HS (5 μ M) and **TCM alkyne** (200 nM). Cells were incubated with MitoTracker and vehicle or Mito-HS for 30 minutes, and then either the vehicle, **MitoTCM** or **TCM alkyne** for 60 min followed by imaging. Bar scale: 25 μ m.

Figure S3. Fluorescence imaging of H₂S produced by **LysoTCM** compared to **TCM alkyne** in HeLa cells. Cells were incubated with LysoTracker (50 nM) and (a) vehicle (0.5% DMSO), (b) Lyso-AFP (10 μ M), (c) Lyso-AFP (10 μ M) and NaSH (200 μ M, positive control), (d) Lyso-AFP (10 μ M) and **LysoTCM**, (e) Lyso-AFP (10 μ M) and **TCM alkyne** (200 nM). Cells were incubated with LysoTracker and vehicle or Lyso-AFP for 30 minutes, and then either the vehicle, NaSH, **LysoTCM**, or **TCM alkyne** for 60 min followed by imaging. Bar scale: 25 μ m.

4. Fluorescence imaging of ERTCM compared to TCM alkyne

Figure S4. Fluorescence imaging of H₂S produced by ERTCM compared to TCM alkyne in HeLa cells. Cells were incubated with ERTracker (50 nM) and (a) vehicle (0.5% DMSO), (b) Na-H₂S-ER (10 μ M), (c) Na-H₂S-ER (10 μ M) and NaSH (200 μ M, positive control), (d) Na-H₂S-ER (10 μ M) and ERTCM, (e) Na-H₂S-ER (10 μ M) and TCM alkyne (200 nM). Cells were incubated with ERTracker and vehicle or Na-H₂S-ER for 30 minutes, and then either the vehicle, NaSH, ERTCM, or TCM alkyne for 60 min followed by imaging. Bar scale: 25 μ m.

5. Fluorescence imaging of GolgiTCM compared to TCM alkyne

Figure S5. Fluorescence imaging of H₂S produced by **GolgiTCM** compared to **TCM alkyne** in HeLa cells. Cells were incubated with BODIPYTM TR Ceramide (2 μ g/mL) and (a) vehicle (0.5% DMSO), (b) Golgi-NH (5 μ M), (c) Golgi-NH (5 μ M) and NaSH (200 μ M, positive control), (d) Golgi-NH (5 μ M) and **GolgiTCM**, (e) Golgi-NH (5 μ M) and **TCM alkyne** (200 nM). Cells were incubated with BODIPYTM TR Ceramide and vehicle or Golgi-NH for 30 minutes, and then either the vehicle, NaSH, **GolgiTCM**, or **TCM alkyne** for 60 min followed by imaging. Bar scale: 25 μ m.

6. Selectivity experiment of localized delivery

Figure S6. Fluorescence imaging of H₂S produced by **MitoTCM**, AP39, and **ERTCM** in the presence of Mito-HS in HeLa cells. Cells were incubated with MitoTracker (50 nM) and (a) vehicle (0.5% DMSO), (b) Mito-HS (10 μ M), (c) Mito-HS (10 μ M) and NaSH (200 μ M, positive control), (d) Mito-HS (10 μ M) and **MitoTCM** (200 nM), (e) Mito-HS (10 μ M) and AP39 (200 nM), (f) Mito-HS (10 μ M) and **ERTCM** (200 nM). Cells were incubated with MitoTracker and vehicle or Mito-HS for 30 minutes, and then either the vehicle, **MitoTCM**, AP39, or **ERTCM** for 60 min followed by imaging. Bar scale: 25 μ m.

7. Colocalization negative control experiment

Figure S7. Fluorescence imaging of H₂S produced by **MitoTCM** using Mito-HS in the presence of Lysotracker in HeLa cells. Cells were incubated with LysoTracker (50 nM) and Mito-HS (5 μ M) for 30 minutes, then incubated with **MitoTCM** (200 nM) for 60 min followed by imaging. Pearson's coefficient = 0.30 suggesting minimal colocalization of H₂S produced by MitoTCM and imaged with Mito-HS with LysoTracker. Bar scale: 25 μ m.

8. Monensin Cell Viability Experiment

Figure S8. Cell viability of H9C2 cells in the presence of Monensin. H9C2 cells were treated with either DMSO (0.5%, vehicle) or Monensin (0.5, 1.0, 2.0, or 3 μ M) for 19 h. Cell viability was assessed using a CCK-8 kit. Results are expressed as mean \pm SD (n = 12).

9. NMR Spectra

 1H NMR (600 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (151 MHz, CDCl₃) spectra of 1-ethynyl-4-isothiocyanatobenzene.

 1H NMR (500 MHz, DMSO-*d*₆, 60 °C) and $^{13}C\{^1H\}$ NMR (126 MHz, DMSO-*d*₆, 60 °C) spectra of TCM alkyne

¹H NMR (500 MHz, DMSO-*d*₆) and ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆) spectra of (6-bromohexyl)triphenylphosphonium bromide.

 $^{31}P{^{1}H}$ NMR (202 MHz, DMSO-*d*₆) spectrum of (6-bromohexyl)triphenylphosphonium bromide.

¹H NMR (500 MHz, DMSO- d_6) and ¹³C{¹H} NMR (151 MHz, CDCl₃) spectra of (6-azidohexyl)triphenylphosphonium bromide.

³¹P{¹H} NMR (202 MHz, CDCl₃) spectrum of (6-azidohexyl)triphenylphosphonium bromide.

— 19.66

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2! Chemical Shift (ppm) 1H NMR (500 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (126 MHz, CDCl₃) spectra of 4-(2-azidoethyl)morpholine.

¹H NMR (500 MHz, CDCl₃) and ¹³C{¹H} NMR (126 MHz, CDCl₃) spectra of *N*-(2-azidoethyl)-4-methylbenzenesulfonamide.

 1H NMR (500 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (126 MHz, CDCl₃) spectra of 4-(2-azidoethyl)-benzenesulfonamide.

¹H NMR (600 MHz, DMSO- d_6 , 60 °C) and ¹³C{¹H} NMR (126 MHz, DMSO- d_6 , 60 °C) spectra of **MitoTCM**.

³¹P{¹H} NMR (202 MHz, DMSO- d_6 , 60 °C) spectrum of **MitoTCM**.

.50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2! Chemical Shift (ppm) ¹H NMR (600 MHz, DMSO- d_6 , 60 °C) and ¹³C{¹H} NMR (151 MHz, DMSO- d_6 , 60 °C) spectra of LysoTCM.

¹H NMR (600 MHz, DMSO- d_6 , 60 °C) and ¹³C{¹H} NMR (151 MHz, DMSO- d_6 , 60 °C) spectra of **ERTCM**.

¹H NMR (600 MHz, DMSO- d_6 , 60 °C) and ¹³C{¹H} NMR (151 MHz, DMSO- d_6 , 60 °C) spectra of **GolgiTCM**.

 1H NMR (500 MHz, CD₃OD) and $^{31}P\{^1H\}$ NMR (202 MHz, CD₃OD) spectra of Mito-HS.

¹H NMR (500 MHz, DMSO-*d*₆) spectrum of Na-H₂S-ER.

