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Supplementary figures 

Figure S1. Characterization of CTCF 19.7-1c (CTCF-KO) and CP-R6 (Cp190-KO) 

cultured cell lines. A. Schematic representation of CTCF y+1 allele. The allele corresponds to 



3.3kb deletion (dashed line) that removes most of the CTCF open reading frame and a small 

part of the 3’ UTR of the adjacent qm gene. Exons are shown as boxes, coding parts marked 

with back. Coordinates of deletion breakpoints are according to Drosophila melanogaster 

genome release BDGP R6/dm6, 2014. The CTCF y+1 deletion was generated by imprecise 

excision of P[EPgy]CTCFEY15833 transposon (indicated as white triangle) and still contains 

some of its constituents including functional yellow gene and part of the white gene (shown 

above the molecular map of the CTCF locus). Note, that the schematic of 

P[EPgy]CTCFEY15833 remnants is in different scale than that of the CTCF map. Positions of 

amplicons used to confirm the CTCF y+1 deletion in CTCF-KO cell lines are indicated with 

red lines. B. Genomic DNAs from CTCF 19.7-1c (CTCF-KO) and Ras 3 (wild type) cells 

were used for PCR with CTCFfw4 and CTCFrev3 primers (amplicon 1, expected product 

size - 189bp), CTCFfw5 and CTCFrev2 (amplicon 2, expected product size - 196bp) as well 

as BP3 and BP4 (amplicon 3, positive control outside the CTCF locus, expected product size 

– 258bp). As shown by electrophoresis of PCR products in 2% agarose gel, only reactions

with genomic DNA from the wild-type cells yield single products corresponding to 

amplicons 1 and 2. This confirms that all CTCF-KO cells lack CTCF open reading frame. C. 

Molecular map of Cp190 gene. Arrow indicates the position of C to T transition (Q61Stop) in 

the Cp1903 allele. Red line indicates the location of the PCR product sequenced to genotype 

Cp190-KO cells. D. Genotyping of CP-R6 (Cp190-KO) cells. Genomic DNA from CP-R6 

cells was amplified by PCR with CP190fw and CP190-Ncolrev primers, and the product of 

expected size – 382bp sequenced. The fragment of Sanger sequencing chromatogram 

illustrates that all CP-R6 chromosomes contain T instead C (blue shaded rectangle) at 

position 3R:15,274,335 (genome release BDGP R6/dm6, 2014). 



Figure S2. Ablation of Cp190 and CTCF does not affect the overall levels of other 

insulator proteins. Two-fold dilutions of total nuclear protein from control (Ras3), Cp190-

KO (CP-R6) and CTCF-KO (CTCF 19.7-1c) cells were analysed by western-blot with 

antibodies against Mod(mdg4), Su(Hw) and Ibf1. Coomassie stained gel of corresponding 

total nuclear protein samples and western-blot with antibodies against Pc (Figure 1A) were 

used to control equal loading. Positions of molecular weight markers (in kDa) are indicated to 

the left. 



Figure S3. Overall chromatin contacts in the control, Cp190-OK and CTCF-KO cells 

are similar. A. Pairwise correlations between numbers of contacts for 40kb genomic 



segments (Hi-C bins) measured in individual experiments. Histograms along the diagonal 

show distributions of contact numbers for each experiment. Scatter plots below the diagonal 

illustrate the correspondence between contact numbers for individual bins (blue dots). Orange 

squares above the diagonal show corresponding Spearman's rank correlation coefficients. To 

avoid spurious experimental noise, contacts within individual bins (the diagonal of contact 

matrix) as well as contacts between bins separated by more than 1.6Mb were not considered. 

B. Chromatin contacts over the right arm of Drosophila melanogaster chromosome 3 were

counted at 40kb resolution, normalized by iterative correction and plotted using 

gcMapExplorer software. To allow simultaneous visualization of the low- and high-

frequency contacts, the heat map representation was scaled as logarithm of the map. 





Figure S4. For bins equal or larger than 40kb hierarchical clustering of individual Hi-C 

experiments is robust to parameter changes. Chromatin contacts measured in individual 

Hi-C experiments were assigned to 40kb genomic segments (Hi-C bins) and clustered based 

on the lowest Spearman’s rank correlation coefficient for the group (A), average Pearson 

correlation coefficients for the group (B) or the lowest Pearson correlation coefficients for the 

group (C). The resulting dendrograms (also see Figure 1C) are the same regardless of the 

approach. Datasets assigned to larger (80kb or 160kb) bins yield equivalent dendrograms, 

which are also robust to parameter changes. When chromatin contacts are binned to smaller 

segments (5kb, 10kb and 20kb), the clustering outcomes start to vary depending on the kind 

of correlation coefficient (Spearman’s rank or Pearson) and the grouping approach (lowest or 

average for the group) is used. We, therefore, consider the latter results unreliable. 



Figure S5. Chromatin topology around the 62D insulator element. A. Genomic 

organization of the 62D region. ChIP-seq profiles for Cp190, CTCF, Su(Hw) and 

Mod(mdg4) proteins in control cells are displayed as number of sequencing reads per 

position per million of total reads. RNA-seq profiles from control, Cp190-KO and CTCF-KO 

cells are displayed separately for each DNA strand as number of sequencing reads per 

position. Positions and the exon structure of annotated transcripts are shown above 

(transcribed from left to right) or below (transcribed from right to left) the scale in dm6, 2014 

genome release coordinates. The position of the 62D insulator element is indicated with blue 

dashed lines. B. Chromatin contacts within the 62D region in control, Cp190-KO and CTCF-

KO cells. Contacts measured by individual Hi-C experiments were assigned to 5kb bins and 



normalized by iterative correction. The data from replicate experiments were combined and 

visualized with the gcMapExplorer software. 



Figure S6. The optimal accuracy of TAD border mapping. To estimate the accuracy of 

TAD border positions, the number of overlapped TAD borders defined in two replicate 

experiments in the control cells was plotted against the permitted distance between two 

borders considered overlapped. From this, TAD borders identified in replicate experiments at 

a distance of 2000bp or less were considered identical. 





Figure S7. Relation between classes of insulator protein bound regions, proximity to 

transcription start sites, transcription and BEAF-32. A. Bar-plots indicate fraction of 

insulator protein bound regions of different classes that either overlap or do not overlap with 

BEAF-32 bound regions mapped by modENCODE (38). Here and in B and C, the yellow 

shading marks the C class discussed in the text. B. Violin-plots show distances to the closest 

TSS for different classes of insulator protein bound regions. Horizontal lines indicate 

medians. C. Transcriptional activity of the gene with the closest TSS for different classes of 

insulator protein bound regions. Box-plots indicate the median and span interquartile range 

with whiskers extending 1.5 times the range and outliers shown as black dots. 



Figure S8. Differences in transcription between Cp190-KO, CTCF-KO and control 

cells. A. Principal component analysis of replicate RNA-seq experiments in the three cell 

lines. B. Clustered heatmap of RNA-seq signals for the twenty most differentially transcribed 

genes. Both analyses indicate that experiments are highly reproducible and that Cp190-KO is 

the most different of the three cell lines. 



Figure S9. No correlation between changes in distance-scaling factors ( and 

transcription of the nearby genes. Scatter-plots compare the changes in distance-scaling 

factors (≤ 10% FDR coloured in cyan;  10% FDR coloured in pink) at insulator 

protein binding sites of various classes to differences in RNA-seq signals of genes closest to 

these sites after Cp190 knock-out. The average RNA-seq signals between control and Cp190-

KO cells (A) in log10 scale are indicated by variable point intensities. 



Figure S10. Action range of CTCF-dependent insulators. Average contact crossing 

difference curves for CTCF-dependent insulator elements (filled circles) and randomly 

selected control regions that do not bind any insulator proteins (empty circles) determined 

from two replicate Hi-C experiments (indicated with red and blue colours). Note that at close 

distances (5-10kb) the estimate of chromatin contact frequency from proximity ligation (the 

underlying principle of Hi-C method) becomes less reliable because, most of the time, 

chromatin fragments are sufficiently close to each other and successful ligation is largely 

dependent on random chance. 



Figure S11. Looping test with high-resolution Micro-C data. Pairs of the closest insulator 

elements (defined at 15% FDR) were split in groups depending on their separation in the 

linear genome. The number of contacts between the paired insulators (n1) was plotted (red 

box-plots) alongside the number of contacts between corresponding pairs of control regions 

(blue (n2), green (n3) and purple (n4) boxplots). Notches mark 95% confidence intervals of 

the medians. 



Figure S12 

Figure S12. The diagram of the analysis pipeline. The pipeline consisted of three 

intersecting brunches dedicated to Hi-C, ChIP-seq, and RNA-seq analyses. Hi-C analysis: 

the raw sequencing data were processed by hicpipe, which returned the contact matrices 

normalized by GC content and fragment length as well as distance-scaling factor () values. 

hclust was used for hierarchical clustering of contact matrices. For visualization, the contact 

matrices were normalized using the IC algorithm implemented in gcMapExplorer normIC 

and genomic coordinates converted from dm3 to dm6 using LiftOver. multiHiCompare was 

used to jointly normalize the Hi-C data across samples and conditions. ChIP-seq analysis: 

the raw sequencing data were processed by Bowtie2, SMAtools, and MACS2 to identify 

regions bound by individual insulator proteins. These were further grouped into classes based 

on co-binding of specific insulator protein combinations. Changes in distance-scaling factors 

() within insulator protein bound regions upon Cp190-KO and CTCF-KO were assessed by 

Fisher exact test to identify the classes whose insulator protein bound regions displayed 

systematic increase in the contact crossing compared to control regions. Putative chromatin 

insulator elements were selected from these classes if their  passed 15% FDR threshold. 



For these elements, HiCmapTools was used to perform the looping test and derive the contact 

crossing difference curves. RNA-seq analysis: the raw sequencing data were processed using 

STAR and the results summarized as read counts per gene. Differentially transcribed genes 

were identified using DESeq2 and changes in transcription of genes around insulator 

elements were evaluated using the STAR-output read counts per gene files. 

Table S1. Hi-C mapping statistics. 

Table S2. Digestion statistics from hicpipe. See reference 79 for detailed description of the 

algorithm. 

Table S3. The list of Cp190- and/or CTCF-dependent chromatin insulator elements. 

Note the FDR at which a putative insulator was called. We consider elements called at 5% 

FDR - high confidence, 10% FDR - moderate confidence and 15% FDR - low confidence. 

Table S4. The list of antibodies used in the study. 

Table S5. The list of PCR primers. 

Table S6. Statistics of RNA-seq read mapping. The “number of input reads” statistic 

include uniquely mapped reads plus reads mapped to multiple loci plus reads mapped to too 

many loci plus unmapped reads. The “mapped to multiple loci” statistic describes reads 

mapped to more than one genomic position but to less than the limit set by the STAR 

parameter --outFilterMultimapNmax, default is 10. The “mapped to too many loci” statistic 

describes reads that mapped to more than the limit in the above (i.e. more than 10). 



Supplementary code file. Custom R and bash scripts. These scripts were used to jointly 

normalize the Hi-C data with more than two groups, calculate contact crossing difference 

curves and perform the insulator looping test. 
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