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Figure S1 – related to Figure 1 

Figure S1: Gamma power and phase locking depend on behavioral state. A: Average normalized gamma power during running 
(light blue) and quiescence (dark blue) versus stimulus size (n = 17 mice, 2-way-ANOVA: main effect of size: p < 0.001; main effect 
of running p < 0.001; interaction: p < 0.001). B: Average normalized gamma power during running and quiescence versus stimulus 
contrast (n = 18 mice, 2-way ANOVA: main effect of contrast: p < 0.001; main effect of running: p < 0.001; interaction: p = 0.008). 
C: Average normalized gamma power during running and quiescence versus relative surround orientation (n = 10 mice, 2-way 
ANOVA: main effect of orientation: p < 0.001; main effect of running: p < 0.001; interaction: p = 0.24)  D: Average PPC during 
running (light blue) and quiescence (dark blue) versus stimulus size (n = 87 units, 2-way-ANOVA: main effect of size: p<0.001; 
main effect of running: p < 0.001; interaction: p = 0.36). E: Average PPC during running and quiescence versus stimulus contrast 
(n = 29 units, 2-way-ANOVA: main effect of contrast: p < 0.001; main effect of running: p < 0.001; interaction: p = 0.11). F: Average 
PPC during running and quiescence versus relative surround orientation (n = 28 units, 2-way-ANOVA: main effect of orientation: 
p= 0.001; main effect of running: p<0.001; interaction: p = 0.54). Error bars in all plots represent s.e.m. 
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Figure S2 – related to Figure 1 

 

 

 

 

 

Figure S2: Opposing correlation of SST- and VIP-neuron activity with gamma power. A: Plot of averaged normalized gamma 
power in the running condition vs. averaged normalized SST-cell activity (deconvolved event-rate/mean), recorded via 2-photon 
imaging in a different set of animals across similar conditions. Different shades of gray represent different contrast levels and 
different symbol sizes represent different stimulus sizes. Dashed line is a linear fit of the data. SST-cell activity strongly correlates 
with gamma power (r = 0.76, p = 0.019). B: Same as A, except for normalized VIP cell activity. VIP activity is strongly anti-correlated 
with gamma power (r = -0.84, p = 0.005). C: Same as A, except in the quiescent state. SST-cell activity is strongly correlated to 
gamma power (r = 0.93, p<0.001). D: Same as B, except in the quiescent state. VIP activity is strongly anti-correlated to gamma 
power (r = -0.73, p = 0.024). 
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Figure S3 – related to Figure 2 

 

Fig. S3. Effects of VIP inactivation on locking of single RS and FS units. A: Top: scatter plot of PPC values for single RS (black, n = 
90 units, p < 0.001, Wilcoxon signed rank test) and FS (green, n = 33 units, p = 0.0015, Wilcoxon signed rank test) units in response 
to small (4˚) stimuli in control condition versus VIP suppression. Bottom: scatter plot of PPC values for single RS (black, n = 87 
units, p < 0.001, Wilcoxon signed rank test) and FS (green, n = 35 units, p < 0.001, Wilcoxon signed rank test) units in response to 
large (60˚) stimuli in control condition versus VIP suppression. B: Top: scatter plot of PPC values for single RS (black, n = 27 units, 
p = 0.61, Wilcoxon signed rank test) and FS (green, n = 13 units, p = 0.31, Wilcoxon signed rank test) units in response to low 
contrast (5%) stimuli in control condition versus VIP suppression. Bottom: scatter plot of PPC values for single RS (black, n = 30 
units, p = 0.001, Wilcoxon signed rank test) and FS (green, n = 17 units, p = 0.98, Wilcoxon signed rank test) units in response to 
high contrast (80%) stimuli in control condition versus VIP suppression. C: Top: scatter plot of PPC values for single RS (black, n = 
46 units, p < 0.001, Wilcoxon signed rank test) and FS (green, n = 15 units, p < 0.001, Wilcoxon signed rank test) units in response 
to cross surround stimuli in control condition versus VIP suppression. Bottom: scatter plot of PPC values for single RS (black, n = 
21 units, p = 0.04, Wilcoxon signed rank test) and FS (green, n = 9 units, p = 0.004, Wilcoxon signed rank test) units in response to 
iso surround (0˚ offset) stimuli in control condition versus VIP suppression. D: Top: average PPC spectra for L2/3 FS units with 
(red) and without (black) suppression of VIP neurons (n = 30 units) for small (4˚) stimuli. Bottom: average PPC spectra for L2/3 FS 
units with (red) and without (black) suppression of VIP neurons (n = 32 units) for large (60˚) stimuli.  E: Top: average PPC spectra 
for L2/3 FS units with (red) and without (black) suppression of VIP neurons (n = 13 units) for low contrast (5%) stimuli. Bottom: 
average PPC spectra for L2/3 FS units with (red) and without (black) suppression of VIP neurons (n = 17 units) for high contrast 
(80%) stimuli. F: top: average PPC spectra for L2/3 FS units with (red) and without (black) suppression of VIP neurons (n = 15 
units) for cross surround (90˚ offset) stimuli. Bottom: average PPC spectra for L2/3 FS units with (red) and without (black) 
suppression of VIP neurons (n = 9 units) for iso surround (0˚ offset) stimuli. 
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Figure S4 – Related to Figure 1 

 
Figure S4. Effects of VIP inactivation on higher-frequency, narrowband, thalamic gamma (60Hz). A: Spectra for different size 
grating stimuli with (red) and without (black) inactivation of VIP neurons. VIP affects the visually induced 30Hz gamma band, but 
not the thalamically relayed 60Hz gamma band that is suppressed by large/high contrast stimuli. B: Plot comparing the LFP high 
gamma band power for blank stimuli in the running condition for control (black) and light (red) trials (n = 19 mice, p = 0.33, 
Wilcoxon signed rank test) Right: Plot comparing the LFP high gamma band power for blank stimuli in the quiescent condition for 
control (black) and light (red) trials (n = 18 mice, p = 0.25, Wilcoxon signed rank test). 
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Figure S5 – related to Figure 4 

 
Figure S5. Receptive field mapping procedure for coherence measurement. A: Schematic of the multielectrode array recording 
configuration with two laminar arrays in distant sites (530 ± 90 μm apart, histology from n = 7 mice) corresponding to two 
separate retinotopic locations (RF1 (green) and RF2 (yellow), 15° ± 6° of visual angle separation, n = 10mice). Red triangle denotes 
wide illumination with optogenetic light delivered from a fiber located above the two recording sites. B: Two sparse noise mapped 
RFs (redder colors denote higher firing rates), one from electrode 1 (green frame), one from electrode 2 (yellow frame) 
superimposed on the outline of the center and surround of the visual stimulus used for the coherence analysis (Figure 4). Large 
outer frame is approximately the size of the stimulation monitor. C: average RF size (2 standard deviations of Gaussian fit to RF) 
and average separation of center and surround fields, separately for fields mapped with white and black sparse noise, n = 8 mice.  
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Figure S6 – related to Figure 5 

 
Figure S6. Modulation of gamma power in the presence of untuned and tuned VIP neurons. A: Average firing rates across 
different contrast levels across the populations for the mean-field theory as a function of contrast with untuned (solid) and tuned 
(dashed) VIP neurons. B: Normalized power spectrum from the mean-field model as a function of contrast for untuned (solid) 
and tuned (dashed) VIP neurons. C: Normalized gamma power taken from the power spectrum of panel B. 
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Methods S1. Linear response theory to find steady state firing rates, power spectrum and cross-
spectrum of spike trains, and mean field theory, Related to the smooth lines in Figures 5, 6 and S6, and 
STAR Methods.  

We solve for the steady state firing rates via the self-consistency relationship  

𝑟! = 𝑟!#𝜇!"##, 𝜎!', 

where 

𝜇!"## = 𝐸$ +	𝜇!,&' + 𝑐𝜇!,()*+ + 𝜇!,, +,-. 𝐽!-(𝑡)
.

/.
𝑑𝑡4

-

𝑊!-𝑟- , and 

𝜎! = 9#𝜎!,&'0 + 𝑐𝜎!,()*+0 + 𝜎!,,0 + 𝜎120 ' ⋅ 2𝜏3, 

for 𝑖 = 1,… ,𝑁 using standard methods developed in 1,2 for a nonlinear integrate-and-fire neuron. 

We seek to understand the cross-covariance function of neuron 𝑖 and 𝑗 spike trains: 𝐂!-(𝑠) =
〈(𝑦!(𝑡) − 𝑟!)#𝑦-(𝑡 + 𝑠) − 𝑟-'〉. To do this, we follow previous work 3–6 and linearize each neuron’s spike 
train around 𝐲!4, a realization of the spiking output in the absence of recurrent connections. More 
specifically, by assuming weak synaptic connections 𝐖!-  and a bandlimited global noise process, we 
approximate the spike response from neuron 𝑖 as 

𝐲J!(𝜔) = 𝐲J!4(𝜔) + 𝐀M!(𝜔)N𝜎12O2𝜏3𝜼Q12(𝜔) + ∑ 𝐖!-𝐉T!-(𝜔)𝐲J-(𝜔)- U, 

where 𝐲J!(𝜔) is the zero mean Fourier transform of the spike train, 𝑓T denotes the Fourier transform of 
the other quantities, and 𝐀M!(𝜔) is the linear response of the postsynaptic neuron 7. Solving for 𝐲J(𝜔) 
yields 

𝐲J(𝜔) = #𝐈 − 𝐊(𝜔)'/5N𝐲J4(𝜔) + 𝜎12O2𝜏3𝜼Q12(𝜔)U, 

where 𝐈 is the identity matrix, 𝐊(𝜔) = 𝐀M(𝜔) Y𝐖M ⊙ 𝐉T(𝜔)[ and 𝐀M(𝜔) is a diagonal matrix with entries 

𝐀M!(𝜔). Writing the Fourier transform of 𝐂𝐢𝐣(𝑠) as 𝐂\!-(𝜔), it follows that 

𝐂\(𝜔) = 〈𝒚Q(𝜔)𝐲J∗(𝜔)〉, 
= #𝐈 − 𝐊(𝜔)'/5N〈𝐲J4(𝜔)𝐲J4∗(𝜔)〉 + 𝜎120 2𝜏3𝐀M(𝜔)〈𝜼Q12(𝜔)𝜼Q12∗ (𝜔)〉𝐀M∗(𝜔)U#𝐈 − 𝐊∗(𝜔)'

/5, 

= #𝐈 − 𝐊(𝜔)'/5N𝐂\4(𝜔) + 𝜎120 2𝜏3〈𝜂J12(𝜔)𝜂J12∗ (𝜔)〉𝐀M(𝜔)𝟏𝐀M∗(𝜔)U#𝐈 − 𝐊∗(𝜔)'
/5, 

where 𝐲J∗ denotes the conjugate transpose, 𝟏 is a matrix of ones, and 𝐂\4(𝜔) is a diagonal matrix of the 
power spectrums of the baseline spike trains. 

We now develop a mean-field theory to significantly compress the previous 𝑁 × 𝑁 matrices for the case 
where a visual stimulus only evokes the center retinotopic location, yielding matrices that are 3 × 3. The 
extension to larger visual stimuli evoking the discrete surround populations follows in a similar manner. 
Further, we focus on the case of a network with a fixed in-degree for each neuron of a specific 
population, though it can be generalized to account for additional network configurations. Denote 𝑁9 as 
the relative sizes of each population, with 𝑎 = 𝑒	(PC), 𝑝	(PV), and	𝑠	(SST) . 
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We start the derivation for the population-average pairwise covariance matrix by averaging the spike 
response equation in the Fourier domain 

1
𝑁9

,𝐲J𝒊(𝜔) =
!∈9

1
𝑁9
,j𝐲J!4(𝜔) + 𝜎120 2𝜏3𝐀M!(𝜔)𝜂J12(𝜔) + 𝐀M!(𝜔),𝐖!-𝐉T!-(𝜔)𝐲J-(𝜔)

-

k ,
!∈9

 

=
1
𝑁9

,𝐲J!4(𝜔)
!∈9

+ 𝜎120 2𝜏3𝜂J12(𝜔) ⋅
1
𝑁9

,𝐀M!(𝜔)
!∈9

+
1
𝑁9

,j𝐀M!(𝜔),𝐖!-𝐉T!-(𝜔)𝐲J-(𝜔)
-

k
!∈9

. 

We can break the third sum in the last line by the population 𝑗 belongs to, noting that 

1
𝑁9
j,,𝐀M!(𝜔)𝐖!-𝐉T!-(𝜔)𝐲J-(𝜔)

-∈<!∈9

k ≈
1
𝑁9

j𝐀M9(𝜔)𝑤9<𝑝9<𝑁9𝐉T9<(𝜔),𝐲J-(𝜔)
-∈<

k 

= (𝑤9<𝑝9<𝑁<)𝐀M9(𝜔)𝐉T9<(𝜔)𝒚Qo<(𝜔), 

where  

𝒚Qo<(𝜔) =
1
𝑁<
,𝐲J-(𝜔)
-∈<

 

denotes the Fourier transform of the concatenated spike trains from each population, 

𝑦p< =
1
𝑁<
,𝑦-(𝑡).
-∈<

 

The first line follows from the fact that for a fixed in-degree network, as considered here, a neuron in 
population 𝑏 makes on average 𝑝9<𝑁9 connections to a neuron in population 𝑎, the synaptic kernel 
𝐉T!-(𝜔) is the same for all neurons from population 𝑏 to 𝑎 and 𝐀M!(𝜔) is the same for all neurons in the 
same population. Alternatively, one could consider a fixed out-degree network, where the number of 
connections is 𝑝9<𝑁9 exactly, but in case, one would have to consider the average of 𝐀M!(𝜔)across the 
population. The coefficient 𝑤9<𝑝9<𝑁< is the effective connectivity from population 𝑏 to 𝑎. Designating 
the effective connectivity matrix as 

𝑀 = j
𝑤==𝑝==𝑁= 𝑤=>𝑝=>𝑁> 𝑤=?𝑝=?𝑁?
𝑤>=𝑝>=𝑁= 𝑤>>𝑝>>𝑁> 𝑤>?𝑝>?𝑁?
𝑤?=𝑝?=𝑁= 0 0

k = j
𝑀== 𝑀=> 𝑀=?
𝑀>= 𝑀>> 𝑀>?
𝑀?= 0 0

k, 

we can write 

𝒚Qo9(𝜔) = 𝒚Qo94(𝜔) + 𝜎120 2𝜏3𝜂J12(𝜔)𝐀M9(𝜔) + 𝐀M9(𝜔),𝐌9<𝐉T9<(𝜔)𝒚Qo<(𝜔).
<

 

Proceeding as before yields 

𝐂\u(𝜔) = 〈𝐲Ju(𝜔)𝐲Ju∗(𝜔)〉, 
= #𝐼 − 𝐊o(𝜔)'/5N〈𝐲J4(𝜔)𝐲J4∗(𝜔)〉 + 𝜎120 2𝜏3𝐀M(𝜔)〈𝜼Q12(𝜔)𝜼Q12∗ (𝜔)〉𝐀M∗(𝜔)U#𝐼 − 𝐊o ∗(𝜔)'

/5, 
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= #𝐼 − 𝐊o(𝜔)'/5 w𝐂\u𝟎(𝜔) + 𝜎120 2𝜏3〈𝜂J12(𝜔)𝜂J12∗ (𝜔)〉𝐀Mo(𝜔)𝟏𝐀Mo∗(𝜔)x #𝐼 − 𝐊o ∗(𝜔)'
/5
, 

with 

𝐊o(𝜔) = 𝐀Mo(𝜔)y𝐌⊙ 𝐉Tz(𝜔){ 

where 

𝐀Mo(𝜔) = diag Y𝐀M=(𝜔), 𝐀M>(𝜔), 𝐀M?(𝜔)[ , 

𝐉Tz(𝜔) = ~
𝐉T==(𝜔) 𝐉T=>(𝜔) 𝐉T=?(𝜔)
𝐉T>=(𝜔) 𝐉T>>(𝜔) 𝐉T>?(𝜔)
𝐉T?=(𝜔) 𝐉T?>(𝜔) 𝐉T??(𝜔)

� , and 

𝐂\u4(𝜔) = diag �
1
𝑁=
𝐂\==4 (𝜔),

1
𝑁>

𝐂\>>4 (𝜔),
1
𝑁?
𝐂\??4 (𝜔)�. 

The diagonal matrix 𝐂\u4(𝜔) follows from the calculation 

									𝐂\u994 (𝜔) = 	 〈𝐲Ju9(𝜔)𝐲Ju9∗(𝜔)〉 = 	 〈
1
𝑁9

,𝑦J!4(𝜔)
!∈9

⋅
1
𝑁9

,𝑦J-4∗(𝜔)
-∈9

〉 

=
1
𝑁90

,〈𝑦J!4(𝜔)𝑦J!4∗(𝜔)〉
!∈9

=
1
𝑁9

𝐂\994 (𝜔), 

where the equality follows from the fact that like the linear response function, the neurons in a fixed in-
degree network have the same spike train power spectrum across populations. This calculation yields a 
block-wise averaged power and cross-spectrum matrix 

𝐂\u(𝜔) = ~
𝐂\==(𝜔) 𝐂\=>(𝜔) 𝐂\=?(𝜔)
𝐂\>=(𝜔) 𝐂\>>(𝜔) 𝐂\>?(𝜔)
𝐂\?=(𝜔) 𝐂\?>(𝜔) 𝐂\??(𝜔)

�, 

where 

𝐂\u9<(𝜔) ≈
1
𝑁9

1
𝑁9

,,𝐂\u!-
-∈<!∈9

(𝜔). 

This theory can be extended to account for global noise that takes the form of Gaussian white noise 
(with infinite variance). Following previous work 4, this results in the following equation for 𝐂\u(𝜔) 

𝐂\u(𝜔) = #𝐼 − 𝐊o(𝜔)'/5 �𝐂\u𝟎(𝜔) + 𝜎120 2𝜏3〈𝜂J12(𝜔)𝜂J12∗ (𝜔)〉𝐀Mo(𝜔)𝟏𝐀Mo∗(𝜔) − 𝜎120 2𝜏3 �𝐀MoA(𝜔)�
0
� #𝐼

− 𝐊o ∗(𝜔)'/5, 

where 
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𝐀MoA(𝜔) = diag�
1
𝑁=
𝐀M=(𝜔),

1
𝑁>

𝐀M>(𝜔),
1
𝑁?
𝐀M?(𝜔)�. 

We note that for the parameters considered (i.e., the magnitude of the global noise term is small 
relative to the independent noise), this correction term as a minimal effect on 𝐂\u(𝜔), being orders of 
magnitude smaller than the other terms in this equation. 

To estimate the linear response functions and the spike train power spectrum for each population, we 
first need the population-average steady state firing rates, 

𝑟9 =
1
𝑁9

,𝑟!
!∈9

. 

Using the effective connectivity across populations, we can use the same self-consistency relationship as 
the non-average quantities to find the population average steady-state firing rates, namely 

𝑟9 = 𝑟9#𝜇9"##, 𝜎9', 

where  

𝜇9"## = 𝐸$ +	𝜇9,&' + 𝑐𝜇9,()*+ + 𝜇9,, +,-. 𝐉9<(𝑡)
.

/.
𝑑𝑡4

<

𝐌9<𝑟< , and 

𝜎9 = 9#𝜎9,&'0 + 𝑐𝜎9,()*+0 + 𝜎9,,0 + 𝜎120 ' ⋅ 2𝜏3. 

With these population rates, we can then apply the theory developed in 1,2 to  

𝜏3
𝑑𝑉9
𝑑𝑡

= −(𝑉9 − 𝐸$) + 𝜓(𝑉9) + 𝜎9𝜉9 , 

in order to numerically estimate 𝐀M9(𝜔) and 𝐂\994 (𝜔). These terms will exactly match that of 𝐀M!(𝜔) and 
𝐂\!!4(𝜔) for 𝑖 ∈ 𝑎 of the full system when the network has a fixed in-degree. Otherwise, this method 
would estimate the average of these quantities across the population. 

Finally, using the power spectrums for two excitatory populations Y𝐂\=!=!(𝜔)	and	𝐂\="="(𝜔)[ and their 

cross-spectrum Y𝐂\=!="(𝜔)[	, the coherence is taken to be 

coherence(𝜔) =
�𝐂\=!="(𝜔)�

0

𝐂\=!=!(𝜔) ⋅ 𝐂\="="(𝜔)
	. 
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Methods S2. LFP Power and Cross do not necessarily scale in finite size networks, Related to STAR 
Methods. 

Work by 8 recently derived results showing that under certain assumptions power and coherence are 
intrinsically linked. However, such a result need not be the case 9,10, and indeed, does not follow from 
the theory above, where shifting the operating point (through changing contrast, VIP activation, cross 
vs. iso surround) results in the power and cross-spectrums to change in different ways. Thus, a change in 
power doesn’t necessarily result in a change in coherence.   

To highlight the differences in approaches, consider two excitatory populations (𝛼 ∈ {𝑒5, 𝑒0})	and 
assume homogeneity with 

⟨	𝑦J!(𝜔)𝑦J!∗(𝜔)⟩ = 𝑝(𝜔),								for		𝑖 ∈ 𝛼			 
�	𝑦J!(𝜔)𝑦J-∗(𝜔)� = 𝑐B(𝜔),					for		𝑖, 𝑗 ∈ 𝛼	and	𝑖 ≠ 𝑗 
�	𝑦J!(𝜔)𝑦J-∗(𝜔)� = 𝑐<(𝜔),						for		𝑖 ∈ 𝑒5	and	𝑗 ∈ 𝑒0 

where recall that 𝑦J!(𝜔) is the zero mean Fourier transform of the spike train, and 𝜔 is the frequency 
coordinate.  In brief, 𝑝(𝜔) is the single neuron power spectrum, 𝑐B(𝜔) is the within population pairwise 
cross spectrum and 𝑐<(𝜔) is the between population pairwise spectrum. 

The LFP power spectrum of population 𝛼 is then  

𝐂\CC(ω) =
1

𝑁C ⋅ 𝑁C
,,�	𝑦J!(𝜔)𝑦J-∗(𝜔)�

-∈C!∈C

 

=
1
𝑁0 j,⟨	𝑦J!(𝜔)𝑦J!∗(𝜔)⟩

!∈C

+, , �	𝑦J!(𝜔)𝑦J-∗(𝜔)�
-∈C,-D!!∈C

k 

=
1
𝑁0 (𝑁	𝑝(𝜔) 	+ 	𝑁(𝑁 − 1)𝑐

B(𝜔)) 

≈
𝑝(𝜔)
𝑁

+ 𝑐B(𝜔), 

where we have assumed 𝑁=! = 𝑁=" = 𝑁. Similarly, the cross spectrum between LFPs is  

𝐂\=!="(ω) =
1

𝑁=! ⋅ 𝑁="
, ,�	𝑦J!(𝜔)𝑦J-∗(𝜔)�

-∈="!∈=!

 

=
1
𝑁0 Y𝑁

0𝑐<(𝜔)[ 

= 𝑐<(𝜔). 

Finally, the coherence between LFPs is 

coherence(𝜔) =
�𝐂\=!="(ω)�

0

𝐂\=!=!(ω) ⋅ 𝐂\="="(ω)
 

=
�𝑐<(𝜔)�0

-𝑝(𝜔)𝑁 + 𝑐B(𝜔)4
0	. 
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Our linear response calculations linearize the network dynamics about an operating point.  This allows 
us to calculate 𝑝(𝜔), 𝑐B(𝜔), and 𝑐<(𝜔) using standard techniques from non-equilibrium statistical 
mechanics.  In particular, the single neuron power spectrum 𝑝(𝜔) and pairwise cross spectrum 𝑐(𝜔) 
result from separate calculations where the linearity of interaction is needed for 𝑐(𝜔) yet not for 𝑝(𝜔). 
When we shift the operating point 𝑝(𝜔) and 𝑐(𝜔) change in different ways. Since for 𝑁 < ∞ the 
coherence coherence(𝜔) depends on both 𝑝(𝜔) and 𝑐(𝜔) then coherence(𝜔) will not be invariant 
with a shift in the operating point.  

However, other work 8,10,11 has assumed heuristically, or by construction, that 

𝐂\=!="(ω) = 𝛽𝐂\=!=!(ω), and	𝐂\=!=!(ω) = 𝐻(𝜔) +	𝛽0𝐂\=!=!(ω), 

which simplifies the coherence to be 

coherence(𝜔) =
�𝛽𝐶T=!=!(ω)�

0

𝐶T=!=!(ω) ⋅ Y𝐻(𝜔) +	𝛽0𝐶T=!=!(ω)[
 

=
1

1 + 𝐻(𝜔)Y𝛽0𝐶T=!=!(ω)[
/5 	 . 

As a result, this assumption implies that even with finite 𝑁, coherence and power will be intrinsically 
linked. Yet, our experimental observations show that such an assumption does not hold, at least across 
spatial locations in V1.  
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Table S1. Default neuronal parameters, Related to STAR Methods. 

Parameter Value Description 

𝑁=E 4000  number of excitatory neurons at location 𝑥 

𝑁>E 500 number of PV neurons at location 𝑥 

𝑁?E 500 number of SST neurons at location 𝑥 

𝑁,E 500 number of VIP neurons at location 𝑥 

𝐸2  -60 mV resting potential 

𝑉)F 20 mV threshold potential 

𝑉G" -75 mV reset potential 

𝜏3 5.4 msec membrane time constant 

𝜏? 0.6 msec synaptic time constant 

𝜏G"# 1.2 msec refractory period 

ΔH  -50 mV exponential shape parameter (soft threshold) 

𝑉I& -100 mV lower bound for voltage 

𝜏J"IKL 1.8 msec Synaptic delay 

𝑤 = 𝑤9= 0.48 mV ⋅ msec synaptic strength of excitatory connections 

𝑔 4 amplification of inhibitory connection strength 

𝑤9> = 𝑤9? −𝑔𝑤 synaptic strength of inhibitory connections 

N𝜇=,<1, 𝜇>,<1, 𝜇?,<1U [3, 3, 7] mV background mean 

N𝜎=,<10 , 𝜎>,<10 , 𝜎?,<10 U [2.1, 2.1, 3] mV background standard deviation 

N𝜇=,?M!3, 𝜇>,?M!3, 𝜇?,?M!3U [3, 3, 0] mV stimulus mean 

N𝜎=,?M!30 , 𝜎>,?M!30 , 𝜎?,?M!30 U [2.1, 2.1, 0] mV  stimulus standard deviation 

𝜎12  0.25 mV global noise standard deviation 

c 0.5-1.0 contrast weight 

𝑟,  0-14 Hz firing rate of VIP neurons 

N𝑤=,, , 𝑤>,, , 𝑤?,,U [0,0, −6.4] strength of VIP connections 
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Table S2. Probability of connections 𝒑𝒂𝒃 (from population b to a; columns presynaptic, rows 
postsynaptic), Related to STAR Methods. 

 Same spatial location Different spatial location 

 PC PV SST PC (iso) PC (cross) 

PC 0.07 0.15 0.10 0.02 0.01 

PV 0.05 0.10 0.10 0.03 0.005 

SST 0.10 0.00 0.00 0.08 0.05 
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