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Fig. S1. Dose-dependent growth recovery upon ecDHFR inhibition and DfrB1 expression.
Cells expressing WT DfrB1 under the control of the arabinose-inducible promoter were grown in
LB medium with and without trimethoprim (TMP) and at different concentrations of arabinose
as indicated above each panel. Same data as in Fig. 1C. Growth recovery of the inhibition of the
endogenous ecDHFR by TMP through the expression of the DfrB1 can be calculated as the
difference in the area under the curve for a given arabinose concentration. 
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Fig.  S2.  Quality  control  of  the  DfrB1  Deep  Mutational  Scanning  (DMS)  library. The
libraries corresponding to each position (NNN codons) were pooled and sequenced on a MiSeq
PE300 (268 671 reads) to verify the coverage of the various codons across positions. A single
position  was  not  covered  and was  repeated  and  added  to  the  final  library.  The  color  scale
represents the percentage of reads that mapped to a mutant out of the library for that position.
WT codons are labeled with dots. 
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Fig.  S3.  Experimental  setup  for  the  bulk  competition  assays. Samples  for  the  bulk
competition experiments were taken from an overnight preculture of cells transformed with the
DMS plasmid  library.  Cells  were  grown for  five  generations  in  LB medium with  different
concentrations  of  arabinose  and  with  or  without  trimethoprim  (TMP) until  they  reached  an
optical density of 0.8. They were then diluted again and grown for five more generations. DNA
was extracted and sequenced at t = 0 and t = 10 generations. This experiment was repeated twice
(see Table S1 for details). 
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Fig. S4. Replicates of the bulk competition experiment with selection for DfrB1 activity
(with  TMP)  correlate  strongly. Spearman  correlation  between  selection  coefficients  was
estimated for different replicates of the experiment with selection for DfrB1 activity using the
antibiotic TMP. Samples were named according to the table (bottom) extracted from Table S1.
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Fig.  S5.  Selection  coefficients  recapitulate  previously  characterized  mutants  with  poor
catalytic  activity.  Ranks and selection  coefficients  measured by bulk competition assay and
sequencing for mutants constructed by Dam et al. (  78  )   and Strader et al. (  24  )   at a weak promoter
activity level for WT DfrB1 (A) and at the optimal promoter activity level for WT DfrB1 (B).
All mutants had lower activity than the WT in the experimental papers and have negative s here,
as expected. Dashed horizontal lines indicate selection coefficients for the WT (s = 0).
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Fig. S6. The fitness effects of only some of the low activity mutants are improved at optimal
promoter  activity. (A) Differences  in  selection  coefficients  observed  at  weak  and  optimal
promoter activity on mutants at the tetramerization interface from Dam et al. (  78  )   with respect to
their measured activity relative to WT. (B) Differences in selection coefficients observed at weak
and optimal promoter activity on active site mutants from Strader et al. (  24  )   with respect to their
measured catalytic efficiency.
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Fig.  S7.  The effects  of  mutations measured by bulk competition  are recapitulated with
individual  growth measurements.  Mutants  with  different  magnitudes  of  changes  in  fitness
effects  across  concentrations  of  arabinose  were  selected  for  validation  in  individual  growth
experiments. Growth was measured as the average of the area under the curve for two replicates
per mutant at each of two promoter activity levels and subtracted to measure the % of growth
recovered upon expression of the DfrB1. (A) Growth recovery of individual mutants correlates
strongly with selection coefficients. The corresponding mutants and the WT are indicated next to
each data point and the colors indicate promoter activities. (B) Promoter activity-level dependent
differences in growth rate for the validated mutants on the left. WT is indicated in blue. P-values
were calculated using Wilcoxon’s test for differences in means of paired samples.
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Fig. S8. Significance and magnitude of effects of promoter activity level on the fitness of
mutants. (A) Averages of selection coefficients observed at each position of the DfrB1 coding
sequence. The larger dot indicates the position with the median effect for each promoter activity
level. Medians of each distribution are represented with the blue dots with white crosses. The
dashed horizontal line indicates the selection coefficient for the WT (s = 0). (B) For each mutant,
we performed an ANOVA testing for significant effects of promoter activity on fitness effects
and corrected for multiple  hypothesis testing by applying the Benjamini-Hochberg correction
with a false discovery rate of 0.05 using the FDR estimation package (  74  )  . The x-axis shows the
difference between  sweak and  sopt (sweak -  sopt) and the y-axis shows the adjusted p-values from the
statistical analysis. The horizontal dashed line indicates the cutoff for significance of adjusted p-
values (p < 0.05) and the vertical lines indicate an arbitrary threshold for magnitude of changes
in selection coefficients (greater than 0.1) due to promoter activity level.
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Fig.  S9.  k-means  clusters  capture  the  main  patterns  of  promoter  activity-dependent
changes in fitness effects. (A) Sum of squared errors as a function of the numbers used in k-
means clustering.  Adding more clusters results  in  more accurate  clustering but increases the
probability of overfitting the model. We selected k = 4 because adding more than 4 clusters does
not lead to significant decreases in the sum of squared errors. (B) Selection coefficients at each
promoter activity level for the centroids of the four clusters. The dashed horizontal line indicates
the selection coefficient for the WT (s = 0). (C) Relative enrichment of each of the four clusters
with mutants  at  particular  protein sites  and with specific  destabilizing  effects.  Stars  indicate
significant deviations from expectations as measured with a chi-squared test, adjusted for FDR
(p< 0.05) with the Benjamini-Hochberg correction.
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Fig. S10. Rank epistasis is not completely recapitulated in validation cultures. (A) Selection
coefficients calculated from the bulk competition experiment for a selected group of mutations at
weak and optimal promoter activity. Rank epistasis is observed as crossing lines, indicating that
a  mutation  that  is  more  deleterious  in  a  particular  condition  becomes  more  beneficial  in  a
different  condition.  (B)  Area  under  the  curve  observed  for  validation  cultures  of  the  same
selected group of mutations. Some patterns of the rank epistasis observed in the bulk competition
experiment are recapitulated but not all of them. (C) The difference in area under the curve in the
validation cultures generally correlates with the difference in selection coefficients from the bulk
competition experiment. 𝚫AUCweak was calculated as the differences in the area under the curve
observed for growth in liquid cultures at weak and optimal promoter activity levels (AUCweak -
AUCopt). 𝚫sweak was calculated as the differences in selection coefficients observed for each mutant
in the bulk competition experiments at weak and optimal promoter activity levels (sweak - sopt). 
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Fig. S11. Selection coefficients measured in the DMS bulk competition experiment with
TMP correlate well with fitness effects deduced variation observed in natural sequences.
We used  GEMME  (  20  )   to  predict  mutational  effects  based  on patterns  of  conservation  and
substitution. GEMME scores (0 for residues observed as often as the WT DfrB1 residue at that
position and negative for residues observed less often) correlate well with the effects measured in
the bulk competition assay with the mutant library.  These analyses show that the mutational
effects  measured  experimentally  reflect  the  selective  pressure  these  homologous  sequences
experience in nature.
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Fig.  S12.  Promoter  activity-dependent  differences  in  fitness  effects  become  weaker  as
promoter  activity  level  approaches  the  optimum.  (A) Difference  between  the  selection
coefficients of an amino acid substitution at one of the non-optimal promoter activity levels and
at the optimal promoter activity for the WT (𝚫snon-opt =  snon-opt -  sopt).  WT residues in panel A are
labeled  with dots.  Entropy as a metric  of variation  in  homologous sequences and secondary
structures are shown at the top. Annotations at the bottom indicate residues that participate in the
interfaces of the DfrB1 homotetramer, that come into contact with either the substrate (DHF) or
the cofactor (NADPH), key catalytic residues, the disordered region, and buried sites. Interfaces
are labeled as dimerization and tetramerization interfaces following (  19  )  . (B) Distributions of 𝚫s
for  the different  comparisons  against  sopt.  P-values  were calculated  using Wilcoxon’s  test  for
differences in means of paired samples.
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Fig.  S13.  Constructs  used  to  evaluate  the  effect  of  E2R  on  protein  abundance. The
fluorescence of GFP fused to several constructs of DfrB1 was measured by flow cytometry (Fig.
4C).  Constructs  used  include:  1)  DfrB1 alone,  2)  DfrB1 fused  to  GFP,  3)  truncated  DfrB1
(positions 1-25) fused to DfrB1, 4) E2R DfrB1 mutant fused to GFP, 5) E2R truncated DfrB1
mutant (positions 1-25) fused to GFP, 6) GFP alone. 
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Fig. S14. Cost of promoter activity for WT DfrB1 and E2R mutant at different promoter
activity levels. Cost of promoter activity for the E2R mutant in terms of percentage of recovered
growth compared to the median recovery at 0.001 % arabinose, calculated using the same data
from Fig. 4D. The red dots indicate the mean of three replicates for each arabinose concentration.
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Fig. S15. Predicted interactions of W45 with F18 and P19.  (A) Residues F18 and P19 are
predicted to interact with W45 in an AlphaFold2 predicted model. Residues F18, P19, and W45,
as well as measurements are labeled. The disordered region of subunit A is shown in white, the
rest of subunit A is shown in green, subunit B is shown in magenta, and subunit C is shown in
cyan.  The  structure  was  visualized  with  PyMOL  (  79  )  .  (B)  pLDDT values  assigned  by
AlphaFold2 to each of the predicted residues. Background colors indicate confidence levels: high
confidence (pLDDT > 90, green), overall good backbone prediction (70 > pLDDT > 90, yellow),
and low confidence (pLDDT < 70, red). Positions to the left of the dashed vertical line are not
present in the crystal structure for DfrB1 (PDB: 2RK1). (C) Distributions of mutational effects
for residues between positions 16 - 26 show that mutations at positions 18 and 19 are deleterious
at low promoter activity levels but can be masked at the optimal promoter activity for the WT.
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Fig.  S16.  Identifying  the  most  relevant  features  used  to  predict  promoter  activity-
dependent differences  in selection coefficients.  (A)  Relative  importance  of all  the features
considered  in  the  random forest  model  as  calculated  by the decrease  in  out-of-bag  R2 when
permuting the values of that feature. A random variable was included to identify the features that
contribute the most to the model. Table S9 contains a list of all variables used in this analysis.
(B) Comparison of observed  𝚫sweak (sweak -  sopt) versus predicted  𝚫sweak using a random forest (RF)
regressor with all the features for the test set (20 % of the total dataset).  (C) Comparison of
observed  𝚫sweak (sweak -  sopt)  versus  predicted  𝚫sweak using an  RF regressor  with all  the  top three
features for the test set (20 % of the total dataset). (D) Relative importance of the top features in
the final model as calculated by the decrease in out-of-bag R2 when dropping one variable at a
time and retraining the model.
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Fig. S17. No clear toxic effects of DfrB1 expression. Growth curves for cells transformed with
WT DfrB1 or with a DfrB1 mutant with a stop codon at position 1 (AUG to TGA mutant - M1*)
and grown in medium without TMP. Removal of the start codon should not prevent transcription
but rather protein expression. A difference between the two alleles would therefore represent the
cost of expressing the protein. 
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Fig. S18. Low signal-to-noise ratio in selection coefficients in the absence of selection for
DfrB1 activity (no TMP).  Spearman correlation between selection coefficients was estimated
for different replicates of the experiment without TMP. Samples were named according to the
table (bottom) extracted from Table S1.
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Fig. S19. Overall distributions of selection coefficients in the experiments with and without
selection for DfrB1 activity  (with and without TMP). The range of  selection  coefficients
observed  in  the  experiment  with  selection  for  DfrB1  activity  is  much  broader  than  in  the
experiment without selection. 
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Fig. S20. Distributions of selection coefficients for stop codons, amino acid substitutions,
and synonymous mutants.  Mutations introducing amino acid substitutions or stop codons are
deleterious  in  the  experiment  with  selection  for  DfrB1  activity  (with  TMP),  but  not  in  the
experiment without selection for DfrB1 activity (without TMP). P-values were calculated using
Wilcoxon tests. 
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Fig. S21. Fitness effects measured in the DMS bulk competition experiment without TMP
do not correlate well with fitness effects deduced variation observed in natural sequences.
The GEMME scores indicating patterns of conservation and substitution (0 for residues observed
as often as the WT DfrB1 residue at that position and negative for residues observed less often)
are the same as in Fig. S11.

22



Fig. S22 Protein destabilization by itself does not result in deleterious effects in the absence
of selection for DfrB1 activity.  (A) Landscape of selection coefficients measured at optimal
promoter activity (x-axis) and the promoter activity-dependent change in fitness effects (y-axis)
labeled  with  respect  to  mutational  effects  on  subunit  stability  and  binding  affinity.  (B)
Distributions  of measured selection  coefficients  for mutants  with different  effects  on protein
stability  or  binding  affinity  at  the  interfaces.  Stop  codons  from the  functional  protein  core
(residues 30 - 70) are shown for reference. 
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Supplementary Table Legends

Table S1. DMS experiment summary. List of samples used in this study and the conditions of 
each experiment.

Table S2. DMS sample description. Detailed description of conditions, read counts, and 
oligonucleotides used for each sample.

Table S3. Selection coefficients calculated for each mutation (averaged over biological 
replicates), estimated mutational effects, and changes in amino acid properties. Full dataset 
used for analysis with experimental conditions, selection coefficients, structural data, predicted 
mutational effects, and changes in amino acid properties.

Table S4. ANOVAs for individual mutants. Results of individual ANOVAs for each mutant 
with all replicates at all promoter activity levels. Benjamini-Hochberg correction was used to 
correct for multiple hypothesis testing.

Table S5. Centroids for k-means clusters. Coordinates and overall description of centroids 
identified from the k-means clustering.

Table S6. ANOVA on ranks. General ANOVA on ranks with data from all mutations in all 
replicates and all promoter activity levels.

Table S7. P-values for Tukey HSD test for fluorescence observed for different constructs 
(Fig. 4C). ANOVA for comparisons between samples shown in Figure 4C.

Table S8. P-values for Tukey HSD test for selection coefficients in each protein site (Fig. 
5C). ANOVA for comparisons between samples shown in Figure 5C.

Table S9. Features used in the random forest regressor. List of features used to model 
promoter activity-dependent differences in selection coefficient. Sources for each feature are 
included.

Table S10. ANOVA of selection coefficients with respect to expression level and 
destabilizing effects. ANOVA on promoter activity levels and bins of mutational effects.

Table S11. Key resources table.

Table S12. Oligonucleotides. List of oligonucleotides used in this study.

Supplementary Data Legends

Data S1. MAFFT alignment of DfrB1 homologs.
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