

Figure S1. Effects of HFD on mouse and human intestinal fructose metabolism. Related to Figure 1.

A - C. Mice body weight and wet liver mass of individual mice during tissue harvest (N = 5) in the special diet feeding experiment for 3 days and 4 weeks.

D. mRNA expression of fructose metabolism genes in the jejunum as quantified by RT-PCR.

E - F. Protein expression of fructose metabolism genes in the jejunum by western blot and the associated quantification (N = 3).

G. Schematic diagram depicting the organoid culture and experimental designs.

H. mRNA expression of fructose metabolism genes in the mouse jejunal organoid as quantified by RT-PCR (N = 4 mice).

I - J. Protein expression of fructose metabolism genes in the mouse jejunal organoid by western blot and the associated quantification (N = 3 mice).

K. mRNA expression of fructose metabolism genes in the human jejunal organoid as quantified by RT-PCR (N = 5 from 2 human donors).

L - M. Protein expression of fructose metabolism genes in the human jejunal organoid by western blot and the associated quantification (N = 3 from 2 human donors).

N. Tracing data (3 days) of fructose metabolism in the jejunum; data are represented in the total ion count.

O. Tracing data (4 weeks) of fructose metabolism in the jejunum; data are represented in the total ion count.

BSA: Bovine serum albumin; Ole: oleic acid; Pal: Palmitic acid; TCA: tricarboxylic acid; F1P: fructose-1-phosphate; Gro3P: Glycerol-3-phosphate; G6P: Glucose-6-phosphate; F6P: fructose-6-phosphate; F1,6P: Fructose-1,6-biphosphate; DHAP: Dihydroxyacetone phosphate; G3P: D-Glyceraldehyde-3-phosphate; Glycerol-3-P: Glycerol-3-phosphate. Data are represented as mean \pm SEM. T-test was used for comparison between 2 groups and the post hoc Tukey correction was performed after ANOVA was used for comparison more than 2 groups.*: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.001.

Figure S2. Effects of HFD on mouse hepatic fructose metabolism. Related to Figure 2.

A. mRNA expression of sugar and lipid metabolism genes in the liver as quantified by RT-PCR in mice fed on high fat diet (HFD) for 3 days with no fructose gavage (top panel), mice fed on HFD for 3 days, and tissue harvesting 10 minutes after fructose gavage (middle panel), and mice fed on HFD for 4 weeks and tissue harvesting 10 minutes after fructose gavage (bottom panel).

B. Tracing data (4 weeks) of fructose metabolism in the liver; data are represented in the total ion count.

C. Metabolomic data of fructose metabolism in the liver; data are represented in the log-ratio between the HFD and CD groups after mice were fed for 4 weeks.

TCA: tricarboxylic acid; F1P: fructose-1-phosphate; Gro3P: Glycerol-3-phosphate; G6P: Glucose-6-phosphate; F6P: fructose-6-phosphate; F1,6P: Fructose-1,6-biphosphate; DHAP: Dihydroxyacetone phosphate; G3P: D-Glyceraldehyde-3-phosphate; Glycerol-3-P: Glycerol-3-phosphate., Fructose-Bisphosphate B. NAD+: nicotinamide adenine dinucleotide; NADP+: nicotinamide adenine dinucleotide phosphate; ATP: adenosine triphosphate; GTP: guanosine triphosphate; UTP: uridine triphosphate; SEM: standard error mean. Data are represented as mean \pm SEM. T-test was used.*: p < 0.05, **: p < 0.01.

Figure S3. Effect of elevated glycerate on mouse physiology. Related to Figure 3.

A. Serum glycerate concentration quantification upon single IP injection of 1 g/kg glycerate (N = 5). Tail vein blood was collected at the specified time-point among treatment-naive mice.

B. Serum glycerate concentration upon nutrient injection at 24-hour (N = 5 - 6). Cardiac blood was collected after treatment for 12 weeks.

C - D. Anthropometric measurement of CD mice on different daily nutrient injection cohort (N = 5 - 6). E - F. Blood glucose levels, AUC, and iAUC quantification in IPGTT experiments among mice fed on HFD (N = 4).

G. In a separate cohort of mice, blood glucose levels, AUC, and iAUC quantification in IPGTT experiment at 4th week (N = 6 - 7).

H. Serum insulin levels and associated AUC quantification in IPIRT experiment (N = 6 - 7).

I. Blood glucose levels and changes in blood glucose level in IPITT experiment (N = 6 - 7).

Data are represented as mean \pm SEM. T-test was used for comparison between 2 groups and the post hoc Tukey correction was performed after ANOVA was used for comparison more than 2 groups.*: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.

Figure S4. Effects of in vitro and in vivo exposure to elevated glycerate. Related to Figure 4. A. Representative mass spectrometry imaging of mouse jejunum with U¹³C-fructose gavage. Glycerate were detected at $m/z = 108.0293 \pm 0.0003$ Th (± 2.5 ppm).

B. Representative mass spectrometry imaging of mouse pancreas with U¹³C-fructose gavage after 3 days of feeding with CD and HFD. Top row: H&E of the tissue section; Bottom row: matched mass spectrometry imaging heatmap. Glycerate were detected at m/z = 108.0293 ± 0.0003 Th (± 2.5 ppm), N = 4 - 8.

C. Quantification of M+3 glycerate abundance within the pancreatic tissue without U^{13} C-fructose gavage and 45 – 60 minutes after U^{13} C-fructose gavage. Wilcoxon rank sum test was used to compare the abundance quantification between CD and HFD groups.

D – E. H&E staining of pancreas and quantification after 12 weeks of control, fructose, or glycerate treatment of mice fed on HFD (Control: 222 islets; Fructose: 162 islets; Glycerate: 134 islets). F. Dose-response curve of in vitro treatment of glycerate to β -cell lines, β TC-6 and NIT-1 (N = 4) G. Proliferation assay of β -cell lines upon either PBS or 5 mM glycerate treatment. (N = 3 – 5) H. mRNA expression of apoptosis-related genes in β -cell lines after either PBS or 5 mM glycerate treatment for 24 hours as quantified by RT-PCR (N = 4). Apaf1: apoptotic peptidase activating factor 1; Casp8: caspase 8.

I - J. Separate channel of Insulin-Glucagon staining and the quantification of the α -cell and β -cell. K - L. Separate channel of Insulin-Proinsulin staining and the quantification of the insulin and proinsulin fluorescence intensity.

M - N. Chromogranin A (Chga) staining and the quantification fluorescence intensity.

N = 5 mice for all staining experiments. Data are represented as mean \pm SEM. T-test was used for comparison between 2 groups and the post hoc Tukey correction was performed after ANOVA was used for comparison more than 2 groups.*: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.

Table	e S1.	Association	on betv	veen
the	glycerate	kinase	mutation	and
diabo	etes. Relate	ed to Figur	e 3.	

		Diabetes Mellites	
		Log Odds	p-value
	(Intercept)	-3.68	< 2.00 × 10 ⁻¹⁶
	Age	0.0427	< 2.00 × 10 ⁻¹⁶
:	Sex (Male)	0.484	< 2.00 × 10 ⁻¹⁶
	Ethnicity (Caucasian)	-0.537	< 2.00 × 10 ⁻¹⁶
	Overweight (BMI >25)	0.472	< 2.00 × 10 ⁻¹⁶
	Trunk fat (%)	0.0693	1.27 × 10 ⁻¹⁰
	Total cholesterol	-0.925	< 2.00 × 10 ⁻¹⁶
	High density cholesterol	-0.164	4.53 × 10 ⁻⁴
	Low density cholesterol	0.249	9.53 × 10 ⁻⁷
	Triglycerides	0.452	< 2.00 × 10 ⁻¹⁶
l	<i>GLYCTK</i> mutations	0.458	1.17 × 10 ⁻⁷

-	
Primer	Source
Primer: <i>Glut5</i> Forward for total mouse cDNA: CCAATATGGGTACAACGTAGCTG	(Chen et al., 2018)
Primer: <i>Glut5</i> Reverse for total mouse cDNA: GCGTCAAGGTGAAGGACTCAATA	(Chen et al., 2018)
Primer: Khk Forward for total mouse cDNA: ATGTGGTGGACAAATACCCAGA	(Zhao et al., 2020)
Primer: Khk Reverse for total mouse cDNA: CAAGCAAGGAAAGGACAGTGC	(Zhao et al., 2020)
Primer: <i>Khk-a</i> Forward for total mouse cDNA: TTGCCGATTTTGTCCTGGAT	(Diggle et al., 2010)
Primer: Khk-a Reverse for total mouse cDNA: CCTCGGTCTGAAGGACCACAT	(Diggle et al., 2010)
Primer: Khk-c Forward for total mouse cDNA: TGGCAGAGCCAGGGAGAT	(Diggle et al., 2010)
Primer: <i>Khk-c</i> Reverse for total mouse cDNA: ATCTGGCAGGTTCGTGTCGTA	(Diggle et al., 2010)
Primer: Aldob Forward for total mouse cDNA: GAAACCGCCTGCAAAGGATAA	(Zhao et al., 2020)
Primer: Aldob Reverse for total mouse cDNA: GAGGGTCTCGTGGAAAAGGAT	(Zhao et al., 2020)
Primer: Chrebp-a Forward for total mouse cDNA: CGACACTCACCCACCTCTTC	(Zhao et al., 2020)
Primer: Chrebp-a Reverse for total mouse cDNA: TTGTTCAGCCGGATCTTGTC	(Zhao et al., 2020)
Primer: Chrebp-b Forward for total mouse cDNA: TCTGCAGATCGCGTGGAG	(Zhao et al., 2020)
Primer: Chrebp-b Reverse for total mouse cDNA: CTTGTCCCGGCATAGCAAC	(Zhao et al., 2020)
Primer: <i>Pparg</i> Forward for total mouse cDNA: CGGTTTCAGAAGTGCCTTG	(Fujiki et al., 2009)
Primer: <i>Pparg</i> Reverse for total mouse cDNA: GGTTCAGCTGGTCGATATCAC	(Fujiki et al., 2009)
Primer: Srebp-1c Forward for total mouse cDNA: GAGCCATGGATTGCACATTT	(Rahtu-Korpela et al., 2014)
Primer: Srebp-1c Reverse for total mouse cDNA: CTCAGGAGAGTTGGCACCTG	(Rahtu-Korpela et al., 2014)
Primer: Apaf1 Forward for total mouse cDNA: AGTGGCAAGGACACAGATGG	(Hauck et al., 2017)
Primer: Apaf1 Reverse for total mouse cDNA: GGCTTCCGCAGCTAACACA	(Hauck et al., 2017)
Primer: Casp8 Forward for total mouse cDNA: TGCTTGGACTACATCCCACAC	(Hauck et al., 2017)
Primer: Casp8 Reverse for total mouse cDNA: TGCAGTCTAGGAAGTTGACCA	(Hauck et al., 2017)
Primer: Ins1+2 Forward for total mouse cDNA: AGCGTGGCTTCTTCTACACACC	(Pujadas et al., 2016)
Primer: Ins1+2 Reverse for total mouse cDNA: CCAGCTCCAGTTGTGCCACT	(Pujadas et al., 2016)
Primer: Gcg Forward for total mouse cDNA: AGGAATTCATTGCGTGGCTG	(Pujadas et al., 2016)
Primer: Gcg Reverse for total mouse cDNA: CAATGGCGACTTCTTCTGGG	(Pujadas et al., 2016)
Primer: <i>8-Actin</i> Forward for total mouse cDNA: GGCTGTATTCCCCTCCATCG	(Chen et al., 2018)
Primer: <i>β-Actin</i> Reverse for total mouse cDNA: CCAGTTGGTAACAATGCCATGT	(Chen et al., 2018)
Primer: GLUT5 Forward for total human cDNA: ACGTTGCTGTGGTCTGTAACC	(Weng et al., 2018)
Primer: GLUT5 Reverse for total human cDNA: CATTAAGATCGCAGGCACGATA	(Weng et al., 2018)
Primer: KHK Forward for total human cDNA: CTAAGGAGGACTCGGAGATAAGG	(Wang et al., 2020)
Primer: KHK Reverse for total human cDNA: CATTGAGCCCATGAAGGCAC	(Wang et al., 2020)
Primer: ALDOB Forward for total human cDNA: GGCAGTTCCGAGAAATCCTCT	This paper
Primer: ALDOB Reverse for total human cDNA: CTCCTTGGTCTAACTTGATTCCC	This paper
Primer: <i>B-ACTIN</i> Forward for total human cDNA: AGAGCTACGAGCTGCCTGAC	(Weng et al., 2018)
Primer: <i>8-ACTIN</i> Reverse for total human cDNA: AGCACTGTGTTGGCGTACAG	(Weng et al., 2018)

Table S2. Primers used in the study. Related to STAR Methods.