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Supplementary Figure 1. PXRD patterns of TpBpy based materials. 

 

 

Supplementary Figure 2. PXRD patterns of TpBpy-2 based materials. 
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Supplementary Figure 3. PXRD patterns of TpBD based materials. 
 

 

Supplementary Figure 4. Comparison of FT-IR spectra of TpBpy-NS and 

Pt(5%)@TpBpy-NS. 
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Supplementary Figure 5. Comparison of FT-IR spectra of TpBpy-2-NS and 

Pt(5%)@TpBpy-2-NS. 

 

 

Supplementary Figure 6. Comparison of FT-IR spectra of TpBD-NS and 

Pt(5%)@TpBD-NS.  
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Supplementary Figure 7. Comparison of Nitrogen sorption curves of TpBpy-NS 

based materials measured at 77 K. 

 

 

Supplementary Figure 8. Comparison of Nitrogen sorption curves of TpBpy-2-NS 

based materials measured at 77 K. 
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Supplementary Figure 9. Comparison of Nitrogen sorption curves of TpBD-NS 

based materials measured at 77 K. 

 

 

Supplementary Figure 10. The pore-size distribution profiles for the TpBpy-NS. 
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Supplementary Figure 11. The pore-size distribution profiles for the TpBpy-2-NS. 

 

      

Supplementary Figure 12. The pore-size distribution profiles for the TpBD-NS. 
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Supplementary Figure 13. ZETA potential of TpBpy-NS, TpBpy-2-NS, TpBD-NS 

and Pt NPs. 

 

 

Supplementary Figure 14. Survey scan XPS profiles of TpBpy-NS and 

Pt@TpBpy-NS. 
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Supplementary Figure 15. Pt 4f XPS spectra of Pt@TpBpy-NS. 

 

 

Supplementary Figure 16. N 1s XPS spectra of TpBpy-NS and Pt@TpBpy-NS. 

 

 

Supplementary Figure 17. TEM EDX mapping of Pt@TpBpy-NS. 

 



    

Supplementary Figure 18. TEM image of Pt@TpBpy-NS and the statistics of 

particle size distribution. 

 

 

       
 

Supplementary Figure19. TEM image of Pt@TpBpy-2-NS and the statistics of 

particle size distribution. 

 

    
 

Supplementary Figure 20. TEM image of Pt@TpBD-NS and the statistics of particle 

size distribution. 

 



 

 

Supplementary Figure 21. TEM image of Pt/TpBpy-NS. 

 

 

Supplementary Figure 22. AFM image of Pt@TpBpy-2-NS. 

 

 

 

Supplementary Figure 23. AFM image of Pt@TpBD-NS. 

 



 

 

Supplementary Figure 24. Digital photo of the Tyndall effect. 

 

 

Supplementary Figure 25. The UV-vis DRS spectra of Pt@TpBpy-NS, inset Tauc 

plot for band gap calculation. 

 

 

Supplementary Figure 26. The UV-vis DRS spectra of Pt@TpBpy-2-NS, inset Tauc 

plot for band gap calculation. 



 

 

Supplementary Figure 27. The UV-vis DRS spectra of Pt@TpBD-NS, inset Tauc 

plot for band gap calculation. 

 

 

Supplementary Figure 28. Mott-Schottky plots of TpBpy-NS.  
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Supplementary Figure 29. Mott-Schottky plots of TpBpy-2-NS. 

 

 
Supplementary Figure 30. Mott-Schottky plots of TpBD-NS. 
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Supplementary Figure 31. Mott-Schottky plots of Pt@TpBpy-NS. 

 

 
Supplementary Figure 32. Mott-Schottky plots of Pt@TpBpy-2-NS. 
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Supplementary Figure 33. Mott-Schottky plots of Pt@TpBD-NS. 

 

 

Supplementary Figure 34. The UPS spectra of TpBD-NS. 
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Supplementary Figure 35. The UPS spectra of TpBpy-2-NS. 

 

 

Supplementary Figure 36. The photocatalytic overall water splitting activities over 

Pt(X%)@TpBpy-NS (X = 1, 2, 3, 4, 5, 6, 7). 
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Supplementary Figure 37. The photocatalytic overall water splitting activities over 

Pt(X%)@TpBpy-2-NS (X = 1, 2, 3, 4, 5, 6, 7). 

 

 

Supplementary Figure 38. The photocatalytic overall water splitting hydrogen 

evolution raters of Pt(X%)@TpBpy-NS as catalyst. 
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Supplementary Figure 39. The photocatalytic overall water splitting hydrogen 

evolution rates of Pt(X%)@TpBpy-2-NS as catalyst. 

 

 

Supplementary Figure 40. The overall water splitting rate over Pt(X%)@COFs-NS. 
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Supplementary Figure 41. The photocatalytic hydrogen evolution half-reaction rates 

of Pt(X%)@TpBpy-NS as catalyst. 

 

 

Supplementary Figure 42. The H2 evolution half-reaction rate of Pt@COFs-NS. 
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Supplementary Figure 43. The successive overall water splitting activity of 

Pt@TpBpy-NS within 600 min. 

 

 

Supplementary Figure 44. Experimental XRD patterns of Pt@TpBpy-NS after 

overall water splitting reaction. 

 



 

 

Supplementary Figure 45. The FT-IR spectra of Pt@TpBpy-NS after overall water 

splitting reaction. 

 

 

Supplementary Figure 46. Survey scan XPS profiles of Pt@TpBpy-NS after overall 

water splitting reaction. 

 



 

Supplementary Figure 47. High resolution Pt 4f XPS profiles of Pt@TpBpy-NS 

after overall water splitting reaction. 

 

 
Supplementary Figure 48. TEM image of Pt@TpBD-NS after overall water splitting 

reaction. 

 

 

Supplementary Figure 49. EPR spectra of TpBpy-NS with or without 

light-irradiation. 
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Supplementary Figure 50. EPR spectra of TpBpy-2-NS with or without the 

light-irradiation. 

 

 

Supplementary Figure 51. EPR spectra of TpBD-NS with or without 

light-irradiation. 
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Supplementary Figure 52. The PL spectra of TpBD-NS, TpBpy-2-NS and 

TpBpy-NS. 

 

 

Supplementary Figure 53. The EIS spectra of TpBD-NS, TpBpy-2-NS and 

TpBpy-NS. 
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Supplementary Figure 54. The I−V curves in dark and under light irradiation of 

TpBD-NS, TpBpy-2-NS and TpBpy-NS (corresponds to the H2 evolution). 

 

 

Supplementary Figure 55. EPR spectra of •O2
- radical trapped by DMPO over 

TpBpy-NS, TpBpy-2-NS, and TpBD-NS samples for 3 min. 

 

 
Figure S56. The TD-DFT calculated electronic transition of TpBpy-NS.  
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Supplementary Figure 57. The TD-DFT calculated electronic transition of 

TpBpy-2-NS.  



 

Supplementary Figure 58. The calculated Gibbs free energy change of intermediate 

states involved in HER processes for TpBpy-NS 

 

 
Supplementary Figure 59. The optimized structures of TpBD-NS, TpBpy-2-NS and 

TpBpy-NS. 

 

 

 

Supplementary Figure 60. The possible processe of OER reaction via single-site 

processe on bpy segment in TpBpy-NS. 



 

Supplementary Figure 61. The calculated Gibbs free energy change of intermediate 

states involved in OER processes for TpBpy-NS. 

 

 

Supplementary Figure 62. The calculated Gibbs free energy change of intermediate 

states involved in OER processes for TpBpy-2-NS. 

 

Supplementary Table 1. The Pt element contain analysis through ICP-OES. 

Content %= m(Pt)/m(Sample) ×100 %. 

Sample Element Found.( wt %) 

Pt(5%)@TpBpy-NS Pt 1.23 

Pt(5%)@TpBpy-2-NS Pt 1.28 

Pt(5%)@TpBD-NS Pt 1.19 

Pt(5%)@TpBpy-NS-after reaction Pt 1.21 

 

 

 

 

 

 

 



Supplementary Table 2. Comparison of overall water splitting performance with 

literature reports 

Catalysts Co-catalyst Light Source 
H2 evolution rate 

(μmol g-1 h-1) 

O2 evolution 

rate (μmol g-1 

h-1) 

Ref. 

Pt@TpBpy-NS 1.23 wt.% Pt. 
300 W Xe Lamp 

λ ≥ 420 nm 
132 64 This Work 

Pt@TpBpy-2-NS 1.28 wt.% Pt. 
300 W Xe Lamp 

λ ≥ 420 nm 
41 19 This Work 

CTF-0 
3 wt.% Pt, 

6 wt.%Co3O4 
300 W Xe Lamp 82 40 1 

Pt/g-C3N4 
3wt.%Pt 

1wt% CoOx 

300 W Xe lamp 

λ ≥ 420 nm 
6 3 2 

Sea-urchin-structure 

g-C3N4 
3wt.%Pt 

300 W Xe lamp 

λ ≥ 420 nm 
41.5 20.3 3 

C3N4/MnO2 _ 
300 W Xe lamp 

λ ≥ 420 nm 
55.3 27.9 4 

3D g-C3N4 NS 
1wt.%Pt  3wt.% 

IrO2 

300 W Xe lamp 

λ ≥ 420 nm 
101.4 49.1 5 

g-C3N4-Carbon Dots _ 
300W Xe lamp 

λ ≥ 420 nm 
5 2.5 6 

Co1phosphide/PCN _ 
300W Xe lamp 

λ ≥ 420 nm 
125 65 7 

Ta3N5/BTON 

0.3 wt% Pt 

0.45wt% 

PtOx/WO3 

300 W Xe Lamp 

λ ≥ 420 nm 
16 8 8 

MnO2/Monolayer g-C3N4
 3wt.% Pt 

300W Xe lamp 

λ > 400nm 
60.6 28.9 9 

CoO/g-C3N4 10wt.% CoO 
LED 

λ ≥ 400 nm 
5.8 2.6 10 

CoO/g-C3N4 30wt.% CoO 
LED 

λ ≥ 400 nm 
50.2 27.8 11 

Pt/CoP/g-C3N4 
3wt.%Pt  3wt.% 

CoP 

300 W Xe lamp 

λ ≥ 300nm 
26.3 12.5 12 

g-C3N4 NWBs 1wt.% Pt 
300 W Xe lamp, 

λ≥300nm 
72 35.6 13 

TiO2/g-C3N4-WO3 1% PtOX 
150W Xe lamp 

λ > 200 nm 
29.4 14.3 14 

C3N4-rGO-WO3 1wt.% Pt 
250W metal halide 

lamp, λ ≥ 420nm 
14.2 7.3 15 
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