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Supplementary Note  
Details of CORENODE development and validation  

 
Definition of a core regulatory TF set for genome-wide network decomposition 

The maximal practical set of TF regulators for genome-wide fitting is limited by two factors. First, the number 
of possible TF combinations rises rapidly with each additional TF (i.e. fitting term), complicating overfitting 

control and eventually exceeding the available computational resources. For example, 19 TFs give 969 3-
mer combinations, 50 TFs give 19,600 3-mer combinations and 100 TFs give 161,700 3-mer combinations. 

Second, the ~600 TFs that meet minimal expression criteria in AML display significant internal collinearity 
(i.e. there are large groups of coexpressed TFs whose expression values display a high degree of 
correlation across AML samples; not shown), limiting the predictive power of a combinatorial regression 

approach. Therefore, we employed an integrative algorithm that prioritized TFs with known or predicted 
biological significance based on the published functional genomic datasets. Indeed, although an average 

mammalian cell expresses several hundred TFs, only a small number, variably referred to as 
reprogramming, master or core regulatory TFs, are principally important for lineage specification and, thus, 
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likely orchestrate the bulk of transcriptional regulation (49–53). These TFs have been shown to form highly 
interconnected transcriptional circuits (CRCs), are typically associated with superenhancers (SEs) and 

significantly overlap with context-specific gene dependencies (11,16,54,55).  

To generate a reasonably sized TF set for genome-wide target fitting, the 225 selective AML dependencies 

(see Methods) were intersected with a published curated database of human TFs (56) and genes associated 
with SEs in at least 10 out of 49 primary AML samples from Ref.(9), resulting in the following list of 

candidate CR TFs: ARID2, CEBPA, E2F3, FLI1, FOSL2, GFI1, GFI1B, IRF8, LYL1, MEF2C, MEF2D, 
MEIS1, MYB, RUNX1, RUNX2, SPI1, SREBF1, STAT5B, ZEB2 (Supplementary Fig. 1). Genome-wide 

regressions and validations were performed on this 19-member set. For additional validation, MHC-II 
regressions were repeated on 31- and 37-member sets as described in the main text (Supplementary Fig. 

2).  

Inevitably, this approach leaves out many potentially important regulators which do not meet one or more of 

the above criteria, for example non-essential TFs or non-DNA-binding cofactors. Instead, for each target 
gene CORENODE generates a non-exclusive list of potentially regulating TFs.  

n-mer construction 

The 19 CR TF genes were combined into n-mers and used to regress expression of each component of the 
expressed genome across the BeatAML dataset (Supplementary Fig. 1). Each n-mer consisted of n TF 

genes (i.e., a 3-mer contained 3 of the 19 TF genes). Therefore, there were 19 taken n at a time 
combinations of CR TFs: 171, 969, 3876, and 11628, respectively, for n=2–5. Each n-mer consisted of n 

terms linear in the component CR TF transformed expressions, n terms quadratic in the component CR TF 
transformed expressions, and n taken 2 at a time quadratic cross terms (yielding 1, 3, 6, and 10 cross terms, 

respectively, for n=2–5) in the component CR TF transformed expressions. For example, the regression 
equation for a 2-mer using MYB and CEBPA transformed mRNA to fit the transformed expression of gene 

A1BG would be as follows: 

 

 where: 
YA1BG is the transformed A1BG expression data 

Int is the intercept term 
TFMYB and TFCEBPA are the transformed expression data of the two CR TFs, and 
A, B, C, D, and E are the regression coefficients 
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Regression and leave-one-out error   

Standard multiple linear regression was carried out using the R routine “lm” with default options. The 

regressed “y” values were the transformed mRNA expression (described above) across the relevant 

samples; each n-mer combination was regressed separately against these values. Leave-one-out error 

(LOO), a type of cross-validation, was calculated analytically for each n-mer using the “PRESS” function 
from the R “MPV” package and the regression results from “lm”.  

By including quadratic and cross terms, we hypothesized that the n-mers would be able to capture non-
linear behaviors and TF interactions. For example, fitting expression of RPS14 with the expression of 3 CR 

TFs MEF2D, RUNX2 and SPI1 yields an adjusted r-squared of 0.39 when including the non-linear terms, but 
the adjusted r-squared is only 0.15 using just the linear terms; plots of actual vs. predicted expression for 

these two fits are shown in Box 1. While both regressions pass through the cluster of points around 
mRNA=10, the fit with the non-linear terms makes much better predictions at both lower and higher 

expression values. Including the non-linear terms also reduces the aggregate leave-one-out error (see 
discussion of this statistic below) by 30%. To demonstrate that not all n-mers have predictive power, even 

with the non-linear terms, we show the best possible fit for the same RPS14 expression data using 
expression of CR TFs GFI1B, IRF8 and MEIS1; clearly this 3-mer has no predictive power (Box 1c).  

 

Box 1. Examples of good and bad predictive models using RPS14 as a target. a, Expression levels of MEF2D, RUNX2 
and SPI1 are used as predictors; quadratic and cross terms are included in the model. b, Expression levels of MEF2D, 

RUNX2 and SPI1 are used as predictors; only linear terms are included in the model. c, Expression levels of GFI1B, IRF8 

and MEIS1 are used as predictors; despite inclusion of quadratic and cross terms this model has no predictive power. Each 

data point is a sample from the BeatAML dataset (n=510). Predicted and actual expression values are given as 
log2(TMP+1). 
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n-mer benchmarking   

We undertook benchmarking to understand the appropriate level of n that would provide sufficient prediction 

accuracy, minimize the risk overfitting and have reasonable computation times. Indeed, increasing the 
number of fitting terms poses two major obstacles. First, given our intention to evaluate all n-mer 

combinations across each of 9000 genes, there are significant computational difficulties posed by the 

 

Box 2. CORENODE n-mer benchmarking. Panels a, b and c illustrate P2 difference between 2- and 3-mers, 

3- and 4-mers, and 4- and 5-mers, respectively, using a diagnostic set of combinatorial regressions with the 19 
CR TFs as targets. d, Similar fractional edge counts are obtained using 3-mers versus 4-mers for the 

diagnostic set of 19 TFs used as targets. 
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increasing number of combinations of the CR TFs with higher n (969 combinations at n=3, 3876 at n=4, 
11628 at n=5, and 27132 at n=6). More importantly, while increasing n will always increase the r2 of the 

regressions, there is a significant risk of overfitting at higher values of n because of the increased number of 
regression terms (10 terms including an intercept at n=3, 15 terms at n=4, 21 terms at n=5, etc.). We chose 

to measure the overfitting risk using leave-one-out (LOO) cross validation, which measures the error in 
predicting each sample value using all the other sample values as inputs (see p.24 in Ref.57). To that end, 

for every regression we calculated aggregate LOO across the set of samples used for regression, which is 
also referred to as the PRESS statistic. 

Thus, as a diagnostic test, we compared LOO results across n-mers fit to expression of the 19 CR TF genes 
as targets. Each n-mer can be thought of as a combination of several (n-1)-mers; in particular, three 2-mers 

can be associated with each 3-mer, four 3-mers can be associated with each 4-mer, and ten 4-mers can be 
associated with each 5-mer. We compared the best associated 2-mers (in terms of LOO) to each 3-mer to 

calculate the degree of LOO improvement or degradation from adding the third component. Similar analyses 
compared 3-mers to 4-mers and 4-mers to 5-mers. This benchmarking did not include any n-mers where the 
same CR TF was both a predictor and the predicted target; such situations would necessarily allow perfect 

fit and distort any statistical results. To ascertain risk of overfitting versus goodness of regression, we used 
two quantitative tests: 

• First, for the CR TFs as regression targets, we calculated the Spearman correlation of the fractional 
edge scores (defined below) from each (n-1)-mer to the fractional edge scores from the associated 

n-mer. 

• Second, we use a P2 statistic derived from the PRESS statistic (58), comparing the P2 from each n-

mer and the best associated (n-1)-mer. After eliminating all cases where the change in P2 was less 
than one standard deviation of all such changes in P2, we counted the number of instances where P2 

was improved by adding the extra term vs. the number of instances where P2 was degraded. Note 
that where the standard R2 measure of goodness of regression fit will always improve with added 
terms, P2 can improve or degrade depending on the balance between improved capture of the 

underlying behavior vs. overfitting. 

As demonstrated in Box 2, approximately 72% of the non-equivalent associations show a higher P2 value 

using the 3-mers, demonstrating that on average 3-mers contain useful information compared to the 
associated 2-mers and are not overfitting. By comparison, only 39% of 4-mers have useful information 

compared to the associated 3-mers, while for 5-mers only 15% have useful information compared to 
associated 4-mers. Therefore, we concluded that using 3-mers for our model would provide the best balance 

between goodness-of-fit and overfitting genome-wide.  
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Additionally, we examined the specific CR TFs that are predicted to regulate the other CR TFs, using a 
normalized version of the edge scores as described below. The results using 3-mers correlate strongly with 

those using 4-mers (Spearman correlation = 0.89; Box 2d), again confirming that 3 is an appropriate value 
of n. 

3-mer edge scores and derivatives 

We regressed transformed gene expression data against the transformed expression of three CR TFs, 

including the linear, quadratic, and cross terms as described above, yielding equations for each gene of the 
form: 

 

where: 

Y is the transformed target gene expression  
Int is the intercept term 

TF1, TF2, and TF3 are the transformed CR TF expression data, and 
A, B, C, …, I are the regression coefficients 

One such equation was generated for each of the 969 3-mer combinations of the 19 CR TFs, for each of the 
8,981 expressed target genes. Each of the 3-mers was evaluated using the PRESS statistic described 

above; we chose the 49 best 3-mers (the 5% of the 969 3-mer combinations with the smallest PRESS 
statistics) to represent a suite of good fits to the data. Edge scores for each gene were calculated by 
counting the number of the 49 best 3-mers that included terms for each of the 19 CR TFs. The edge scores 

therefore ranged from 49, where a particular CR TF was found in every one of the best 49 3-mers, to 0, 
where none of the best 3-mers included that CR TF. By definition, the sum of the 3-mer edge scores for 

each gene was 147.  

In order to predict the amplitude and direction (positive versus negative) of TF-gene regulatory connections, 

we calculated a directional derivative (DD). For each gene, for each of the 49 best 3-mers, analytic 
derivatives of the regressed expression function above were taken with respect to the TFi, yielding: 
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CR TF expression data for each sample was plugged into these equations, yielding a large number of 

estimated slopes for each gene (49 3-mers  ´ 3 CR TFs per 3-mer ´ the number of samples; see Fig. 1D for 

a graphic illustration). These estimates were aggregated for each target gene by CR TF across all the 
samples and 3-mers, yielding a distribution of values for the slope of that gene’s response to a change in the 

expression of the CR TF. We calculated the mean of this distribution, and also transformed the mean into a 
z-score by dividing by the standard deviation of the distribution.  

As expected, edge scores correlated with DD scores with higher edge scores predicting higher amplitude of 

TF-target regulation (Box 3a). Importantly, CORENODE identified a significantly higher number of edges 
with positive DD values indicating positive regulation (i.e. gene activation), rather than negative DD values 
indicating negative TF-target regulation (i.e. repression) (Box 3b).    

Ultimately, our approach assigns two values to each TF-target connection, or edge, in the expressed 
genome. The edge scores (ES) reflect the predicted confidence of the TF-target connection, while 

directional derivatives (DD) predict the direction and amplitude of regulation. Using aggregated information 

 

Box 3. Distribution of edge scores and directional derivatives. a, Correlation between edge scores and 

directional derivatives. ES and DD values are shown for all edges in the expressed genome (all CR TFs vs. all 
target genes), demonstrating that edges with higher edge scores tend to have higher directional derivatives. It 

also demonstrates the preponderance of positive over negative regulation in the genome. b, Numbers of 

positive (DD>0) vs. negative (DD<0) high confidence edges (ES³15) are shown for each CR TF, highlighting 

preponderance of predicted gene activation over repression and significant variability of high confidence 
edges between TFs.   
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from the top 5% of regressions for calculating 
these edge characteristics (rather than simply 

taking the best fit) takes into account that the 
predictions from the top n-mers are relatively 

similar and picking the single best n-mer would 
unrealistically restrict the available information 

from the fitting process. Indeed, aggregating 
these results across the genome-wide set of all 

9000 genes results in a marked contrast 
between TFs that are predicted to regulate many 

genes across the genome (FLI1, ARID2, SPI1) 
vs. those that are predicted to regulate relatively 

few genes (SREBF1 and RUNX2) (Box 4a). As 
a computational control, we scrambled each 
genes’ mRNA data among the 510 samples and 

repeated the genome-wide ES calculations (Box 
4b). The lack of structure, with all CR TFs 

showing similar numbers of influenced genes, 
suggests that the patient results are 

demonstrating significant biological structure. 

 

Box 4. Distribution of high-confidence edges by CR TF in 
the genome-wide model compared with scrambled 
control. Number of edges with high edge scores varies by CR 
TF (a). Calculating edge scores on scrambled data results in 

loss of this variance and lower edge scores overall (b). 

a

b
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CORENODE validation 

We set out to validate CORENODE predictions 

by performing CRISPR knockouts of the CR TFs 
predicted to regulate the MHC type II genes 

followed by an assessment of global 
transcriptional response using RNA-seq. We 

delivered in vitro assembled RNPs with 2-3 
gRNAs by nucleofection for an efficient and 

rapid depletion of the CR TFs (59). Knockout 
efficiency was confirmed by Western blot 

(Supplementary Fig. 4A). Total RNA was 
extracted and mRNA-seq was performed 72 

hours after electroporation.  

Next, for each CR TF we generated a set of high 
confidence CORENODE edges by taking all 

genes with ES ≥ 15 and [DD] ≥ 0.2 and plotted 
their DD scores against the measured response 

in the RNA-seq experiment after the CR TF 
knockout. This analysis demonstrated a strong 

correlation between predicted and actual target 
gene response (Boxes 5,6). Although not every 

gene showed the predicted response, this is 
expected for several reasons. First, there may 

be substantial sample-to-sample differences in 
TF regulators of some genes (60), and such 

divergence is especially likely in a cell line 
model. Second, a complete TF knockout may 
produce effects that are different from 

physiologic TF dose variation on which our model is built. Third, there are mathematical and practical 
limitations that cannot be avoided, such as the impact of post-transcriptional regulation. For example, protein 

levels of regulating TFs may differ from their mRNA expression levels, which will necessarily limit 
CORENODE’s predictive power. However, despite these limitations, most discrepancies are observed at the 

lower DD and ES values and the higher confidence edges tend to be highly accurate.  

 

Box 5. Genome-wide validation of CORENODE edges: 
IRF8, MEF2C and MEIS1. Correlation between directionality 

derivative (DD) and actual log2 fold change 72 hours after 
TF knockout measured by RNA-seq, is shown genome-wide 

(left) and for high-confidence edges (ES ≥ 15 and [DD] ≥ 0.2, 

right), with Pearson correlation (r) for each plot.   

Figure S13.  Genome-wide validation of CORENODE edges: IRF8, MEF2C and MEIS1. 
Correlation between directionality derivative (DD) and actual log2 fold change 72 hours after TF 
knockout measured by RNA-seq, is shown genome-wide (left) and for high-confidence edges (ES 
≥ 15 and [DD] ≥ 0.2, right), with Pearson correlation (r) for each plot.   
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Given that CR TFs are essential for cell survival, we calibrated our RNA-seq experiments to synthetic spike-
in constructs in order to compensate for any global changes in mRNA expression (61,62). As expected, we 

observed signs of a global transcriptional collapse following MYB knockout; the increase in the MHC type II 
expression was preserved after adjusting for this global change in the mRNA pools. However, the genome-

wide mRNA response to MYB knockout displayed a better alignment with CORENODE predictions when 

spike-in calibration was omitted (Box 6). Indeed, CORENODE is based on steady-state variations of TF 
levels that, unlike a full TF knockout, do not result in secondary transcriptional collapse. Therefore, knockout 

experiments likely overestimate physiologically relevant global responses to naturally occurring changes in 
the levels of critical lineage TFs. More specifically, depending on the time of measurement, many mRNAs 

with early positive response to TF deprivation will appear downregulated after a global transcriptional 

 

Box 6. Genome-wide validation of CORENODE edges: MYB. a, Correlation between directionality 

derivative (DD) and actual log2 fold change 72 hours after TF knockout measure by RNA-seq, 

genome-wide (left) and for high-confidence edges (ES ≥ 15 and [DD] ≥ 0.2, right), with Pearson 
correlation (r) for each plot. RNA-seq data were processed in DEseq2 and normalized using the 

standard median of ratios method (uncompensated) or to synthetic ERCC spike-in control to account 

for the global transcriptional collapse (compensated). b, Average log2 fold change in mRNA 
expression: transcripts are binned according to the directionality derivative (DD). The analysis 

includes all expressed genes regardless of the edge score. Use of uncompensated data (without 

spike-in normalization) results in a more precise prediction of the inflection point between positive 
and negative regulation.  
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collapse ensues. Strikingly, CORENODE accurately predicts the inflection point between negative and 
positive regulation in uncompensated data (Box 6b), providing additional proof that, while spike-in 

normalization is of critical importance for accurate assessment of global transcriptional response, it requires 
careful interpretation.   

Spike-in was also used in IRF8, MEF2C and MEIS1 knockout but no global transcriptional collapse was 
observed upon analysis of spike-in read ratios and the RNA-seq data was normalized by DEseq2 in a 

regular fashion for these TFs knockouts. 

  

 

Box 7. Distribution of edge scores in the CORENODE network. a, Number of 

edges with specific ES value. b, Cumulative number of edges in the network above 

progressively increasing ES cutoff.   
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Genome-wide transcription network decomposition and graphic representation 

To build a genome-wide map of TF-gene edges, we started with the ES matrix and converted it to a ternary 

network representation, where all edges above a certain ES cutoff receive a value of 1 or -1, when DD is >0 
or <0, respectively, and edges below the cutoff receive a value of 0. We used an ES cutoff of 8 (rounded 

network-wide mean) to assign high confidence edges (Box 7). For some analyses we used a more 
conservative ES cutoff of 15 for highest confidence. The resulting matrix was analyzed in Morpheus 

(https://software.broadinstitute.org/morpheus/) as shown in Supplementary Fig. 7. 

To build an optimal graphic representation of the network in Fig. 4B, we used an ES cutoff of 8 to create a 

binary matrix similar to what is described above, except all edges above the cutoff receiving a value of 1 
regardless of the DD. The resulting matrix was clustered using the R routine “kmeans”, with eight centers 

and nstart=5.  The eight clusters were placed in random order around an outer circle of radius one, spaced 
proportionally to cluster size. TF-to-cluster edges were then considered only for edges of sufficient strength, 

as indicated by the cluster center value for that cluster/TF pair from the kmeans clustering being at or above 
the median of all cluster center values. Each TF was then placed at the geometric median point of the 
cluster centers to which it had strong edges, using R routine “geo_median” from the package “pracma” to 

calculate the geometric median; this point minimizes the sum of the distances from each TF to its connected 
clusters (solving the unweighted Weber problem). The process is then repeated for all permutations of 

ordering the eight outer clusters. Finally, we picked the permutation that results in the shortest aggregate 
distance of the TF-to-cluster edges. By minimizing the aggregate distance between the TFs and gene 

cluster centers, we hoped to accomplish several goals: (1) the representation is provably optimal in terms of 
minimizing edge distances, (2) the graphic is easily understandable and unbiased, and (3) the concept is 

extendable to a weighted representation, taking into account the relative strength of the TF-to-cluster 
connections, by moving to a solution of the weighted Weber problem. That the aggregate distance is 

minimized can be seen from a combination of the following considerations: (1) given the cluster placements, 
each TF is independently minimizing its aggregate edge distance using the geometric median point, which 

means that the sum across all the TFs is also minimized, and (2) we test all possible cluster placements, so 
no better option remains. 

Evaluation of gene-regulatory equation terms 

To evaluate the impact and significance of each term in the 3-, 4- and 5-mer gene-regulatory equations, we 
considered the following parameters: (1) the calculated regression coefficient, (2) a standard-error 

uncertainty estimate of each regression coefficient demonstrating whether the regression coefficient is 
significantly different from zero, (3) t-value (coefficient/standard error) and (4) p-value (probability that the t-
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value is different from zero). Terms with the lowest p-value were considered to have the largest predicted 
impact on the overall fit. These statistics are summarized in Supplementary Data 6.  

Comparison with ARACNe 

We sought to compare the predictive power of CORENODE to ARACNe, a popular algorithm of network 

decomposition based on mutual information (63–65). Using BeatAML mRNA expression data as input, 
ARACNe prioritized the same 4 TFs (IRF8, MEF2C, MYB and MEIS1) as top predicted regulators of MHC-II 

expression in AML (Box 8). However, it should be noted that, since ARACNe is not a regression-based 
approach, it does not allow modeling of combinatorial and dose-response effects.   

 

Box 8. Comparison between ARACNe and CORENODE. a, CORENODE 

Edge Scores and ARACNe Mutual Information Scores between the 19 core TFs 
and MHC-II genes. b, A cross-plot of average CORENODE Edge Scores and 

ARACNe Mutual Information Scores between the 19 core TFs and MHC-II 

genes. 
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