Figure S1. Analysis of the binding of TR compounds to ClpP using SPR, Related to Figure 2.

(A) Raw SPR binding curves for each TR compound at varied concentrations.

(B) Fits of SPR data in A to the 1:1 Langmuir binding model. The obtained K_{ds} are given in each

panel together with the respective errors from the fit.

Figure S2. The phenyl ring moieties of TR compounds exhibit shape and surface charge complementarity with the small pockets of H-sites, Related to Figure 4.

(A) On the left panel, shown is the TR-57 bound to the H-site, whose outer boundaries are covered with surface charges. On the right panel, the chemical structure of TR-57 is shown.

(**B**) Shown on the left panel is a cut-away view of the TR binding cavity showing the electrostatic potential of the two small cavities where the substituted phenyl ring moieties of TR-57 bind. Not only does TR-57 have a complementary shape with the small pockets, but the additional polar halide and nitrile groups enhance its affinity for the charged pockets. The right panel is in the same orientation as the left except that the molecular surface is transparent.

(C) The left panel shows the same binding cavity as in B but rotated by 180° around the y-axis to display the electrostatic potential map of the other side of the TR binding pocket. The right panel is a transparent representation of the molecular surface on the left panel.

Figure S3. Confirming the absence of apoptosis in TR-27-treated cells by light/DAPIfluorescence microscopy and western blotting, Related to Star Methods.

(A) Light (panels i, iv, vii and x) and DAPI-fluorescence (panels ii, v, viii and xi) microscopy and corresponding merged images (panels iii, vi, ix and xii) for MDA-MB-231 WT cells treated with 1 μ M TR-27 (panels i to iii) or DMSO (panels iv to vi) and *CLPP*^{-/-} cells treated with 1 μ M TR-27 (panels vii to ix) or DMSO (x to xii). Drug / DMSO exposure was for 24 hours.

(**B**) Western blots for ClpP, ClpX, Mcl1, caspase 9, caspase 3, and caspase 8 on total cell lysates derived from MDA-MB-231 WT and $CLPP^{-/-}$ cells treated with 1 μ M TR-27 or DMSO for 24 hours. GAPDH was used as a loading control. The "pro" in the anti-caspase blots refers to the full-length inactive forms of the three caspases prior to proteolytic cleavage during apoptotic onset.

(C) Western blots of caspase 9 from total cell lysates derived from MDA-MB-231 WT and *CLPP*^{-/-} cells treated with either 1 μ M TR-27 (vs. DMSO) for 24 hours or 2 μ M doxorubicin (vs. DMSO) for 72 hours. GAPDH was used as a loading control. "pro" refers to the full-length inactive form of caspase 9 while p37 and p35 refer to the two fragments generated after its cleavage and activation.

Figure S4. Schematics of the experimental workflow and data analysis protocols used for the HYTANE experiments, Related to Star Methods.

(A) Cell culturing and sample preparation. When cells were harvested, they were washed with PBS to remove residual media. 3 replicates were prepared per cell line per condition.

(**B**) Sample processing for HYTANE. The N- and C-termini of a protein molecule are shown as "N" and "C", respectively. The N-terminal peptide to be isolated and analyzed is shown in purple; the rest of the protein and corresponding peptides generated after trypsin digestion (step 8) are shown in cyan. Yellow diamonds represent dimethylation of free amine groups (including the N-terminus). Red rods represent hydrophobic tags that facilitate the subsequent removal of the tagged peptides using C18 columns.

(**C**) Flow chart for the analysis of HYTANE data. Determination of whether an observed change in abundance of a given peptide was due to TR-27's effect or whether it was dependent on the presence of ClpP occurs where indicated with asterisks (*). The abundance data of both novel and native N-terminal peptides were subjected to further analysis.

(**D**) Scatter plots of log₂ ratios of MDA-MB-231 *CLPP*^{-/-} with TR-27 treatment to DMSO (no drug) treatment versus the corresponding log₂ ratios for WT cells. Red data points correspond to N-terminal peptides that are deemed to show statistically significant changes in abundance in WT cells treated with TR-27 compared to DMSO with p < 0.05 based on comparison of log₂ [(WT + TR-27)/(WT + DMSO)] versus log₂ [(*CLPP*^{-/-} + TR-27)/(*CLPP*^{-/-} + DMSO)] for each N-terminal peptide. Green data points correspond to those that are deemed to display insignificant changes with p \ge 0.05. Panels: (i) p < 0.05 (red) data points and p \ge 0.05 (green) data points shown together; (ii) p \ge 0.05 data points only; (iii) p < 0.05 data points only. Dotted line defines the trend expected when TR-27 treatment induces equal changes in peptide abundance in both WT and *CLPP*^{-/-}.

Figure S5. TFAM and Grp75 are targeted for degradation by TR-27-activated ClpP, Related to Figures 5 and 6.

(A) Shown are western blots analyzing the expression of TFAM and Grp75 in MDA-MB-231 WT and *CLPP*^{-/-}cells treated with 1 μ M TR-27, 6 μ M ADEP-14, or DMSO for 24 hours. GAPDH serves as the sample loading control.

(**B**) Degradation of TFAM in the presence of ClpP and TR-65. Samples were collected every hour for 5 hours. Two negative controls were performed: ClpP only and TR-65 only. The blue arrow points to ClpP. The red arrow points to TFAM. Note that although TFAM has a higher MW than ClpP, it runs lower on the gel. This could be because it has a greater percent composition of arginine and lysine; as a result, TFAM would bind more SDS and traverse through the gel at a faster rate.

(**C**) The two bands at about 15 kDa and 9 kDa are TFAM degradation fragments generated by activated ClpP, which were subjected to N-terminal sequencing. High concentrations of ClpP and TFAM were used to achieve an abundance of degraded bands visible by eye on a Coomassie stained gel, as such the bands at about 25 kDa are composed of both TFAM and ClpP.

(**D**) Shown is a cartoon representation of the domains of TFAM. The two red arrows point to the two cut sites caused by activated ClpP identified by N-terminal sequencing of the bands indicated in C.

(E) Shown are the cut site in TFAM mapped onto the protein structure (PDB id $3TQ6)^1$. The structure was generated using PyMOL.

D

Figure S6. Synthesis of TR-27 and TR-65, Related to Star Methods.

Shown is a schematic for the synthesis of TR-27 and TR-65 compounds. (a) NaBH(OAc)3, CH2Cl2, 30oC/4 h, (b) MeI, MeOH, reflux/30 min, (c) dioxane, reflux/12h, and (d) MeONa MeOH, reflux/12 h.

Figure S7. Synthesis of TR-57, TR-107, and TR-133, Related to Star Methods.

(A) Shown is a schematic for the synthesis of TR-57. (a) aq NH₃, EtOH, Na₂CO₃, 70°C/4 h; (b) Et3N, toluene, 80°C/8 h and (c) MeI, DMF, 100°C/12 h.

(B) Shown is a schematic for the synthesis of TR-107 and TR-133. (a) CH₄N₂, HOAc, reflux/8 h $\,$

and (b) Cs₂CO₃, (TR-107: pClBnBr, TR-133: pBrBnBr), THF, reflux/12 h.

A

В

LEGENDS FOR SUPPLEMENTAL TABLES

Table S1. X-ray data collection and refinement statistics for complexes of human ClpP withTR compounds, Related to Figure 3.

Table S2. Buried surface area for different small molecule activators upon complexformation with human ClpP, Related to Figure 4.

Table S3. Proteins and protein complexes detected in both HYTANE and BioID, Related toFigure 5.

Table S1

TR compound	TR-27	TR-57	TR-65	TR-107	TR-133		
PDB ID	7UVM	7UVN	7UVR	70VU	7UW0		
Data collection	Data collection						
Space group	C 1 2 1	C 1 2 1	C 1 2 1	C 1 2 1	I 1 2 1		
Cell dimensions							
<i>a, b, c</i> (Å)	143.15, 153.72, 105.10	142.10, 153.04, 104.70	142.17, 152.52, 104.27	142.15, 152.66, 104.34	105.66, 153.80, 133.21		
α, β, γ (°)	90.00, 117.76, 90.00	90.00, 117.92, 90.00	90.00, 118.10, 90.00	90.00, 118.00, 90.00	90.00, 107.03, 90.00		
Resolution (Å)	29.62 - 2.19	50.00 - 3.10	29.35 - 2.86	50.00 - 3.30	93.62 - 2.80		
	(2.25 - 2.19)	(3.15 - 3.10)	(2.93 - 2.86)	(3.36 - 3.30)	(2.89 - 2.80)		
Ι/σΙ	5.2/1.3	11.4/1.8	6.0/1.4	4.7/1.2	4.2/1.7		
Rmerge	0.235 (0.737)	0.285 (1.065)	0.207 (0.837)	0.205 (0.879)	0.354 (0.963)		
CC 1/2	0.987 (0.716)	0.992 (0.705)	0.987 (0.628)	0.964 (0.570)	0.805 (0.420)		
Completeness (%)	99.2 (90.2)	99.7 (99.4)	99.2 (91.9)	98.7 (96.6)	95.2 (94.3)		
Redundancy	7.0 (5.9)	7.2 (7.3)	5.2 (4.8)	6.6 (6.1)	4.9 (4.9)		
Refinement							
Resolution (Å)	29.40 - 2.19	50.00 - 3.10	29.17 - 2.86	46.06 - 3.30	50.51 - 2.80		
No. reflections	102,283 (9,495)	35,028	44,927	29,842	47,166		
	01 10.00 DD 705	(3,309)	(4,367)	(2,427)	(4,706)		
R _{work} /R _{free}	0.1971/0.2370	0.2291/0.2823	0.2028/0.2526	0.1900/0.2599	0.2606/0.3080		
No. of atoms							
Macromolecules	9,616	9,809	9,547	9,763	9,963		
Ligands	378	210	217	196	196		
Solvent	428	238	110	125	70		
B-factors (Å ²)							
Protein	43.30	51.55	47.02	49.37	23.77		
Ligands	42.76	49.87	45.34	48.32	24.08		
Water	46.60	48.71	41.28	38.96	12.56		
r. m. s. d.							
Bond lengths (Å)	0.015	0.002	0.012	0.012	0.002		
Bond angles (°)	1.470	0.60	1.35	1.390	0.56		
Ramachandran							
Favored	97.07	95.65	95.26	91.36	96.26		
Allowed	2.68	3.86	4.32	7.57	3.49		
Disallowed	0.25	0.49	0.42	0.00	0.25		

Table S1. X-ray data collection and refinement statistics for complexes of human ClpP with TR compounds, Related to Figure 3.

Statistics for the highest-resolution shell are shown in parentheses.

Table S2

Table S2. Buried surface area for different small molecule activators upon complex formation with human ClpP, Related to Figure 4.

Small	Surface area	Buried surface area upon binding	Percent buried
molecule	(Å ²)	(Å ²)	(%)
TR-27	665	564	84.8
TR-57	642	530	82.6
TR-65	650	534	82.2
TR-107	610	511	83.8
TR-133	619	522	84.3
ONC201	607	495	81.5
ADEP-28	951	707	74.3
ZG111	758	639	84.3
D9*	596**	516	86.6

*Y118A mutant of human ClpP was used in crystallization with small molecule. **Considering major pose of small molecule in coordinate file PDB id 6H23.

Table S3

TABLE S3. Proteins and protein complexes detected in l	both HYTANE and BioID,
Related to Figure 5.	

	Protein Complex	
NDUFA2		
NDUFA6 ↓		
NDUFA7 ↓		
NDUFA12 Native		
NDUFB4 Native		
NADU I. NDUFB8 Native		
NADH:ubiquinone denydrogenase Energy metabolism NDUFS2* Native	(Complex I)	
(Complex I) (OXPHOS) NDUFS4	(Complex I)	
NDUFS6 V		
NDUFS7 V		
NDUFS8 Native		
NDUFV2 Novel↓ ↓		
NDUFV3		
Succinate dehydrogenase Energy metabolism SDHA	Succinate dehydrogenase	
(Complex II) (OXPHOS) SDHB Native	(Complex II)	
Ubiquinol-cytochrome c Energy metabolism UOCRB Native	Ubiquinol-cytochrome c	
oxidoreductase (Complex III) (OXPHOS) UOCRC1 Native	oxidoreductase (Complex III)	
COX4I1 Native		
Cytochrome c oxidase (complex Energy metabolism COX5A	Cytochrome c oxidase (complex	
IV) (OXPHOS) COX5B Native	IV)	
COX6C Native		
2-Oxoglytarate dehydrogenase Energy metabolism OGDH	2-Oxoglytarate dehydrogenase	
complex (TCA cycle) DLST Native	complex	
GTP-specific succinyl-CoA Energy metabolism SUCLG1 ↓	GTP-specific succinyl-CoA synthase complex	
synthase complex (TCA cycle) SUCLG2 Native		
Malate dehydrogenase Energy metabolism MDH2 Nativel	Malate dehydrogenase	
(TCA cycle)	Mulate denythogenuse	
Isocitrate dehydrogenase Energy metabolism IDH3A	Isocitrate dehydrogenase	
(TCA cycle) IDH3G Native		
Complex I α-subcomplex assembly Molecular chaperone NDUFAF2 Native	Complex I α -subcomplex assembly	
factor 2	factor 2	
Complex 1 α-subcomplex assembly Molecular chaperone	Complex I α-subcomplex assembly factor 3	
Tactor 3NDUFS2* Native↓ ↓		
MDDL4 NT1		
MRPL10 V		
Mitechandrial ribecome 20S Mitechandrial	Mitachandrial ribesame 200	
(large) subunit translation MRPL14	(large) subunit	
MRPL19	(imge) subuint	
MRPL21 J		
MRPI 40		

		MRPL42	Novel 🗸	
		MRPL44		\downarrow
		MRPL45		\downarrow
		MRPL46	Novel	1
		MRPL47		J.
		MRPI 48		J.
		MRPL 49	Novel	v
		MRPI 54		
		MDDI 55		•
		WIKI L55		•
		MRPS2	Novel	
		MRPS6		Ļ
		MRPS7		J.
		MDDS11		•
		MDDC15		<u> </u>
		MRPS15		<u>↓</u>
		MRPS16		¥
		MRPS17		↓
Mitochondrial ribosome 28S	Mitochondrial	MRPS18A	Novel 🖌	
(small) subunit	translation	MRPS23		<u> </u>
		MRPS24		↓
		MRPS25		\downarrow
		MRPS26		\downarrow
		MRPS27	Native	
		MRPS28	Native	\downarrow
		MRPS29	Novel 🗸	
		MRPS35	Novel 🗸	
		MRPS36	Novel 🗸	\downarrow
Mitochondrial elongation factor G	Mitochondrial	GFM1	Native	Ļ
	translation			
Mitachandrial transcription factor	Mitochondrial			
A	transcription	TFAM	Native	\checkmark
**				
Clutamata dahudraganaga 1	Amino acid	CLUDI	NEWS	1.
Glutamate denydrogenase 1	metabolism	GLUDI	Native	*
Hvdroxvacvl-CoA dehvdrogenase	Lipid metabolism (β-	HADH	Native	\downarrow
	oxidation)			
	I :: 1 (0			
Enoyl-CoA hydratase 1	Lipid metabolism (p-	ECHS1	Native	\downarrow
	Unitation)			
	Linid metabolism (B			
Acetyl-CoA acetyltransferase 1	oxidation)	ACAT1	Native	\downarrow
Adenosine 5'-	Nucleic acid	HINT2	Noval	1
monophosphoramidase	metabolism (purine)	1111112	nover v	¥
*NIDUES2 is found in complex with	hoth NADHubiquinena d	abudroganasa (Comple	w D and Complay L er av	hoomploy accomple
factor 3	oour NADIT.uoiquinone d	enyurogenase (Comple	α i) and complex 1 α -su	ocomplex assembly
lactor 3.				

¹The BioID data are derived from Ishizawa et al. (2019) *Cancer Cell* <u>35</u>, 721-737, e729.

REFERENCES

 Rubio-Cosials, A., Sydow, J.F., Jiménez-Menéndez, N., Fernández-Millán, P., Montoya, J., Jacobs, H.T., Coll, M., Bernadó, P., and Solà, M. (2011). Human mitochondrial transcription factor A induces a U-turn structure in the light strand promoter. Nature Structural & Molecular Biology 18, 1281-1289. 10.1038/nsmb.2160.